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To the Editor: The use of linear mixed models (LMMs) in genome-wide association studies
(GWAS) is now widely accepted1 because LMMs have been shown to be capable of
correcting for several forms of confounding due to genetic relatedness, such as population
structure and familial relatedness1, and because recent advances have made them
computationally efficient1,2. LMMs tackle confounding by using a matrix of pairwise
genetic similarities to model the relatedness among subjects. The consensus until now has
been that all available single-nucleotide polymorphisms (SNPs) should be used to determine
these similarities1. Here, however, we show theoretically and experimentally that carefully
selecting a small number of SNPs systematically increases power (that is, it jointly reduces
false positives and false negatives), improves calibration (lessens inflation or deflation of the
test statistic) and reduces computational cost.

Our approach is motivated by two considerations. First, an LMM with no fixed effects using
genetic similarities constructed from a set of SNPs is mathematically equivalent to a linear
regression of the SNPs on the phenotype (with weights integrated over independent normal
distributions having the same variance—in particular, the genetic variance)3. That is, an
LMM using a given set of SNPs for genetic similarity is equivalent to (Bayesian) linear
regression using those SNPs as covariates to correct for confounding. In theory, this
equivalence holds only for certain forms of genetic similarity matrices, such as the realized
relationship matrix2,3. In practice, however, the realized relationship matrix and other
measures of similarity, such as identity by state1, yield very similar measures of association
(Supplementary Note 1), and thus our demonstration is quite general.

Second, regardless of the form of regression used for GWAS, the significance of SNP-
phenotype association should be determined by conditioning on exactly those SNPs that are
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associated with the phenotype. These SNPs include causal SNPs, or those nearby that tag
causal SNPs, and SNPs that are associated by way of confounding (for example, because of
population structure). By conditioning on causal or tagging SNPs, we reduce the noise in the
assessment of the association4. By conditioning on SNPs associated because of
confounding, we control for such confounding5. Moreover, if a SNP is unrelated to the
phenotype, it should not be in the conditioning set. In the particular case in which we use
Bayesian linear regression for GWAS, the inclusion of unrelated SNPs in the genetic
similarity matrix decreases the relative influence of each SNP on the phenotype (because all
SNP weights share the same prior distribution whose variance—the genetic variance in the
LMM view—is estimated from the data). The decrease in influence leads to incomplete
correction for confounding and hence inflated test statistics and reduced power. We refer to
this phenomenon as ‘dilution.’

To identify SNPs that satisfy these principles, we developed a simple heuristic that yields
improved power and calibration. First, we order SNPs by their linear-regression P values
from lowest to highest. Then we construct genetic similarity matrices with an increasing
number of SNPs as previously ordered until we find the first minimum in λGC (the genomic
control factor). In practice, the number of SNPs selected is typically smaller than the number
of individuals analyzed, a condition that can be exploited by an existing algorithm, FaST-
LMM, to yield large computational savings2.

The equivalence between the LMM and Bayesian linear regression also implies that, when a
given SNP is being tested, that SNP should be excluded from the computation of genetic
similarity to avoid using it as a covariate. Including the SNP would make the log likelihood
of the null model higher than it should be and lead to deflation of the test statistic and loss of
power. We call this phenomenon ‘proximal contamination’. In addition to the SNP being
tested, we also exclude those SNPs in close proximity (for example, within 2 centimorgans),
as linkage disequilibrium will lead to a similar deflation and loss of power. A naive
algorithm for excluding these from the similarity matrix is computationally expensive, so we
developed a speedup (Supplementary Note 2). Together, the linear-regression scan to select
SNPs for inclusion in the matrix along with the efficient removal of the test SNPs and those
nearby constitute our new approach, FaST-LMM-Select.

When applied to Wellcome Trust data for Crohn’s disease6 (Table 1, Supplementary Fig. 1,
Supplementary Table 1 and Supplementary Methods) that includes family members and
non-Caucasians, FaST-LMM-Select yielded slightly less inflation, fewer false positives and
fewer false negatives (due to lack of dilution) compared to the use of all SNPs while
accounting for proximal contamination. When all SNPs were used, proximal contamination
had a dramatic effect on calibration and false positives even though correction for it
excluded (on average) only 516 of the available 356,441 SNPs from the genetic similarity
matrix. Compared with the original version of FaST-LMM, wherein equally spaced SNPs
were used to reduce computational demands, FaST-LMM-Select had far better calibration
and fewer false positives. FaST-LMM-Select also performed well on synthetic data
(Supplementary Note 1) and other real cohorts with substantial genetic structure
(Supplementary Note 3).

FaST-LMM-Select is available at http://mscompbio.codeplex.com/.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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