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Abstract
Far from being simple “bags” of enzymes, bacteria are richly endowed with ultrastructures that
challenge and expand standard definitions of the cytoskeleton. Here we review rods, rings, twisted
pairs, tubes, sheets, spirals, moving patches, meshes and composites, and suggest defining the
term “bacterial cytoskeleton” as all cytoplasmic protein filaments and their superstructures that
move or scaffold (stabilize/position/recruit) other cellular materials. The evolution of each
superstructure has been driven by specific functional requirements. As a result, while homologous
proteins with different functions have evolved to form surprisingly divergent superstructures,
those of unrelated proteins with similar functions have converged.

Defining the bacterial cytoskeleton
The word “skeleton” is defined as the basic frame or supporting structure of an object. The
term “cytoskeleton” was coined after a network of long, skinny, cell-shape-determining
structures was discovered in the cytoplasm of eukaryotic cells. These structures were later
found to consist of actin, tubulin and intermediate filament (IF) proteins that move objects
through their own growth and disassembly, act as stationary tracks for auxiliary motors, and/
or serve as connectors and scaffolds to position and stabilize other materials. The discovery
of bacterial homologs of actins, tubulins and IF proteins then led to a new understanding that
bacteria, too, were organized and shaped by a cytoskeleton [reviews: 1,2,3]. Bacterial
filaments have also been found to push and pull objects and/or bind them together as
connectors and scaffolds, but have not yet been found to act as tracks for other motor
proteins. In bacteria (and archaea), the eukaryotic notion of the cytoskeleton is challenged
however by both the small size of the cell, which causes filament bundles to sometimes be
nearly as wide as they are long (and therefore seem much less obviously “filamentous”), and
by diverse new non-actin, non-tubulin, and non-IF superstructures (higher-order assemblies)
that exhibit many cytoskeletal characteristics and have already been called “cytoskeletal” in
the literature. Thus as one of the purposes of this review, here we explore an expansive
definition of the bacterial cytoskeleton that includes all cytoplasmic protein filaments and
their superstructures that either move or scaffold (stabilize/position/recruit) materials within
the cell. Recent progress is highlighted with emphasis on how specific functions drove the
evolution of different superstructures.
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Superstructures of the bacterial cytoskeleton
Individual rods

Protein polymerization may possibly have first evolved to regulate enzymatic activity, but
the resulting filaments might have then proven to be useful as scaffolds as well [review: 4].
The actin homolog MamK may exemplify such simple rods, as it polymerizes into what
appear by electron cryotomography (ECT) of intact cells [review: 5] to be simple short rods
flanking magnetosome chains (Figure 1A) [6-10]. Despite the apparently simple structure,
MamK shows dynamic behavior, promoted by the regulators MamJ and LimJ [9], and plays
a role in a pole-to-midcell translocation of the magnetosome chain prior to cell division [10],
so there is much complexity to be understood.

Another element of the bacterial cytoskeleton that appears to act as an isolated rod in vivo is
the tubulin homolog FtsZ, the major cell division protein in almost all bacteria. FtsZ acts as
both a scaffold to recruit other proteins to the septum and as a “cytomotive” filament (one
that pushes or pulls objects) [reviews: 11,12]. Through ECT of dividing cells, FtsZ filaments
were seen to be either straight or curved, isolated filaments typically shorter than the
diameter of the cell slightly displaced from the membrane (Figure 1B) [13]. More recent
studies showed that fluorescently labeled FtsZ with a short membrane targeting sequence
can self-assemble into contractile rings inside liposomes [14]. These in vitro studies have
shown that FtsZ alone can generate constrictive forces, that FtsZ protofilaments have a
preferred direction of bending [15], and that GTP-hydrolysis and filament remodeling are
necessary for continuous constriction [16]. Molecular dynamics simulations have supported
a hypothesis that FtsZ protofilament bending alone could generate sufficient force to
constrict membranes [17]. Super-resolution fluorescence light microscopy (fLM) confirmed
the ECT result by showing that FtsZ was unevenly distributed around the ingression “ring”
(Figure 1C) [18-20]. Present data therefore favors (though not clearly [11,21]) an “iterative
pinching” model in which FtsZ polymerizes into straight filaments in its GTP-bound state, is
tethered to the membrane, and then bends upon GTP hydrolysis, pulling the membrane
inwards [13,22]. Cell-wall-remodeling enzymes recruited by FtsZ apparently then add new
peptidoglcan behind the advancing membrane, preventing it from relaxing when the FtsZ
filament depolymerizes.

FtsZ is tethered to the membrane by the actin homolog FtsA [23]. FtsA was recently shown
to polymerize into actin-like filaments and 2D sheets in vitro [24], but its structure and
position with respect to other divisome components in vivo remain unknown. Mutants
disrupted in polymerization have an elongated cell division phenotype, however, suggesting
that polymer formation is important for FtsA function, and truncated FtsA lacking its
membrane-binding helix formed straight protofilaments in vivo. Overexpression of full-
length FtsA resulted in membrane distortions and the formation of polymer-coated lipid
tubes.

Rings
Without evolving any additional binding interfaces, but given a special curvature, individual
filaments can loop around and bind themselves to form complete rings. SepF may be an
example. Thick-walled bacteria such as Gram-positives and cyanobacteria purportedly have
special requirements regarding the arrangement of FtsZ filaments [25]. Proper division of
these cells requires SepF, which forms ~50-nm diameter rings in vitro (Figure 1D) and is
thought to bundle FtsZ in vivo. If SepF does indeed bundle FtsZ filaments by forming rings
around them, it might provide the benefits of filament bundling without the need for intrinsic
lateral interactions between FtsZ filaments that might otherwise interfere with FtsZ's
conformational changes. While simple linear SepF “crosslinks” might also be able to bundle
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FtsZ, the authors point out that a ring superstructure can limit the bundle width, promoting
the growth of FtsZ filaments lengthwise.

Twisted filament pairs
A superstructure one step more complex than individual or loosely-bundled filaments is a
tightly coupled pair. In fact this appears to be a highly effective superstructure, as a diverse
set of cytomotive filaments have evolved to form twisted filament pairs that propel other
structures throughout the cell. Filament pairs require an additional lateral binding interface,
but offer increased stiffness and the possibility of staying attached to an object even while
one of the filaments is growing or shrinking. In contrast to FtsZ's bending mechanism, these
cytomotive filaments evolved dynamic instability or treadmilling in order to generate
motility.

For plasmid segregation, the cytomotive filament usually acts in concert with a centromere-
like region of DNA and a DNA-binding adaptor, as exemplified by the ParMRC system
[review: 26]. Dynamically instable filaments of the actin homolog ParM cycle between
growth and shrinkage until they are stabilized by binding ParR-parC complexes at both
ends. Plasmids are then pushed to opposite cell poles by bidirectional elongation of the
ParM filaments. Like F-actin, ParM assembles into a polar double-helical filament pair in
vitro (Figure 1E), though with a different handedness [27-31]. Erickson has made an
interesting argument that ParM may form an apolar, antiparallel double-helical structure in
vivo, however, since this could better explain bidirectional filament growth [32]. ECT of
cells harboring the ParMRC system found that in vivo, 3-5 presumably double-stranded
filaments aligned in a bundle (Figure 1E)[33]. Bundling provides the stiffness that is likely
needed to segregate the large plasmid-adaptor complexes, but it is unclear how many
filaments in a bundle are attached to plasmids. Like ParM, AlfA (for actin-like filament)
[34-36] and various Alps (for actin-like proteins) [37,38] are also involved in plasmid
segregation. AlfA is thought to treadmill in vitro and the double-filament has a much higher
twist, however, suggesting a different mechanism.

In addition to the above actin homologs, a diverse set of homologs of tubulin (TubZ, phage
TubZ and PhuZ) also form DNA-positioning twisted filament pairs. In combination with an
adaptor (TubR) and a centromere (tubC), TubZ segregates plasmids through treadmilling
[39-41]. Electron microscopy (EM) of in vitro and in vivo TubZ filaments suggests a
double-helical, ParM-like structure (Figure 1F) [42]. Well-ordered bundles of presumably
double-stranded filaments were observed in cryotomograms of E. coli cells overproducing
TubZ (Figure 1F). Strikingly, two recent studies showed that tubulin homologs are also
involved in bacteriophage DNA positioning. Upon cell entry, the Clostridium botulinum c-st
phage genome is recircularized into a plasmid-like entity and segregated by a phage TubZ,
which again acts together with an adaptor and a centromere, but also an additional
modulator [43]. In vitro, phage TubZ polymerizes into double-helical filaments that coalesce
into bundles. A second phage tubulin homolog, PhuZ from bacteriophage 201! 2-1, is
required during the lytic phage cycle [44]. A single-cell assay monitored by fLM revealed
that dynamic PhuZ filaments form a spindle that positions phage DNA at the cell center
(Figure 1G), enhancing phage production. Like the other DNA positioning filaments, PhuZ
forms twisted filament pairs in vitro, and the authors speculate that these generate pushing
forces in vivo to hold the phage DNA at midcell. Surprisingly simple changes in cell length
or filament number or dynamics can shift whether filament pairs localize objects at the poles
or the center of cells [45].

Another class of proteins involved in DNA and protein positioning are Walker A
“cytoskeletal” ATPases (WACA) [reviews: 46,47,48]. Two prominent members are ParA
and MinD, which segregate DNA and position the septum, respectively. While WACA
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polymerize into filaments in vitro; whether they form filaments in vivo (and really are
therefore “cytoskeletal”) remains unclear.

Tubes
Given lateral interactions between filaments, more complex structures like tubes and sheets
can form. Compared to simple rods and twisted pairs, tubes offer enhanced stiffness and
mechanical strength, allowing them to act as firm tracks for motors, for instance.

Do bacteria contain microtubules? There are indeed scattered reports of bacterial
microtubule-like structures [review: 49]; but later sequencing has revealed that tubulin genes
are absent from the organisms described. Hence, microtubules were considered exclusively
eukaryotic until a recent study on bacterial tubulins BtubA and BtubB in the phylum
Verrucomicrobia [50]. Early on, it was thought that BtubA/B might have taken over the
function of its distant homolog FtsZ, since Verrucomicrobia are the closest relatives of FtsZ-
lacking Chlamydiae and Planctomycetes, but FtsZ was later found in the same genomes as
BtubA/B [51,52]. The sequences and crystal structures of BtubA/B are more similar to
eukaryotic tubulins than to FtsZ [50,51,53-55], but negative stain EM suggested that BtubA/
B polymerize into protofilament bundles rather than tubes in vitro [54,56]. ECT showed,
however, that in vivo BtubA/B assembles into slender tubes (Figure 1H) which run the
length of the cell close to the cytoplasmic membrane in bundles of up to four [50].
Interestingly and in contrast to eukaryotic tubulins, BtubA/B can fold without chaperones
and they can be heterologously expressed in E. coli; the recombinant proteins also form
tubes in vitro and in vivo. Because BtubA/B tubes had the same basic architecture as
eukaryotic microtubules (but with only five protofilaments), they were termed ‘bacterial
microtubules (bMTs)’ (Figure 1H) [50]. Their 5-protofilament architecture might be ancient,
since BtubA/B most probably arose from early tubulin intermediates [50,55]. Interestingly, a
gene with low similarities to kinesin light chains is part of the operon encoding bMTs [57],
but it remains unclear whether bMTs act as tracks for a motor, cytomotive tubes or
scaffolds.

An amazing capability of tubes is illustrated by the bacterial type VI secretion (T6S) system,
which injects effector proteins into neighboring cells [review: 58]. A combination of ECT
and fLM recently revealed that T6S functions like a spring-loaded molecular dagger (Video
1 and Figure 1I, J) [59]: an inner rod (the dagger) is propelled out of the cell by rapid
contraction of a tubular outer sheath (the spring). Because the sheath is a dynamic,
proteinaceous, cytoplasmic tube involved in moving material, we include it here as a novel
cytomotive element of the bacterial cytoskeleton. Sheath contraction provides the energy
needed to move the inner rod [59], and sheath disassembly relies on a AAA+ ATPase
[60-62]. T6S genes are highly abundant and widespread among diverse phyla and are
involved in competition, defense, pathogenesis and symbiosis [review: 63]. Interestingly, the
T6S mechanism and some of its components are homologous to the contractile
bacteriophage tail [64]. Phage and bacterium both take advantage of the tube geometry,
which is effective to collect the forces needed to transport materials across membranes.

Sheets
In addition to tubes, lateral interactions between filaments can also lead to sheets, which can
provide mechanical support, separate compartments, or act as high-surface-area scaffolds.
The bactofilins BacA/B in Caulobacter, for instance, localize as sheets at the poles, where
they assist stalk morphogenesis by recruiting a peptidoglycan synthase (Figure 1K) [65].
Although bactofilins are almost universally conserved among bacteria, they have a variety of
functions. A Myxococcus strain mutated in one bactofilin paralogue had impaired social
motility for instance [65], while mutation of another (BacM) led to altered cell morphology
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[66]. Based on fLM and in vitro experiments the authors suggested that instead of sheets,
BacM forms fibers which bundle into helical cables throughout the cell [66], but such a
structure has not yet been directly visualized.

The metabolic enzyme CTP synthase (CtpS) also forms sheets in some species. CtpS is
conserved in all domains of life, and some bacterial and eukaryotic homologs have been
shown to form filaments [review: 3]. While the function of polymerization might typically
be the regulation of enzymatic activity, in Caulobacter crescentus CtpS polymers are also
involved in cell shape determination [67]. Caulobacter CtpS forms stacks of sheets that lie
along the inner curvature of the crescent-shaped cells (Figure 1L) [67,68], where it appears
to regulate the activity of another shape-determining polymer, crescentin (CreS) [67].

CreS was the first characterized bacterial intermediate-filament-like protein [69]. CreS is
thought to induce curvature in Caulobacter cells by applying asymmetric tension to the cell
wall, inhibiting new cell wall growth on one side [70]. fLM, EM, and biochemical studies
suggest that CreS forms a substantial ribbon-like structure with properties similar to
eukaryotic intermediate filaments [70-73]. No such ribbon-like structure was seen by ECT
[68], however, so the in vivo superstructure remains unclear. Like CtpS, CreS localizes to
the inner curvature of Caulobacter cells where the two have apparently antagonistic effects:
CtpS decreases CreS-induced curvature [67]. One of the distinguishing characteristics of
intermediate filament proteins are extended coil-coil domains. In addition to CreS, multiple
other coiled-coil rich (Ccrp) proteins have been identified in bacteria and found to be
involved in cell shape, rigidity and motility [74-77]. Ccrps assemble into various
polymerization condition-dependent superstructures in vitro, but again their superstructures
in vivo remain unknown.

Spirals
While the lateral interactions of linear filaments can produce sheets, so can circular coiling.
During Bacillus endospore formation, the protein SpoIVA localizes to the mother-side of the
outer spore membrane and recruits spore coat proteins [78]. SpoIVA was observed to form
polymers in vitro and contains a Walker A box, so it should be considered a WACA (it has
not yet been described as such). In fact, in contrast to other better-known WACAs there is
strong evidence that SpoIVA actually forms a cytoskeletal structure in vivo: cryotomograms
of sporulating Acetonema longum cells showed concentric, ring-shaped densities on the
outer spore membrane (Figure 1M) which were most likely SpoIVA [79]. As a filamentous
cytoplasmic scaffold, these rings/spirals should also be considered part of the bacterial
cytoskeleton.

Moving ‘Patches’(?)
Perhaps the most well-known supposed element of the bacterial cytoskeleton is the actin
homolog MreB, which is present in most non-spherical bacteria and is essential for cell
shape determination [80,81]. Early fLM suggested that MreB polymerizes into extended
helical filaments that encircle the cell just inside the cytoplasmic membrane [82-85], but
extended helices were not found in cryotomograms of diverse rod-shaped cells, even after
careful computational searches [86]. In 2011 three groups then reported that instead of
forming helices, MreB formed small ‘patches’ that moved circumferentially around cells
(Video 2 and Figure 1N), driven by cell wall synthesis rather than MreB's intrinsic ATPase
activity [87-89]. ECT has now shown that at least in E. coli, the previously reported helices
were an artifact caused by an N-terminal YFP tag (Figure 1O) [90]. This is not surprising
given the recent findings that E. coli MreB is anchored to the membrane by an N-terminal
amphipathic helix (which is most likely blocked by N-terminal tags), and that membrane
binding is essential for MreB's role in cell shape determination [91]. Indeed Thermotoga
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MreB forms double filaments and sheets on a 2D lipid monolayer and it distorts lipid
vesicles by the formation of small sheets (Figure 1P). At high protein levels, MreB also
distorts membranes in vivo. Thus while the structure and function of MreB in vivo has yet to
be determined, the data available today suggest that MreB forms small sheet-like polymers
or ’patches’ on the membrane together with cell wall synthetic machinery. Small patches
could conceivably be effective in maximizing surface area without overly inhibiting
movement along the interface of a complex membrane and a crowded cytoplasm.

Meshes
While lateral binding interactions lead to tubes and sheets, 3-way junctions can lead to 3-D
meshes, which allow for cell compartmentalization. Biochemical analyses, in vitro
polymerization (Figure 1Q), and cellular ECT suggest that the polar organizing protein Z
(PopZ) forms such a mesh in vivo [92-94]. PopZ provides an anchor for the parS/ParB
chromosomal centromere at the Caulobacter cell pole and later recruits various proteins for
stalked pole development. PopZ also establishes a special ribosome-excluding zone (Figure
1Q).

Multi-element composite
Finally, multiple cytoskeletal elements can come together in multi-element composites.
Gliding motility, cell division, and attachment of different Mycoplasma species, for
instance, depend on composite superstructures that have also been described as cytoskeletal.
Their composition and structure is species-dependent and can include elements termed
jellyfish, cap, oval, bowl, bulge, ankle, thick and thin rods, terminal button, etc. (Figure 1R)
[95-97, and review 98].

Conclusion
Function dictates superstructure

Each superstructure of the bacterial cytoskeleton has special advantages that optimize its
role in moving objects, arranging materials, or both (Figure 2). Similar functions lead even
unrelated proteins to evolve similar superstructures – actins and tubulins segregate plasmids
as twisted filaments, CTP synthase and bactofilins (and possibly MreB) recruit proteins to
the membrane as sheets. Homologs with different functions, however, form surprisingly
different superstructures – tubulins are found as twisted filament pairs (PhuZ/TubZ),
bending rods (FtsZ), and tubes (BtubA/B) (and perhaps more - the superstructures of FtsZ-
like proteins [99] and archaeal “artubulins” [100] remain unknown).

Boundaries of our definition
Here we have included as bacterial cytoskeletal elements all cytoplasmic filamentous
superstructures with either a cytomotive or scaffolding function. As with all definitions,
there are ambiguities at the boundaries. Although PhuZ and phage TubZ, for instance, are
not truly bacterial proteins, they were included in this review because they act in the
bacterial cytoplasm. Phage tails and capsids, however, act mostly outside the cell and were
excluded just like flagella and their motors, whose main components are also located outside
the cytoplasm. Chemoreceptor arrays and carboxysome shells were not discussed either,
since their superstructures are hexagonal or polyhedral, rather than higher-order assemblies
of filaments, but these fine distinctions illustrate the growing ambiguities the bacterial
“cytoskeleton” is presenting: bactofilin and CtpS sheets may also be hexagonal, some
carboxysomes are so long that they could be considered filamentous at the superstructural
level [101], and the in vivo superstructures of many widely discussed members of the
bacterial “cytoskeleton” like MreB, CreS, FtsA, SepF, most WACA, Ccrps, and SepF
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remain unknown! Such ambiguities emphasize the importance of molecular-resolution, in
vivo imaging of wildtype cells [review: 5]: almost all proteins will polymerize under some
condition in vitro (as proven by the success of X-ray crystallography), and fluorescence
signals can be deceiving (as shown by the case of MreB [90] and likely other supposedly
“helical” filaments). Thus while the growing diversity of superstructures produces some
semantic challenges, it is nevertheless amazing and beautiful (who would have imagined
membrane-bending pyramids, as recently seen in archaea [102]!), and there is surely much
left to discover.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Superstructures of the bacterial cytoskeleton
(A) Individual MamK rods (yellow in shown segmentation) organize the magnetosome
chain [7]. (B) ECT of wildtype cells identified the cell division protein FtsZ (arrows) as
straight (left) or bent (right) rods [13]. (C) Superresolution fLM observed FtsZ as a ring-
shaped signal with uneven density (y, cell length axis) [19]. (D) SepF bundles FtsZ
filaments (running vertical) in vitro by forming rings (arrowheads) around them [25]. (E)
Plasmid segregating ParM forms twisted filament pairs in vitro (upper [30]) and small
bundles of filament pairs in vivo (lower: perpendicular view [33]). (F) TubZ also segregates
plasmids, assembles twisted filament pairs in vitro (upper) and bundles in vivo (lower:
perpendicular (left) and longitudinal (right) view of overexpressed TubZ) [42]. (G) PhuZ
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forms a spindle-like structure (green) that positions phage DNA at midcell (blue, phage/
bacterial DNA) [44]. (H) BtubA/B assemble bacterial microtubules (left: model) which
localize close to the cytoplasmic membrane in vivo (right, arrows) [50]. (I) Type VI
secretion (T6S) requires a contractile phage tail-like sheath which is found in extended (left)
and contracted (right) confirmation [59]. (J) The tubular T6S sheath is dynamic and cycles
between assembly (upper row), quick contraction, and disassembly (lower row) [59]. (K)
Bactofilins [65] and (L) CTP synthase [67] both form sheets (arrows) at the cytoplasmic
membrane, where they recruit other proteins. (M) Densities thought to represent SpoIVA
(left, arrow) form concentric rings (right panel shows density projections, arrow) on the
mother side of the outer spore membrane, where SpoIVA recruits spore coat proteins [79].
(N) MreB forms small patches moving circumferentially around the cell driven by the cell
wall synthesis machinery (left: fLM images, right: traced patches) [87,88]. (O) Extended
MreB helices in E. coli (segmentation shown) are an artifact of an N-terminal YFP tag [90].
(P) MreB forms filaments and sheets on 2D-lipids (left) and vesicles (middle and model on
right) [91]. (Q) PopZ establishes a ribosome exclusion zone (right, yellow) in vivo
presumably by the formation of a 3-D mesh (left, in vitro) [93,94]. (R) Gliding motility
requires multi-element composites such as the attachment organelle in Mycoplasma
pneumoniae (left, [96]) or the jellyfish-like multi-element complex in Mycoplasma mobile
(right, [98]). Images are adapted with permissions from references listed in legend. Bars:
200nm in C, R; 50nm in D, K, Q; 100nm in E, H, I, L, P; 25nm in F; 1μm in G, J, N (left);
250nm in N (right).
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Figure 2. The bacterial cytoskeleton: proteins, superstructures and mechanism of function
Bacterial cytoskeletal elements evolved a variety of superstructures, each adapted to the
protein's function in moving (cytomotive) or stabilizing/positioning/recruiting (scaffold)
objects within the cell. Connections with weaker evidence are represented as dashed lines.
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