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Abstract

We describe a novel approach to capturing the covariance structure of peripheral blood gene expression that relies on the
identification of highly conserved Axes of variation. Starting with a comparison of microarray transcriptome profiles for a
new dataset of 189 healthy adult participants in the Emory-Georgia Tech Center for Health Discovery and Well-Being
(CHDWB) cohort, with a previously published study of 208 adult Moroccans, we identify nine Axes each with between 99
and 1,028 strongly co-regulated transcripts in common. Each axis is enriched for gene ontology categories related to sub-
classes of blood and immune function, including T-cell and B-cell physiology and innate, adaptive, and anti-viral responses.
Conservation of the Axes is demonstrated in each of five additional population-based gene expression profiling studies, one
of which is robustly associated with Body Mass Index in the CHDWB as well as Finnish and Australian cohorts. Furthermore,
ten tightly co-regulated genes can be used to define each Axis as ‘‘Blood Informative Transcripts’’ (BITs), generating scores
that define an individual with respect to the represented immune activity and blood physiology. We show that
environmental factors, including lifestyle differences in Morocco and infection leading to active or latent tuberculosis,
significantly impact specific axes, but that there is also significant heritability for the Axis scores. In the context of
personalized medicine, reanalysis of the longitudinal profile of one individual during and after infection with two respiratory
viruses demonstrates that specific axes also characterize clinical incidents. This mode of analysis suggests the view that,
rather than unique subsets of genes marking each class of disease, differential expression reflects movement along the
major normal Axes in response to environmental and genetic stimuli.
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Introduction

The promise of personalized medicine is predicated on the

assumption that people differ with respect to their disease

susceptibility. To date, medical genomics has contributed primar-

ily by defining genotypic risk based on common variants associated

with disease and rare mutations predicted to disrupt proteins [1,2].

To some extent this reflects the preconception that most

individuals are normal with respect to disease predisposition, but

that they harbor an excess of variants that increase risk for just a

handful of different conditions. An alternative view is that normal

variation is actually highly structured such that each person can be

classified with respect to their position along a small number axes

that define their susceptibility for metabolic, immune, pulmonary

and psychological conditions in general. Systems genomics stands

to contribute to personalized medicine if it can help to define these

common axes of variation [3].

A promising approach is gene expression profiling. Most of the

focus of GWAS for gene expression has been on local regulatory

polymorphisms that explain over a quarter of the variance of

individual transcripts [4,5]. However, this approach has informed

little about the genetic basis for the extensive and pervasive co-

regulation of transcript abundance. Principle component and

related analyses, including independent components [6] and non-

negative matrix factorization [7], consistently reveal several dozen

axes of variation that each explain a few percent of the total

transcriptional variance, involving from 50 to 500 genes. Similarly,

hierarchical clustering methods such as weighted gene co-

expression network analysis (WGCNA [8]) and modulated

modularity clustering (MMC [9]) partition the transcriptome into

discrete modules of clearly co-regulated genes. These components

or modules often seem to correlate with biological features of

interest [10,11]. For the most part the mechanisms responsible for

the covariance are not understood.

A major problem with such methods is that they have relatively

low repeatability, and hence it is not clear that they truly reflect

common regulatory mechanisms. The first principal component of

whole blood gene expression is highly conserved across multiple

studies that we have conducted, in that the loadings of thousands

of transcripts significantly correlated with PC1 are similar,

although a fraction of the transcriptome seems susceptible to

methodological differences (Figure S1A). The next several PC also

capture similar patterns of covariance, but they are not the same

between studies (Figure S1B) and change substantively as a result
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of normalization procedures. Thus, the eigenvectors of each

transcript with PC3 in one study or analytical approach, may be

correlated with PC3 and PC4 in another. While advanced

factorization procedures may resolve some of these issues, these

components of covariance are to some extent contingent on latent

features specific to each dataset, and alternative approaches are

needed to discover common axes of variation.

One such strategy was adopted by Chaussabel et al [12], who

queried multiple peripheral blood gene expression datasets for

conserved modules of transcripts that differ according to disease

state. They described 28 modules and showed that the severity of

systemic lupus erythromatosis corresponded to up-regulation of

several of the modules, while transplant and melanoma patients

showed other patterns of differential modular expression. Here ask

whether the modules are also present in healthy adults, and

explore some implications of the observation that they indeed are

conserved, with the following work flow. Principal component

analysis of just the genes in each of the 28 modules indicates that

their covariance is highly conserved in two healthy adult studies,

but that they can be collapsed into 6 meta-modules, and we also

identify 3 additional co-varying gene sets. We then show by

multiple linear regression that of the order of one half of the

transcriptome is highly significantly correlated with one or more of

these meta-modules, which we redefine as 9 Axes of covariance.

Ten of the genes that are most closely associated with each Axis

are selected, and these are also found to be highly co-regulated in

seven other peripheral blood transcriptome studies where they

show significant correlations with genetic, environmental, or

phenotypic variables. Finally, we demonstrate that these 90 Blood

Informative Transcripts have the potential to track changes in

immunological and metabolic status, and argue that they may thus

be used to evaluate pre-clinical risk of disease.

Results

Defining 9 Common Axes of Peripheral Blood Variation
In order to assess whether transcripts in each of the 28 modules

in [12] are also co-expressed in healthy adults, we generated the

first principal component scores for each module in 189

individuals in a predictive health study in Atlanta (the CHDWB

study, first described here), and in 208 Moroccans [13], using

transcript abundance measures from Illumina HT12 microarrays.

In general, over one quarter of the variance in each Chaussabel

module was captured by its first principal component (Table S4),

in both studies, implying significant co-regulation, as expected.

However, the PC1 scores were themselves highly correlated

between modules, with a very similar structure to which modules

co-vary in the two studies, suggesting that there may be a smaller

number of conserved axes in healthy adults, subsets of which

diverge among disease classes. Based on the clusters evident in

Figure 1A, we condensed them into six meta-modules, and also

discovered three more sets of co-expressed genes, resulting in nine

Author Summary

Gene expression profiling of human tissues typically
reveals a complex structure of co-regulation of gene
expression that has yet to be explored with regard to the
genetic and environmental sources of covariance or its
implications for quantitative and clinical traits. Here we
show that peripheral blood samples from multiple studies
can be described by nine common axes of variation that
collectively explain up to one half of all transcriptional
variance in blood. Specific axes diverge according to
environmental variables such as lifestyle and infectious
disease exposure, but a strong genetic component to axis
regulation is also inferred. As few as 10 ‘‘blood-informative
transcripts’’ (BITs) can be used to define each axis and
potentially classify individuals with respect to multiple
aspects of their blood and immune function. The analysis
of longitudinal profiles of one individual shows how these
change relative to clinical shifts in metabolic profile
following viral infection. The notion that gene expression
diverges along genetic paths of least resistance defined by
these axes has important implications for interpreting
differential expression in case-control studies of disease.

Figure 1. Common axes explain a large proportion of expression variation. (A) Hierarchical clustering of the PC1 scores for 24 Expression
Modules in Ref [12] in the Atlanta CHDWB and Morocco datasets shows complete agreement in clustering into 6 meta-modules. These define 6 of the
Axes described here, while a 7th Axis emerged on further decomposition of Module 3.1 (B) The frequency distribution of proportion of variance
explained by all 9 Axes for each of 14,343 transcript probes (light green) and 7,538 transcript probes (dark green) Bonferroni significant for at least
one Axis in a multiple regression. Inclusion of the two additional axes not corresponding to the Chaussabel modules only explains an extra 4% of the
variance relative to the first seven. (C) The number of Bonferroni significant axes per transcript in the CHDWB dataset, showing that 39% (5622/14343)
of transcript probes associate most strongly with a single axis.
doi:10.1371/journal.pgen.1003362.g001

Axes of Covariation in Peripheral Blood
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Axes of common peripheral blood gene expression variation (see

Methods for details of the workflow). It is likely that there are other

minor Axes, and some splitting into sub-Axes is possible, but an

independent line of evidence described in Figure S2 supports the

conclusion that these nine axes of variation are the major common

and replicated sources of covariance in peripheral blood gene

expression.

The genes associated with each of these axes were then cross-

matched between the CHDWB and Moroccan studies. Any

transcript that was associated with the first PC of the correspond-

ing meta-module at Bonferroni significance in a multiple

regression, in both studies, is included in a list of between 99

and 1028 genes that define each axis (Dataset S1). In the

CHDWB, the axes collectively capture 37% of total transcript

abundance (the average R-squared for a multiple regression with

all 9 axes over 14,343 probes), and 49% of the variance for the

53% of the peripheral blood transcriptome (7538 probes) that co-

varies with at least one Axis at Bonferroni-corrected significance

(Figure 1B). In Morocco, the explanatory power of the axes is even

stronger, with 51% of the variance of all transcripts captured by

the nine axes. We then identified the 10 transcripts with the

highest correlation within each axis, in both studies, that are not

correlated with any of the other axes. These 10 transcripts can be

regarded as Blood-Informative Transcripts (BITs: Table S1) and

the PC1 score in turn derived from these BITs represent Axes

scores that potentially define an individual’s immune status. The

process of capturing variation with modules, then Axes and BIT is

illustrated in Figure 2, which also shows (panel E) how the variance

explained is markedly greater than random subsets of genes.

Averaged across both studies and all 9 Axes, 79% of the variance

of each set of 10 BIT transcripts is captured by their Axis scores.

Note that, unlike principal components of the entire transcrip-

tome, the nine Axis scores are not orthogonal, reflecting residual

covariance even among the Axes. The axes appear to have

replicated effects transcriptome wide, since the estimated regres-

sion coefficients for each BIT transcript on each Axis score are

highly conserved between Atlanta and Morocco (Table S2 and

Figure S3B).

We then confirmed that the Axes are not just a feature of these

two studies by interrogating five other adult peripheral blood-

derived microarray datasets: our own published study of 100

adults in Brisbane Australia [14], and four studies conducted by

other groups, one of tuberculosis and other infectious diseases in

Africa and England [15], a study of celiac disease [16], the

Figure 2. Covariance of gene expression in Modules, Axes, and BIT. The first four panels illustrate the extent of covariance of gene
expression by plotting the loadings for the first two principal component axes for genes related to Axis 5 in the Morocco study in: (A) Module 2.6
identified by Chaussabel et al (ref 12; 167 probes for 105 genes); (B) Axis 5 (which derived partially from Module 2.6; 175 probes for 150 genes); (C) the
Blood Informative Transcripts for Axis 5 (10 probes for 10 genes); and (D) a typical random sample of 10 probes. The percent variance explained by
the first two components is indicated. Panel (E) shows a histogram of the percent variance explained by component 1 for 100 random sets of 10
probes, relative to the 10 BIT Axes for Morocco to the right (Axis number is in top portion of the panel). Eight of the 9 Axes are plotted for the Atlanta
CHDWB dataset in Figure S3A.
doi:10.1371/journal.pgen.1003362.g002

Axes of Covariation in Peripheral Blood
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DILGOM metabolic disease study in Finland [17], and a twin

study of both peripheral blood and lymphoblast cell lines in

Brisbane [18]. These studies each adopted different procedures for

peripheral blood extraction, including Tempus and Paxgene

isolation of whole blood, as well as leukocyte or peripheral blood

monocyte isolation. In each case the BIT are much more strongly

correlated than are random permutations of 10 genes, and the BIT

Axis score captures as much variance as in the Atlanta study, with

particularly strong conservation of Axis 6 (Table S2). Transcripts

in Axes 4, 9 and 10 have the weakest correlation with one another,

although each of these still include several hundred genes.

Notably, the covariance between the Axes is somewhat study-

specific as shown in Figure S4. Splitting each study into halves

preserves the overall covariance pattern within each study, but

most of the pairwise axis correlations are significantly different

between studies. This mainly reflects a combination of technical

differences (platform, source of blood, statistical methods) rather

than biological ones since as few as 25 samples can recover the

study-specific pattern. Nevertheless, there are many consistencies,

such as the positive correlations between Axes 1 and 3, and

between Axes 5 and 7, or the negative correlation between Axes 1

and 5, and between Axes 2 and 4 (see also Figure S5 for

comparison across six studies).

Biological Function of the Axes
Enrichment for biological functions associated with each Axis

was assessed using the ToppGene suite [19] to perform gene set

enrichment analysis. Table 1 shows annotations that suggest

involvement in T-cell signaling (Axis 1), B-cell signaling (Axis 3),

cytokine-mediated signaling (Axis 5), and anti-viral response (Axis

7). Axis 4, like Axis 5, shows evidence for enrichment of genes

involved in inflammation but the former with an emphasis on the

macromolecular complexes. Axis 2 is not obviously associated with

a sub-class of immune activity, but at least partially reflects

erythrocyte and platelet function, as a small but significant number

of transcripts are annotated to oxygen binding and coagulation.

Axes 9 and 10 appear to reflect some coordination of receptor-

mediated signaling and translational regulation in lymphocytes.

Additionally, as indicated, these axes are enriched for genes

identified as influencing abnormal mouse phenotypes, and in a few

cases human diseases.

Three lines of evidence indicate that these functional enrichments

are not solely due to differential abundance of the respective cell

types. First, the correlation between relative cellular abundance and

Axis scores was explored in the CHDWB study, where neutrophil,

lymphocyte, monocyte, platelet, and red blood cell counts were

available for each individual from the same blood sample used to

generate the RNA, is generally modest and insignificant. Two

exceptions are Axis 5 with neutrophil counts, accounting for 34% of

the axis variance, and Axis 1 with T cell counts, largely due to a

small fraction of outliers (Figure S6). The ratio of neutrophils to

lymphocytes is also highly correlated with Axis 5. Second, fitting cell

counts during normalization of the gene expression data to remove

the effect of cellular abundance does not affect the existence of the

Axes of variation. Although the degree of correlation of genes that

define the axes changes, all 9 Axes continue to be observed, and the

BITs tend to retain their covariance with one another. Third, as

noted above, the axes are observed across diverse blood sample

types including leukocyte-enriched, PaxGene and Tempus whole

blood preparations, and Ficoll-gradient purified PBMC. We also

find very strong retention of Axes 4, 5 and 6 in neutrophil

preparations from a cystic fibrosis cohort (in preparation).

Table 1. Features of the Blood Expression Axes.

Axis Gene Ontology1 Abnormal mouse phenotype1 TF/miR1,2 Human Disease1 N genes3

Axis 1 Translation T cell physiology (4.0E-06) ELK1 T-negative SCID 866

Ribosome constituents Leukopoiesis (4.0E-04) NRF2 anemia

Axis 2 Oxygen transporter activity Platelet aggregation (9.0E-04) GATA3 hemolytic anemia 237

Wound healing Haematopoiesis (8.0E-06)

Axis 3 B-cell activation B-cell morphology (4.0E-19) miR-486 SLE 99

External to plasma membrane Immunoglobulin level (4.0E-16) miR-146a Immunodeficiency

Axis 4 mRNA metabolism, RNA splicing Embryonic lethality (3.0E-10) ELK1, NRF1 982

Intracellular transport Low embryonic growth (5.0E-06) miR-590, 548, 561

Axis 5 Cytokine receptor activity Adaptive immunity (7.0E-14) ETS2, PEA3, AP1 1028

Inflammatory response Innate immunity (3.0E-14) miR-1207 Liver disease

Axis 6 miR-483, 590 550

Axis 7 Viral response Response to infection (4.0E-13) IRF, ISRE, ICSBP 169

Interferon-mediated signaling Susceptibility to viral infection (3.0E-12)

Axis 8 RNA processing B cell activation (0.03) NRF1, ARNT 571

miR-590, 548, 607

Axis 9 Signal transduction by
phosphorylation

B cell number (7.0E-05) STAT5A, STAT6 242

Programmed cell death T-cell morphology (2.0E-04) miR-548, 155, 34b, 603,
103

1See Dataset S3 for details of the GO catergories, number of genes, and significance levels.
2Simply reflecting enrichment frm the ToppFun analysis, not meant to imply that these are the only regulatory factors or that there is direct evidence for their
involvement in regulation of the axes. Dataset S3 shows that each bind only a subset of genes in the axis.
3The number of genes associated with each Axis in a multivariate model including all 9 Axes, at Bonferroni significance and in common between the CHDWB and
Morocco studies.
doi:10.1371/journal.pgen.1003362.t001

Axes of Covariation in Peripheral Blood
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It is noteworthy that Axis 2 is not associated with platelet or

erythrocyte count (Rsq,0.01, p.0.25 in both cases), despite being

enriched for platelet and red blood cell functions. We also asked

whether transcripts known to be enriched in these two cell types

are over-represented in Axis 2 genes, but they are not, from which

we conclude that variation in Axis 2 is not due to variation in the

abundance of these two anuclear cell types. It is possible that other

sub-classes of immune cells contribute to the observed variation

(for example, CD4 and CD8 subsets, although these two genes are

positively correlated for all 5 probes in both studies and are not

strongly associated with the Axes). Neutrophils, monocytes and

lymphocytes are the predominant white blood cells by number in

peripheral blood, so more minor cell types constituting less than

5% of the cells (dendritic cells, for example, but not eosinophils

which we also measured) may also contribute, though it is

mathematically unlikely for them to account for the fold changes

at either end of the axis distributions, especially for hundreds of

genes. Nevertheless, the pervasiveness of the axis associations and

the impact of sampling method on the relationship between the

axes documented in Figure S4 would be consistent with some

contribution of cellular composition to the variance captured by

the axes. It is also feasible that factors that increase abundance of

each cell type, for example neutrophils, also impact expression

within the individual cell types.

Genetic and Environmental Regulation of the Axes
The existence of inter-individual variation in gene expression

along defined axes must reflect the activity of regulatory networks

that have evolved to ensure that thousands of transcripts co-vary in

a conserved manner. We present here evidence for both genetic

and environmental influences, and provide the relevant data in

Dataset S2.

In southern Morocco, expression of over a third of the

peripheral blood transcriptome was previously shown to differ

between residents of rural Berber villages and of the city of Agadir

[13]. Figure 3A now shows that this differentiation is particularly

notable for Axes 1, 6, and 9, and to a lesser extent Axis 2. In fact,

the first principal component of the 200 genes most strongly

differentiated by lifestyle is coincident with Axis 9 and includes the

SNORD and nucleolar component enrichment previously noted

[13]. Part of the geographical genomic effect is thus likely to affect

exposure to environmental agents that impinge on axes that seem

to relate to anti-microbial responsiveness. Whether these are biotic

or abiotic remains to be assessed, but the considerable impact of

lifestyle on peripheral blood profiles is clearly affirmed. The

differential expression is not uniform across all genes, and is to

some extent constrained along the existing regulatory axes we have

identified.

Another likely class of environmental influence is infectious

disease. Since the Axes were derived from modules that were

previously shown to diverge between immunological conditions,

we asked whether the Axes differ according to infection status in

the tuberculosis study [15]. Figure 3B shows that this is indeed the

case. The study includes individuals with latent and active

pulmonary TB, as well as healthy controls and adults infected

with staphylococcus or streptomyces. Specific Axes do differ

significantly between these four infection states, to some extent

reflecting prior expectation: as shown here, Axes 1, 3 and 7 differ

significantly between individuals with active and pulmonary TB,

and this is observed independently in the London and South

Figure 3. Environmental influences on the Axes. (A) Differences in Axis scores between geographic locations in Morocco (City of Agadir,
villages of Boutroch and Ighrem: Berbers, blue; Arabs, yellow) are restricted to Axes 1, 2, 6, and 9, where Axis 6 distinguishes rural from urban, and
Axes 1 and 2 distinguish Boutroch only. A grouping of Boutroch residents with Arab women in Ighrem against all others, which represents the major
‘‘lifestyle’’ effect on gene expression [13] generates a PC score that is highly concordant with Axis 9. (B) In the study by Berry et al [15], pulmonary
tuberculosis differs from latent tuberculosis and healthy controls along four Axes (1, 3, 5 and 7), but not along Axes 2 or 5. A small number of
individuals shown in red and blue are mis-classified for Axis 1 and 3, and likely have intermediate TB activity status, but this is not apparent for the
differentiation of the interferon-response axis 7. None of the axes distinguish latent TB from control. PC1 for the diagnostic transcripts reported in [12]
is highly correlated with Axis 1 (London sample R squared = 0.73, p = 10228, South African sample R squared = 0.81, p = 10219) and likely reflects
divergence along this axis.
doi:10.1371/journal.pgen.1003362.g003

Axes of Covariation in Peripheral Blood
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African sub-samples. The first principal component of the 86

transcript signature of active TB described in [15] is essentially

indistinguishable from our Axis 1. Interestingly, individuals with

intermediate level scores of the lymphocyte-associated axes 1 and

3, have diverse scores for Axis 7, whose gene annotation associate

it with anti-viral response. It is possible that viral co-infection

affects the clinical course of TB progression, and our data would

suggest some uncoupling of the two classes of pathogen response.

Alternatively, Axis 7 may have a direct role in TB response.

One other potential source of differentiation is overall health

status. A complete description of the relationship between gene

expression and clinical covariates in the CHDWB will be

presented elsewhere, but we note that body mass index (BMI)

and biomarkers of inflammation do correlate with specific Axes of

peripheral blood gene expression (Figure 4). BMI is itself

correlated with percent body fat, and both of these measures

show a strong association with Axis 2 (R-squared = 0.07,

p = 0.0004) and this is true in both males and females. The

association of BMI with Axis 2 is replicated in our Brisbane Red

Cross study [14] (R-squared = 0.11, p = 0.0014, Figure S7), and

also in the DILGOM Finnish study [17] (R-squared = 0.074,

p = 3.461028; BMI data was not available for the Morocco study).

Longitudinal Change in Axes with Clinical Status
In order to demonstrate the potential utility of the BIT axis

scores for revealing changes in personal genomic response to

disease, we assessed the axis scores derived from the BIT in the so-

called ‘‘Snyderome’’ longitudinal RNA-Seq dataset [20]. Nineteen

sequential whole blood gene expression samples were extracted

from GEO accession GSE33029 for the individual who, over a

period of 400 days, experienced two respiratory virus infections

and clinical signs of diabetes onset. Figure 5 shows the Axis scores

for the four axes that differ significantly between clinical phases.

Both Axes 1 and 6 show highly significant elevation (t-test,

p,1024)during the high blood glucose phase (red points) with time

of onset after day 301 (green diamond), apparently with the

change occurring one or two weeks earlier for Axis 6, before the

second viral infection (green points) had cleared. Axis 5, the

inflammatory axis, shows the opposite trend, possibly simply

reflecting negative covariance with Axis 1 which is strong in these

19 samples. Axis 7 is particularly noteworthy for the elevation (t-

test, p,1028) during the two to four day acute phase of both

respiratory viral infections, as expected given the enrichment for

interferon signaling and viral response genes. These changes to

some extent mirror spikes and trends in the autocorrelation

analysis reported in [20], and are consistent with the reported

modification of T cell signaling, and insulin response pathways.

Unfortunately, RNA profiles were not obtained for the time period

subsequent to return to normal blood glucose levels, precluding

assessment of whether the BIT can also be considered biomarkers

for an individual’s return to good health.

Discussion

There are three aspects of the axes of gene expression variation

described here that elevate their potential importance above those

of modules identified by unsupervised clustering methods. First,

they are highly repeatable across studies in different locations and

profiling different subsets of peripheral blood cells. This robustness

is further indicated by the ability to capture the major axes of

variation with as few as 10 BITs. Second, they are enriched for

gene activities that are clearly related to biological functions, in

particular inflammation, viral response, and signaling within B and

T lymphocytes as well as neutrophils. The axes do not just reflect

abundance of the cell types, but also the state of activity within

them. Third, they are differentially expressed under a wide variety

of blood disease conditions [12]. Other studies may highlight

additional disease-related axes, and we note that our initial

derivation of the first seven axes may have been biased by the

diseases included in [12], but we have provided several lines of

evidence that the axes described here are the major conserved

ones in peripheral blood. The fact that healthy individuals vary

with respect to axes of variation that are characteristic of disease

suggests that the architecture of gene expression variation is

primed to promote disease responses that are constrained along

these axes.

An illustration of this principle is provided in Figure 4B, 4C

which examines the relationship between gene expression and

percent body fat in the form of a volcano plot [21] of significance

against regression coefficient for all 7538 transcripts that are

strongly correlated with the axes. Simply taking the 100 transcripts

experiment-wide significant at negative log P greater than 4 does

not show any marked enrichment for gene ontology categories.

However, when transcripts in Axis 2 are highlighted, a clear and

Figure 4. Relationship between BMI or Percent Body Fat (%BF) and Gene Expression in the CHDWB study. (A) Regression of percent
body fat (%BF) on Axis 2 score in both sexes. (B) and (C) Volcano plots of significance against effect size for transcripts associated with Axes 2 with
BMI (green) and with %BF (blue). The X axis is the estimated correlation between transcript abundance and the trait for each of 3913 unique genes in
the 189 individuals in the cohort that are correlated with one or more axes in both Atlanta and Morocco. The dashed horizontal line is at p = 1024:
only 10 points are expected above this line, and these do not yield a clear enrichment for gene ontology classes, but the Axis analysis shows clear up-
regulation of the two axes in general.
doi:10.1371/journal.pgen.1003362.g004

Axes of Covariation in Peripheral Blood
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significant bias toward up-regulation of just this axis is observed.

Not all genes associated with the axis show a significant change in

expression, but the axis as a whole is modified. This implies that

those individuals experiencing greater systemic immune stress due

to their elevated body fat up-regulate a large fraction of transcripts

associated specifically with these two axes. In the smaller Brisbane

study, where no genes were significantly associated with BMI at

experiment-wide levels, the Axis 2 score nevertheless is and the

plots in Figure S7 clearly show the direction of effect.

We now discuss four key questions that arise from recognition of

the potential for axes of covariance to shape individual responses

to genetic and environmental challenges that tend to push them

away from good health.

How generally are the axes associated with disease? Chaussabel

et al identified 28 modules of gene expression that are contained

within our axes, and proposed that different disease states may

reflect differential activation of these modules [12]. In typical

relatively small studies with tens rather than thousands of cases

profiled, there will likely be a tendency to split common axes into

subgroups, so more comprehensive analyses will be needed to

establish to what extent autoimmune, infectious, and other blood

states reflect specific activation of subsets of genes within the axes.

Furthermore, it is possible that some disease responses involve

differential expression that is not captured by the common axes of

variation described here. At least 50 percent of the peripheral

blood transcriptome is tightly correlated with these axes, and as

much as two thirds is significantly correlated with them at false

discovery rate levels, and hence disease responses will typically be

influenced by activity of the regulators of the axes. This does not

preclude other regulatory mechanisms from promoting disease

orthogonally. A related question to this is whether similar axes of

variation influence disease risk in other tissues.

To what extent does a person’s healthy expression profile

predispose them to blood diseases? It is typical when considering

differential gene expression to assume that the most strongly up- or

down-regulated genes are causally related to the disease. However,

an alternative view is that they are part of a programmed

protective molecular response, in which case it is the genes in the

axis that are not induced that are more responsible for ill health.

This view is encapsulated in the notion gaining traction [22,23]

that it is the variance of gene expression within specific modules or

pathways that may be strongly associated with disease. Conse-

Figure 5. Axis analysis of the Snyderome. 19 sequential RNA-Seq profiles were mined for BIT Axis scores, which are plotted relative to sampling
day for the individual described in [20]. P-values indicate the signifcance associated with t-test comparison of high blood glucose versus normal (Axes
1, 5 and 6) or the comparison of acute phase of viral infection - Days 0, 290 and 292 - versus the remainder. Colors indicate the phases of human
rhinovirus infection (HRV; blue), recovery (yellow), respiratory syncitial virus infection (RSV; green), and pre-diabetes/high blood glucose (red). The
green triangle corresponds to a spike in cytokine profile at day 301, which does not obviously impact the Axes. The RSV had not yet cleared at days
307 and 311 when the pre-diabetic state first became apparent, so these points are shown in green and red. The other Axes did not show significant
changes.
doi:10.1371/journal.pgen.1003362.g005
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quently, studies are needed that establish the statistical relationship

between the Axes scores in health and disease. Are those who have

a genetic predisposition to high scores along Axis 7 more at risk of

viral infection, or more able to mount an efficient response? Are

those who have naturally low Axes 5 scores at reduced risk of

inflammatory disease, or particularly susceptible to stress-induced

chronic conditions?

How heritable are the axes of variation? Family-based profiling

of whole blood gene expression will answer this question. In

CEPH lymphoblast cell lines, it was previously noted that the

heritability of individual transcripts is highly significant for over

half the transcriptome [24,25]. We have estimated the twin-twin

phenotypic correlation in the Brisbane twin study, and observe

highly significant heritability both in whole blood (correlation

coefficients from 0.34, Axis 2, to 0.61, Axis 3) and in LCL (in most

cases more highly, likely reflecting reduced environmental

variance in culture, an exception being Axis 3: Figure S8).

Paradoxically, there is zero co-variance of the LCL and peripheral

blood axis scores measured in the same individuals, consistent with

the reported low level of genetic covariance between these tissues

[18]. In other words, the axial nature of gene expression arises

independently in blood and LCL, and yet is heritable in both

cases. Further profiling of multiple fractionated leukocyte classes in

a single cohort will be required to establish to what extent the

whole blood profiles represent summation of the contributions of

individual cell types and shared covariance between them. We also

performed GWAS in the small Atlanta sample, but failed to

identify any unambiguous regulatory loci, indicating that the

regulation is complex, in line with that for other typical continuous

traits. The corollary of heritability is plasticity, so it will also be

important to establish to what extent Axes scores are maintained

longitudinally in individuals, on the time scales of years and

decades, but our analysis of the Snyderome [20](Figure 5), shows

how the BIT might be used to report sub-clinical changes in

individuals as they acquire infection or early onset of chronic

diseases.

Finally, how does the existence of these major axes of variation

constrain gene expression in biochemical pathways? It appears

that the axis of variation of clearly defined pathways tend to be

embedded within one of more of the Axes. For example, as

shown in Figure 6, the Toll-Like Receptor signaling pathway is

primarily explained by Axis 5. Individuals with high or low PC

scores have average relative gene expression profiles indicated in

panels 6A and 6C, which clearly shows an orchestrated

patterning of covariance. This implies that a person’s healthy

status with respect to physiologically relevant pathways is likely to

be a function of their genetic predisposition along the major

Axes, as modified by the environment. This perspective frames

the mathematical challenge to understand why evolution has

resulted in co-regulation of the signal transduction apparatus,

and to infer what the consequences are for biological respon-

siveness to perturbations that tend to promote or protect against

disease.

Methods

Gene Expression Profiles
All datasets considered here were generated on Illumina HT12

v2 or v3 bead arrays, and unless otherwise indicated we used the

raw gene expression measures reported in the published studies.

For the Atlanta CHDWB study (described here for the first time),

189 individuals of mixed ethnicity and gender, between the ages of

26 and 75, donated 10 ml of blood during the course of their first

visit to the Center for Health Discovery and Wellbeing. The whole

blood samples were stored frozen in Tempus tubes, and RNA was

extracted and hybridized at the Emory Biomarker Service Center

under the direction of Dr Carlos Moreno. This dataset has been

deposited in NCBI GEO under accession number GSE35846.

The raw log base 2 expression profiles for 14,343 probes that are

consistently expressed in the Morocco, Brisbane Red Cross, and

CHDWB studies, were normalized by probe-level ANOVA fitting

technical effects of date of hybridization and RNA quality,

resulting in standardized normal transcript abundances, which

were subsequently mean-centered across individuals. For direct

comparison, the Morocco study values were also standard

normalized and mean centered. Various other normalization

procedures including analysis on the raw data, quantile normal-

ization, and SNM [26] adjusting for additional technical and

biological covariates including RNA quality, hybridization batch,

cell counts, and serum chemistry, affect precise Axis scores, but do

not significantly alter the scores derived from the BIT [27]. Age

and Sex do not account for more than one or two percent of

transcriptome variance and do not correlate with the axes

described below. All individuals in Morocco and Atlanta are

within the usual range of health for their populations, and include

individuals with overt or sub-clinical metabolic disease but not any

other known acute conditions.

The other studies considered here utilized whole blood in

Tempus tubes (tuberculosis study [15]); whole blood in Paxgene

tubes (Celiac disease study [16]; DILGOM Finnish study [17] and

Brisbane twin study [18]); and leukocytes isolated in Leukolock

filters (Morocco study [13] and Brisbane Red Cross study [14]).

The original Chaussabel modularity study [12] was of Ficoll

gradient sorted PBMC, profiled on Affymetrix U133A gene chips.

Table S3 lists the relevant properties of each study, and raw data

as well as anthropomorphic features mentioned in the text are

available as Dataset S2 and from the authors’ website at http://

www.gibsongroup.biology.gatech.edu/supplementary-data.

Derivation of the Axes
The primary objective of our analyses was to ask whether genes

that are consistently co-regulated but that differ in expression

between disease states, are also co-regulated in healthy people. If

they are, it may imply that healthy people vary with respect to

disease risk according to their normal profiles. The co-regulated

modules were initially defined [12] using weighted gene co-

expression analysis. We started by reasoning that co-regulation

would be reflected in covariance defined by the major PC of gene

expression of all of the genes in each module. We confirmed that

this is the case in two distinct datasets from Morocco (lymphocytes)

and Atlanta (whole blood), but also noted that these 28 PC1 scores

themselves show a strong correlation structure within each dataset.

Furthermore, the same modules cluster together in the two studies.

Consequently, we collapsed the clustered modules into six meta-

modules and redefined PC1. Hundreds of genes were highly

correlated with each PC1 score in common in both studies. In

each case, the top 10 genes were also very highly correlated

(r.0.9) to one another, so we used these genes (which we call

Blood Informative Transcripts, BIT) to define the common Axes

of variation as described in detail below. Three more axes that are

not observed in the Chaussabel modules were extracted from the

residual unexplained variance. All of these BIT are very highly co-

regulated in dozens of other blood gene expression studies that we

have since examined, and some are also seen in cancer and other

cell lines. Multivariate regression shows that 5 of the axes are

associated with gene expression transcriptome-wide as shown in

Figure S3B. The next five paragraphs describe details of the

analytical pipeline.
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For each of the CHDWB and Morocco studies, we extracted all

of the probes associated with each of the genes listed in the 28

Modules defined in [12], and generated Principal Component 1

(PC1) for each module. Table S4 lists the amount of variance

explained by each PC1 (27.7% and 25.0% in Atlanta and

Morocco respectively), which in each case is considerably greater

than observed with random samples of a similar number of probes

(15.8%62%). Figure 2A and the bottom right panel in Figure S3C

plot the loadings for the first two PC for two typical modules,

numbers 2.6 and 3.5, showing that most genes are positively co-

regulated (red lines extend to the right). Figure 1A shows that the

correlation structure of these scores is highly conserved in the sense

that the same modules cluster by similarity, allowing us to define

Meta-Modules by amalgamation of Modules 1.7, 2.1, 2.4, 2.8 and

3.8 (Axis 1), 1.2, 2.2, 2.3 and 2.5 (Axis 2), 1.1 and 1.3 (Axis 3), 1.4,

2.7, 2.9, 2.11, 3.4, 3.6 and 3.9 (Axis 4), 1.5, 2.6, 3.2, 3.3, and 3.5

(Axis 5), whereas Module 3.1 defines both Axes 6 and 7. Modules

1.6, 1.8, 2.10 and 3.7 also show co-regulation in healthy people,

but are correlated either with multiple Meta-Modules, or split into

two-or-more sub-modules, so these were not included in further

analyses. Axis 6 appeared serendipitously, as we noticed when

generating the module PCs that a small number of individuals

were consistent outliers along the second PC for several of them,

notably 2.7, 2.11 and 3.8 in Morocco and to a lesser extent

CHDWB. A search for genes that are differentially expressed in

these individuals uncovered a novel set of highly co-regulated

transcripts, the covariance of which was then used to define Axis 6,

which turns out to be as highly conserved as the other major axes.

Next, we generated PC1 for all genes in each Meta-Module and

evaluated their relationship to the first 5 Principal Components

(Prin1–Prin5) of the full dataset of 14,343 transcripts. Table S5

shows that overall Prin1 is strongly positively correlated with

Meta-Module 4 PC1 in both datasets, and also negatively

correlated with Meta-Module 2. Overall Prin2 is positively

correlated with Meta-Module 5, and negatively correlated with

Meta-Module 1. There is little consistency to the remainder of the

correlation matrix of Meta-Module PCs and whole transcriptome

PCs. Interestingly, Axis 6 is strongly negatively correlated with the

3rd and 4th PC in the Atlanta CHDWB and Moroccan studies

respectively. It is thus surprising that Axis 6 does not correspond to

any of the modules described by Chaussabel et al. [12].

We then performed a multiple regression using the ANOVA

routine in JMP Genomics, generating the list of probes and genes

that are highly significantly correlated with each axis (at single axis

Bonferroni significance, p,3.561026) while adjusting for the

other axes in the model. All probes that were significant in both

Figure 6. Pathway analysis of transcript abundance. The relative transcript abundance of 51 transcripts in the KEGG TLR signaling pathway
(map04620) is shown for two representative divergent individuals (A). These genes are all co-regulated along Axis 5 (B), resulting in differential
activity throughout the pathway. Two representative individuals at either extreme, indicated in red (individual 22) and blue (individual 69) in panel B,
clearly differ with respect to which genes have high or low expression relative to regulation of apoptosis, MAPK signaling, and inflammatory cytokine
production. This likely has consequences for the sensitivity of neutrophil and other immune cell function. Red, high expression; blue, low expression;
gray intermediate, scaled as the eigenvector of PC1.
doi:10.1371/journal.pgen.1003362.g006
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the CHDWB and Morocco datasets are listed in Dataset S1 –

these define the Axes. The linear model was of the form

Yjk = m+Sai(PC1i)+e where the expression Y of the jth gene in

the kth individual is a function of the sum over all i = 1 to 7 Axis

PC1 scores, and the error e is assumed to be normally distributed

with mean of zero. (We also generated axes based on the

univariate correlations, and these agree for the most part with the

axes defined here, but as expected do not separate as cleanly).

Figure S3B shows ai from the two studies plotted against one

another, demonstrating that the association of each transcript with

each axis is remarkably highly conserved between the two studies,

in the case of Axes 1, 3, 4, 5 and 7 transcriptome-wide (whereas

Axes 2 and 6 associated genes form more distinct clusters).Table

S4 lists the amount of variance explained by PC1 for the first 175

probes on each list of the Axis-defining genes (the most significant

ones) in Dataset S1 (or all 118 probes for Axis 3). This number of

probes was chosen as the average number representing each of the

Chaussabel modules, so facilitates comparison with the module

scores. In every case the Axis-associated genes are more tightly co-

regulated than the original modules: on average, 57.2% and

50.2% of the variance in Atlanta and Morocco is captured by the

175-probe Axis PC1, twice as much as for modules of the same

average size. All significant ai from the two studies were cross-

matched to generate the probe lists that define each Axis, with the

additional constraint that only positive associations are included

(these are the majority in all cases). Figure S3C confirms that that

in all cases the genes are positively co-regulated and that PC1

explains much more of the variance than any other component.

In order to generate the BIT lists, we ordered the shared Axis-

defining genes by the sum of the significance negative log p-values

from the multiple linear regression described above, for the two

studies, and picked the top 10 probes that were not also highly

significantly associated with any other axes. These probes are listed

in Table S1. In every case, they explain 50% or more of the

variance of the BIT, whereas 100 random permutations of 10

probes never explained more than 35% (Figure S3A for CHDWB;

Figure 2E for Morocco). Axis PC1 scores were also generated

using just the top 5 probes, or an expanded set of 20 probes

(Dataset S4), and in all cases the correlation between the 10-BIT

and either 5-BIT or 20-BIT score was greater than 0.95, and in 31

of 36 cases it was greater than 0.98, three of the exceptions

involving Axes 8 and 9, and the other two the 5-BIT comparison.

Correlation coefficients between 10-BIT scores and PC1 scores

based on the 250 most strongly associated probes (or all 118 for

Axis 3 and 221 for Axis 7) were similarly all greater than 0.88,

p,10270, with median of 0.96. We chose 10 BIT since this

number is convenient for generation of a target qRT-PCR panel

that captures all Axes [28]. Each of the axis scores in all 7 studies

considered here are, unsurprisingly, very similar to the axis scores

based on a separate list of BITs derived from the highest univariate

correlations. It is likely that further analyses of more datasets may

identify even more diagnostic probes, but note that most of the

probes in each BIT set already have correlation coefficients greater

than 0.9 for that set.

We then asked whether there are additional shared major

covariance modules unrelated to Axes 1 through 7, by fitting the

PC1 scores for these Axes and performing PCA on the residuals,

for both the CHDWB and Morocco studies separately. Residual

PCs 2 and 3 had highly correlated loadings across all probes

comparing the two studies (though the PC rank numbers were

switched), so the above process was repeated giving rise to Axes 8

and 9. That is, we performed multiple regression on the original

datasets with the first 7 axis scores plus residual PC2 and PC3,

then cross-matched probes that were Bonferroni significant with

residual PC2 in CHDWB and residual PC3 in Morocco to obtain

the Axis 8 genes, and with residual PC3 in CHDWB and residual

PC2 in Morocco to obtain the Axis 9 genes. CHDWB residual

PC1 loadings were mildly correlated with Morocco residual PC4,

but very few genes were significantly cross-matched in a similar

analysis and this potential axis was ignored. There may be

additional axes but since Axis 8 and Axis 9 only explain an extra

few percent of the total variation, these nine axes appear to be the

major conserved axes in our datasets. Axes 8 and 9 are noticeably

weaker (explain less of the covariance of associated transcripts) so

are not presented in all figures and analyses.

Statistical Analyses
All statistical manipulations, as well as correlation analyses

leading to the findings reported in the figures were performed in

JMP Genomics v5.0 (SAS Institute, Cary, NC). See Figure or

Supporting Information Legends for details of individual analyses,

and Dataset S2 for data required to repeat the linear regression

analyses of trait associations. Panels in Figure 2 report ANOVA

contrasting the effects of location in Morocco, or TB status, on

Axis scores (PC1 for the 10 BIT) for each axis separately. The

ToppFun analysis [19] was performed initially in February 2012,

and again on November 27, 2012, using the online resource at

http://toppgene.cchmc.org/enrichment.jsp, with similar results.

Only the top 500 probes were included for each analysis, so as to

ensure comparability across Axes with different numbers of genes,

but modification of the number of genes included did not

meaningfully affect the core results. Since some probes are

duplicated while others are not annotated to genes, the numbers

listed are less than 500. ToppFun computes gene set enrichment

relative to the full set of annotated genes in the genome, and since

the database is updated regularly specific results change subtly

over time. Detailed results can be viewed as Dataset S3, which

clarifies the strength of evidence (number of genes in the Axis and

genome, p-values) derived from enrichment for GO terms and

abnormal mouse phenotypes. These generally agree, but also

provide slightly different perspectives. The Transcription Factor

Binding Site and miRNA binding site predictions are purely

computational, and only show enrichment for a subset of genes in

each Axis. The human disease associations are only with a few

genes in each case. None of these analyses should be interpreted

too literally, they are provided simply to illustrate the non-random

nature of the Axes.

For the Synderome analysis [20], we downloaded the RNA-Seq

BAM files from GSE33029 and obtained the FPKM for all 25,227

transcripts reported. 6,862 low expression genes were deleted, and

the remaining 18,365 measures were log2 transformed, the profiles

were median centered, each probe was standardized to z-scores,

and 83 of the 90 BIT genes present in the profiles were extracted.

As with all other datasets, the first PC for each BIT-defined axis

was determined from these available transcript abundance

measures, and they are plotted across the time course in

Figure 4. One sample, GSN818565 (Day 21) was excluded due

to very low counts.

Ethics Statement
All samples reported for the first time in this study were

obtained under written informed consent for participation in the

Center for Health Discovery and Well Being study with the

approval of the Institutional Review Boards of Emory University

and the Georgia Tech.
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Supporting Information

Dataset S1 List of genes associated with each of the 9 axes in

both Atlanta and Morocco. The 9 sets of columns show the

Illumina Probe identifier, the Gene name, and the negative

logarithm of the p-value (NLP) for the association of the transcript

with the axis score (PC1) in the multiple regression with all 9 axes

in Atlanta (NLP_ATL) and Morocco (NLP_MOR). Only probes

significant at the Bonferroni adjusted significance level

(NLP.5.53) in both studies are included, and they are sorted by

average NLP.

(XLSX)

Dataset S2 List of covariates and Axis scores for five studies.

Each sheet shows the individual identifier and coariates including

Age, BMI, Percent Body Fat, Gender, Ethnicity, Location, and 8

types of cell count for the CHDWB; Location, Gender, Ethnicity

and Age for Morocco (13); Gender, Age and BMI for Brisbane

Red Cross (14); Study ID and PC1 for the TB status signature

reported in the Berry et al study [15]; and the twin identifier for

the Brisbane Twin study [18]. Axis scores are listed as PC1 for the

10 Blood Informative Transcripts (BIT).

(XLSX)

Dataset S3 ToppFun gene ontology analysis of each of the 9

Axes. The top 500 genes listed in Dataset S1 were entered into

ToppFun [19] on November 27, 2012. This sheet reports the

major independent enrichments scores for each axis with respect

to Gene Ontology classes (GO), Human or Mouse Phenotypes

(HP or MP), Transcription Factor or miRNA binding sites, and

human diseases where present. P-values in column C are

Bonferroni-adjusted, and numbers in column B show the number

of genes in the Axis/Number of genes in the genome annotated to

the relevant term. Total number of genes per axis is less than 500

because not all probes are annotated and some are duplicated, and

for Axes 2, 3, 7 and 9 fewer than 500 are associated with the Axis

at Bonferroni significance level in both studies.

(XLSX)

Dataset S4 Axis scores based on 5, 10, 20 or up to 250 BIT.

The two spreadsheets show the PC1 scores based on the 5, 10, 20

or up to 250 most strongly associated probes listed in Dataset S1,

for each axis. Within an axis, all four scores are highly correlated.

(XLSX)

Figure S1 (A) Scatterplot of Eigenvalues for each of 14,343

transcripts on PC1 in the CHDWB and Morocco studies. While

there is a strong correlation between the loadings for 90% of the

transcripts, 10% all have higher values in the CHDWB study. This

PC is highly correlated with Axis 4. (B) Lack of orthogonality of

PC across studies. Each of PC2 through 5 in the CHDWB study is

as strongly correlated with two PC in the Morocco study (for

example, CHDWB PC3 with Morocco 2 and 4) reducing the

utility of study-specific components of variation for comparative

purposes.

(PDF)

Figure S2 Independent evidence that the first 7 Axes are the

major axes of covariance. For any set of covarying transcripts,

some individuals will be expected to have low values of expression

for multiple transcripts in the set, and these will be enriched in the

low-expression transcripts of that individual. We thus reasoned

that clustering of the variance components of low-expression genes

should independently identify the major axes of covariance. For

each individual in the Morocco study, up to 100 transcripts that

are outliers for low expression (that is, more than two standard

deviations below the mean standardized expression values of all

transcripts in the individual sample) were identified. PC1 was

computed for these transcripts, two-way hierarchical clustering of

the 189 scores (rows) across the 189 individuals (columns) is shown

in the upper plot (A). Nine distinct clusters are observed, seven of

which uniquely cluster with the BIT score for one of the first seven

Axes (indicated by arrowheads). The rows marked Axis 2b appear

to be a subset of Axis 2, and the small unmarked cluster of rows

between Axes 3 and 5 may define a new Axis, but further analysis

indicates that the scores are driven by very low expression in just

the indicated individuals. The lower panel (B) shows the heat map

generated by only including the two individuals whose low-

expression PC1 most strongly correlates with the respective BIT.

Only one individual is close to BIT 7 (which was not uniquely

represented by one of the Chaussabel modules), and no individuals

are close to BIT 8 or BIT 9. These results are consistent with the

first 7 Axes being the major axes of variation, though not

necessarily the only ones.

(PDF)

Figure S3 Blood Informative Axis scores. (A) Each plot shows

the PC1 loadings of the 10 Bit transcripts in the CHDWB study on

the right, and the individual PC1 and PC2 scores on the left. The

same result for a typical random set of 10 probes is included as

well. Panel J shows a histogram of the percent variance explained

by PC1 for 100 random sets of 10 transcripts, relative to that

observed for each of the BIT Axes, which are unambiguous

outliers. (B) Pairwise comparison of the multiple regression

coefficient for each transcript in the CHDWB/Atlanta and

Morocco studies for each Axis, showing transcriptome-wide

similarity for Axes 1, 3, 4, 5 and 7, whereas a subset of transcripts

are clearly more strongly associated with Axes 2 and 6. (C)

Principal component analysis of the 175 probes most strongly

associated with each Axis, compared with a similar plot for a

typical Chaussabel module, 3.5. In each case, the histogram of

eigenvalues to the left shows how PC1 (the Axis score) dominates

the covariance. The amount of variation explained by Axes and

Modules in each study is compared in Table S4.

(PDF)

Figure S4 The covariance of BIT Axes is somewhat study-

specific. Panels A and D show the correlation between the BIT

Axis scores (namely, PC1 for the 10 probes as shown in Figure S2)

for all individuals in CHDWB and Morocco respectively. Panels B

and C (or E and F) then show a typical result of splitting each study

into two halves, recomputing the Axis scores, and clustering the

correlations between them. Visually, the split studies resemble the

whole study in each case, and this is also true of the DILGOM

study. Panel G shows that the BIT Axis scores themselves are very

highly correlated for individuals in one half compared with their

values in the whole study but uncorrelated with each of the other

Axes. Panel H shows the pairwise correlations of Axis scores for

each study and two halves, with the significance of the study

differences (ANOVA on the effect of the three studies, namely with

2 degrees of freedom for study and 6 for error). * p,0.05; *

p,0.01; ** p,0.001; *** p,0.0001; **** p,0.00001. Axes 8 and

9 were excluded from this analysis for clarity, since they are less

robust than the first 7 Axes. Other partitions of each dataset give

similar results.

(PDF)

Figure S5 Similarity of correlation structure among Axis scores

(PC1 for each of the 10 BIT for each axis) across 6 independent

whole blood datasets. In each of the Atlanta CHDWB, Morocco,

Brisbane Red Cross (our studies), Celiac Disease, Tuberculosis,

and Finland (DILGOM) (performed by others), Axes 1 and 3, and

Axes 5 and 7, are to some extent positively correlated. Negative
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correlations arise in some instances (Axes 1 and 5, and Axes 2 and

4). The reason for the generally more positive correlations in the

Celiac study is unclear, but it is noteworthy that all BIT tend to

show stronger internal correlations in that study as well (Table S2).

(PDF)

Figure S6 Cell counts correlate with specific Axes, but do not

explain the axes. (A) T-lymphocyte count is positively correlated

with Axis 1, but in part due to high scores of individuals with large

T-cell counts. (B) Neutrophil counts are correlated with Axis 5,

explaining 34% of the variance. Red females, blue males. (C)

However, removing the effect of cell counts during normalization

with the SNM algorithm (23) has very little effect on axis

definition, as the Axis scores match one-to-one with those derived

without such normalization [29].

(PDF)

Figure S7 Replication of the association of BMI with Axis 2 in

the Brisbane Red Cross study. Panels A and B show that BIT 2

correlates with both BMI and %BF in Atlanta CHDWB (%BF

differs significantly between men and women). The same

association is observed in Brisbane (C), where %BF data was not

gathered. The volcano plots of significance (NLP, negative log10 of

the p-value) against estimated BMI effect (the slope of the

regression of BMI on Axis score) is also show how Axis 2 (D), but

not Axes 1 or 6 (E,F), is strongly skewed to up-regulation of genes

in Axis 2 in higher BMI individuals. The smoother shape of the

curves relative to those in the CHDWB in Figure 3 is due to the

lesser influence of technical and geographic factors on gene

expression and reduced the estimated BMI effect for most

transcripts.

(PDF)

Figure S8 Heritability and differentiation of LCL and Periph-

eral Blood (PB) in the Brisbane twin study (18). PC1 scores for the

10 BIT per axis were computed for each dataset and are provided

in Dataset S2. The percent variation of these BIT explained by

PC1 is indicated in panel A, along with the significance (P-value) of

the correlation between individual scores for LCL and PB. Six of

the first seven BIT are also observed in lymphoblast cell lines

(LCL), the exception being Axis 2. Nevertheless, there is no

correlation between the axis scores for LCL and PB, as indicated

in the heat map in panel B. Also, each of Axes 1,3,4,5 and 7 are

highly correlated in LCL suggesting that they represent a single

shared covariance structure. These results suggest that the whole

blood profiles may arise by summation of contributions of different

blood cell types. Although the LCL axes are different from PB

ones, they also show significant heritability since the twin-twin

phenotypic correlations are high for five of the axes as indicated in

panel C. These were computed on the PC1 scores for the

respective Axes, after removal of 2 outliers (and their twin

partners) who are more than two standard deviations from the

mean for multiple axes, indicated in italics on Dataset S2. The

strongest twin-twin correlation is shown in panel D. These results

imply that genetic factors contribute to the establishment of the

shared covariance in individual cell types, and in peripheral blood

as a whole.

(PDF)

Table S1 List of Blood Informative Transcripts including the

Probe ID for the Illumina Human_HT12 bead chips.

(DOCX)

Table S2 Percent variance explained by PC1 for the 10 Blood

Informative Transcripts for each Axis, in each of the 7 studies,

showing high replication of their co-regulation.

(DOCX)

Table S3 List of 9 studies referred to in the paper, showing the

Location of the population, number of samples, source of blood

RNA, GEO or ArrayExpress accession number, and reference in

this paper (CHDWB is reported for the first time).

(DOCX)

Table S4 Percent variance explained by PC1 for the entire set of

probes annotated to the Chaussabel module genes (PVE_CHD

and PVE_MOR refer to CHDWB Atlanta, and Morocco studies

respectively), also showing the number of probes and genes, the

Axis each module associates with, and the average for each

measure. The bottom rows show the same values for the 175 most

strongly associated axis genes for the first 7 axes from Dataset S1,

and their averages.

(DOCX)

Table S5 Correlation of Overall transcriptome PCA with Meta-

Modules PC1 in Atlanta and Morocco. The values are the

correlation coefficients between the first Principal Component for

each of the indicated Meta-Modules and for Axis 6, and the first 5

Principal Components (Prin1-5) of the entire gene expression

dataset for both the CHDWB Atlanta, and Morocco, studies

separately. Bold values are consistent between the two studies,

noting that Prin3 and Prin4 negatively correlate with Axis 6

respectively.

(DOCX)
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