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Abstract

In functional metagenomics, BLAST homology search is a common method to classify metagenomic reads into protein/
domain sequence families such as Clusters of Orthologous Groups of proteins (COGs) in order to quantify the abundance of
each COG in the community. The resulting functional profile of the community is then used in downstream analysis to
correlate the change in abundance to environmental perturbation, clinical variation, and so on. However, the short read
length coupled with next-generation sequencing technologies poses a barrier in this approach, essentially because
similarity significance cannot be discerned by searching with short reads. Consequently, artificial functional families are
produced, in which those with a large number of reads assigned decreases the accuracy of functional profile dramatically.
There is no method available to address this problem. We intended to fill this gap in this paper. We revealed that BLAST
similarity scores of homologues for short reads from COG protein members coding sequences are distributed differently
from the scores of those derived elsewhere. We showed that, by choosing an appropriate score cut-off, we are able to filter
out most artificial families and simultaneously to preserve sufficient information in order to build the functional profile. We
also showed that, by incorporated application of BLAST and RPS-BLAST, some artificial families with large read counts can
be further identified after the score cutoff filtration. Evaluated on three experimental metagenomic datasets with different
coverages, we found that the proposed method is robust against read coverage and consistently outperforms the other E-
value cutoff methods currently used in literatures.
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Introduction

Microbes play important roles in ecosystems and human health.

Human microbes, such as bacteria, virus, and fungi, are either

beneficial or harmful to health, depending on the conditions. In

order to understand microbial function and adaptation, it has

become very important to accurately quantify the abundance of

each functional feature within different conditions, and to reveal

the association between the change in abundance and the

environmental/clinical perturbation.

Metagenomics, the study of genomic material extracted directly

from environmental samples [1], is different from traditional

methodologies in that it does not rely on isolation and cultivation

of single microbe species. Its use promises new insight into

microbial community structural and functional properties. De-

pending on sequencing technology, metagenomic studies can be

divided into Sanger Shotgun sequencing and next-generation

sequencing (NGS) metagenomic approaches. A disadvantage of

Sanger sequencing is its susceptibility to possible cloning bias [2].

Using cloning-free based NGS technologies can eliminate the

possibility of this bias, and thus, are more suitable to metagenomic

studies. Furthermore, in contrast to the traditional chain-

termination methods, NGS technologies utilize a more efficient,

array-based work flow to determine the nucleotide base order of a

DNA fragment. These differences make NGS technologies more

desirable for conducting metagenomic studies than the traditional

technology in at least two important aspects: speed and cost [3].

NGS metagenomic sequencing reads contain information regard-

ing the gene content of a microbial community. Protein coding

sequences within genes can reveal potential biochemical functions

of the community. Based on sequence similarity, a BLAST

homolog search tool is used to classify metagenomic reads into

COG protein/domain families whose functions have been well

annotated [4,5]. The functional profile of a community is then

represented by the proportions of reads being classified into

associated COG families. This is the so-called read count

approach [6].

However, the lengths of the NGS reads may pose a barrier to

this approach. Specifically, non-homologous sequences can share

regional sequence similarities, which can introduce artificial

functional families when aligning the short reads. By artificial

functional families (or artificial COGs) we mean those COG

families whose member proteins do not exist in the metagenome.

The mechanism of artificial COGs being generated can be

explained by a simple (but realistic) example. Suppose there is a

DNA non-coding sequence A of length 1000 nt. If the intact

sequence A is aligned against the COG database by BLAST, there

will not be any homolog with statistical significance. Assume that

there is a sequence of consecutive 80 bases in A which can be

aligned to a sequence in COG a. When A is fragmented into short
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reads averaging 100 nt long and aligned against the COG

database, there may be one read that can be detected homologous

to COG a with statistical significance. This is a false homolog

regarding functional annotation of the read(s), and COG a will

appear in the profile with at least one read count. If, in fact, the

metagenome does not have any function associated to COG a, this

COG is an artificial one. In current approaches, the BLAST E-

value is usually used to discern the significance of sequence

similarity. Various ‘conventional’ cutoff E-values have been used,

such as 1023 [7,8], 1025 [9], or 1021,1028 [10]. Setting too loose

a cutoff for selecting homologues introduces too much noise, and

setting too strict a cutoff will result in missing many true

homologues [8]. In simulation studies conducted by our group,

we found that the BLAST similarity scores of homologues for short

reads derived from COG protein member coding sequences

(COG-CDS) regions and from elsewhere are distributed differ-

ently. The difference motivated us to derive a better score cutoff

value, instead of a ‘conventional’ E-value cutoff.

We used a simulated data set to compare alignments generated

by BLAST and Reserved Position Specific BLAST (RPS-BLAST)

respectively. BLAST and RPS-BLAST alignments usually assign

different read counts to the same COG. Considering the COGs

with large read counts (defined later), we observed that the ratio of

read counts (RRC) by RPS-BLAST and the BLAST is distributed

differently for the artificial COGs as compared to other COGs.

Thus, we used this ratio as the classification feature to further filter

influential artificial families (defined later).

Additionally, experimentally simulated metagenome data sets

were used to evaluate the performances of our method and two

current methods in the literature. Our method outperforms the

others in keeping the fidelity of the functional profile.

Materials and Methods

The COG database
Sequence homology designates a relationship of sharing

common ancestry [11]. Orthologs are defined as homologous

genes in different species that originated from a common ancestral

sequence [12]. The COG database was constructed based on this

definition, towards the purpose of phylogenetic classification of the

proteins encoded in different microbial genomes. Basically, each

family in the COG database was formed by measuring sequence

similarity with the BLAST tool, such that the protein members in

a family are more homologous to one another than they are to

other proteins from the same genome [13]. Since orthologous

proteins generally perform the same biochemical function in the

cell, a common practice in functional genomics and recently

emerged metagenomics is to use the functional information of the

well-characterized proteins to annotate the orthologous proteins

that are newly discovered or less studied [4,14,15].

The NCBI COG database, derived from 66 microbial genomes,

consists of 4873 COG families. These families are classified into 25

categories, such that COG families have more similar functional

character within a category than between categories [16].

BLAST and RPS-BLAST
BLAST was developed to search locally similar sequences (DNA

or amino acid) with gaps allowed, and to compute the significance

of similarity. Due to its efficient computing algorithm and

theoretical rationalization, BLAST has become a favorable tool

for sequence similarity alignment [17,18]. In this study, we used

BLASTX, a member in BLAST tool box (version 2.2.25+), to find

proteins similar to translated DNA sequences.

In BLAST, sequence similarity for a local alignment is

quantified by its aggregate score, computed by adding substitution

scores for aligned pairs of letters, and subtracting penalty scores for

gap openings and gap extensions. A local alignment, whose

aggregate score cannot be improved by local extension or

trimming, is called a high-scoring segment pair (HSP). The

aggregate score is denoted as the Maximal Segment Score (MSS)

[18]. For the comparison of two random sequences of lengths

mand n, the asymptotical distribution of the MSS is well studied

when the alignment is ungapped, that is, when no insertions and

deletions exist. Under an appropriate scoring system, when m and

nare sufficiently large, we can model the distribution of MSS by an

extreme value distribution, that is,

P(MSSƒx)& exp½{e{b(x{m)�

where both the scale parameter b and the location parame-

termdepend on m, n, and the scoring matrix [19,20]. The E-value

is calculated as the expected number of distinct local HSPs with

MSS being at least xand in practice is used frequently to evaluate

the significance of similarity [20,21]. When gaps are considered in

alignment, simulation studies further suggest that, with appropri-

ate gap open and extension penalties, the distribution remains true

[18]. In this case, the parameters can be estimated [22].

One assumption in BLAST is that amino acids at different

positions are independent. This assumption is needed to derive the

Table 1. The list of genomes for the simulation of short reads.

Genome Accession # Organism Name Genome Length (nt.) No. CDSs No. COG-CDSs

NC_007778 Rhodopseudomonas palustris HaA2 5331656 4683 3666

NC_008255 Cytophaga hutchinsonii ATCC 33406 4433218 3785 2327

NC_007644 Moorella thermoacetica ATCC 39073 2628784 2463 2003

NC_007354 Ehrlichia canis Jake 1315030 925 678

NC_007404 Thiobacillus denitrificans ATCC 2909809 2827 2231

NC_007335 Prochlorococcus sp. NATL2A 1842899 2162 1197

NC_007925 Rhodopseudomonas palustris BisB18 5513844 4886 3708

NC_007947 Methylobacillus flagellatus strain KT 2971517 2753 2231

NC_007406 Nitrobacter winogradskyi Nb-255 3402093 3122 2351

NC_007958 Rhodopseudomonas palustris BisB5 4892717 4397 3400

doi:10.1371/journal.pone.0058669.t001
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distribution of MSS, but it results in the BLAST’s failure to

consider the patterns of conservation in homologues. Position

Specific BLAST (PSI-BLAST) was then developed to recognize

the pattern embodied in homologues, and to use the pattern

instead of the simple query to BLAST against protein sequences in

the database [18]. PSI-BLAST, unlike BLAST, has shown the

ability to identify distant relatives of a protein. RPS-BLAST, in

contrast, searches a query against the patterns recognized from the

database, as its name indicates [23]. In this paper, we used

RPSTBLASTN, one member program in RPS-BLAST (version

2.2.25+).

Simulation of 454 Reads from Reference Genome
Sequences

We randomly selected 10 bacteria genomes to simulate short

reads to demonstrate our method. Table 1 lists the brief

information about these genomes. The reference genome

sequences were downloaded from the NCBI ftp site. The site also

contains the annotation files of COG-CDS locations on the

genomes.

We used a sequencing simulator, MetaSim (version 0.9.5) [24],

to generate the sequencing reads. This simulator takes into

account the sequencing error and has options of different

technology platforms (we chose 454 sequencing reads in this

paper). The average read length was set to be 100 nt. For

simplicity, the sequence coverage was set to be 1. We showed later

that, with experimental data sets, our approach is robust against

different coverages (,1, = 1, and .1). The pool of all these reads

made up the simulated metagenome data. The numbers of

simulated reads, corresponding to the genomes in Table 1, are

53368, 44469, 26104, 13300, 29226, 18457, 55135, 29825, 33705

and 48826, respectively.

Empirical Distributions of Similarity Scores of TSHs and
FSHs

Generally, more than one homolog will be found when a short

read is aligned against a database of sequences. Among them, a

homology is termed Best-hit Homolog (BH) if it has the most

significant similarity _ the largest similarity score. It is a common

practice to associate a short read to its BH in functional

annotations of metagenomes [5,10,25]. We adopted this strategy

for the simulated reads, and if multiple homologues shared the

largest similarity score, we randomly picked one. Hereafter, we

will refer to short read, BH, and short homology interchangeably

for convenience.

In the simulation, the genome locations of the short reads are

known. We expect that if the corresponding genome location

overlaps with a COG-CDS region by at least 60 nt (the same

criterion used in [6]), a short read can be aligned to a sequence in

the COG family. If the aligned BH homologous sequence does

belong to the expected COG, the alignment is marked as True

Short Homology (TSH); otherwise False Short Homology (FSH).

We obtained the empirical distributions of similarity scores of

TSHs and FSHs across the 10 genomes. In Figure 1, we present

the smoothed empirical densities for overlaying similarity scores of

TSHs (left panel) and FSHs (right panel) separately, with one color

representing one of the 10 genomes.

We have the following observations from Figure 1. (1) the

empirical densities of the similarity scores of TSHs have the same

pattern across genomes, so are those of FSHs. (2) The distributions

for TSHs are bimodal, with the lower modes being close to 45 and

the upper modes close to 66. For FSHs, the distributions are

unimodal, with the peaks being close to 59. (3) The similarity

Figure 1. Empirical densities of similarity scores for TSHs and FSHs. The curves with the same color represents, for each of the 10 genomes,
the smoothed empirical densities of similarity scores of TSHs (left panel) and FSHs (right panel) separately. The vertical grey lines demonstrate the
score cutoff of 66.
doi:10.1371/journal.pone.0058669.g001

Figure 2. The plot of the normalized penalty versus the score
cutoff value. The bold dark green curve is for the simulated combined
metagenome, and the other colored curves are for single genomes. On
each curve, the filled black point-down triangle denotes the least
normalized penalty.
doi:10.1371/journal.pone.0058669.g002
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scores of FSHs tend to be smaller (,66), while those of TSHs tend

to be larger (.66). The sample means, around the score value of

63, of the FSH scores are smaller than those, around 80, of the

TSH scores. For each genome, one-sample T-tests imply that the

mean score is either significantly less than 66 (FSH) or significantly

greater than 66 (TSH). Furthermore, the third sample quantiles of

the FSH scores are less than 65, while all the first sample quantiles

of the TSH scores are already close to 65. All these suggest that

TSHs are more likely to cluster in the higher score region, while

FSHs tend to cluster in the lower score region.

Filtration by a similarity score cutoff
The above observations motivated us to find a ‘good’ cutoff

score in order to classify the BH homologues into TSHs and FSHs.

We used the 0–1 penalty rule for this purpose. The rule puts

penalty 0 for a correct classification and penalty 1 for a

misclassification. Then the ratio of the total penalties and the

number of homologues to be classified is defined as the normalized

penalty. We plot normalized penalty versus score cutoff value

(from 60 to 78) in Figure 2, with the bold dark green curve being

for the simulated 10-genome combined metagenome. It is clear

that the cutoff score of 66 has the lowest normalized penalty for

the metagenomic data. We also present in this figure normalized

penalty curves for single genomes in the metagenome (each

colored curve, except the bold dark green one, represents one

genome). On each curve, a filled black point-down triangle

denotes the least normalized penalty. These triangles consistently

show that the score cutoff value of 66 results in the (approximately)

lowest normalized penalty, and thus can serve as a ‘good’ cutoff for

BLAST output of the short reads with about 100 nt bases.

Sensitivity of the similarity score cutoff at homolog level
By a score cutoff, we classify a BH as TSH if its similarity score

being greater or equal to the cutoff value; otherwise, it is marked as

FSH. Then, the sensitivity at homolog level is defined as the

proportion of TSHs correctly classified. Applying similarity score

cutoff of 66 in the simulated ,100 nt metagenome, the achieved

sensitivity is 0.74 (66545/89859). We demonstrate, later in this

paper that, based on these reserved TSHs we are able to construct

a more accurate functional profile than those by the two E-value

cutoff methods in literatures.

We comment that in practice, the composition proportions of

similarity scores from genomes may differ, and thus the score

cutoff to reach the least penalty may be different from 66. We

show in Supporting Information (Text S1) that, to achieve a

sensitivity of about 0.75, we are almost sure (probability.99%)

that the score cutoff value should be in the range of 63 to 68,

regardless of what the composition proportions are. From the fact

that the 10 genomes were selected randomly, we can assume that

the other genomes have the similar pattern in the distributions of

the similarity scores of TSHs. Thus, the conclusion about the score

cutoff can be generalized to any NGS ,100 nt short read

metagenome.

Sensitivity at COG level and the trivial loss of true COG
families by the similarity score cutoff

The process of classifying the BHs by a similarity score cutoff

results in the classification of the associated COGs into true COGs

and artificial COGs. A COG is classified as an artificial COG if all

of its BHs have similarity scores less than the score cutoff,

otherwise, it is classified as a true COG. In this subsection, we will

first report sensitivity and specificity of the classification at

aggregate (COG) level, which are the proportions of true COGs

preserved and artificial COGs being filtered out separately. The

Table 2. Numbers of True COGs with numbers of TSHs covered and numbers of artificial COGs, before and after filtration by score
cutoff.

True COGs Artificial COGs

No. of COGs No. of TSHs covered No. of COGs

Raw BLAST output 2959 89859 1351

Filtered BLAST output by Score cutoff of 66 2702 89747 312

doi:10.1371/journal.pone.0058669.t002

Figure 3. Empirical densities of similarity scores by BLAST and RPS-BLAST (left) and the normalized penalty plot by RPS-BLAST
(right). The plot demonstrates that the penalty is minimized at the similarity score of 61.
doi:10.1371/journal.pone.0058669.g003
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rational for this investigation is because ultimately the functional

profile is presented by the collection of the count of BHs in each

COG. Furthermore, we studied the loss of true COG families and

concluded they are trivial entries in the entire functional profile.

There are 3040 true COGs in the simulated metagenome.

BLAST detected a total of 4310 COGs, out of which there are

2959 true COGs and 1351 artificial COGs (see Table 2). While

BLAST is a valid tool for metagenomic functional analysis in

successfully identifying 97% (2959/3040) of the true COG

families, it introduced large number of artificial COGs (31%).

This justifies the need of filtration to the BLAST output.

By using the score cutoff value of 66 and classifying a BH

homologue as TSH if its similarity score is greater or equal to 66,

we successfully filtered out 1039, out of 1351 artificial COGs,

which indicate a decent specificity of 77% (1039/1351). The

classification resulted in a loss of 257 true COGs (Table 2) from

those identified by BLAST, but still maintains a sensitivity of

91.3% (1–257/2959). Furthermore, for any of these lost true

COGs, there are no BHs assigned with similarity score being 66 or

larger, even though this cutoff value is low and around the 25%

quantile of the empirical distribution of scores of TSHs for a

genome. This implies that sequences within any of these lost

COGs do not share high sequence conservations. On the other

hand, there are in total 112 TSHs covered by these lost true COGs

- averaging 0.4 TSH in one lost true COG - and we found the

largest number of TSHs in one lost true COG is only 4. These are

trivial entries for the functional profile, because in a profile there

are usually many (.100) other COGs and each of them has more

than 100 TSHs assigned.

Incorporation of Results by BLAST and RPS-BLAST to
Further Identify Influential artificial COGs

Generally, though filtration by score cutoff can filter out most of

the artificial COGs, it may miss some, especially those with large

counts (termed influential artificial COGs next). By incorporating

the alignment outputs of BLAST and RPS-BLAST, we applied the

quadratic discriminant analysis (QDA) to identify and remove

such influential artificial COGs. Next, we will explain why RPS-

BLAST output is needed and demonstrate that QDA is effective.

In the case of perfect alignment, if no or very few coding

sequences relate to a COG, there should be no or very few short

reads being aligned to the COG. However, as mentioned above,

BLAST can erroneously annotate a short read fragmented from a

non-coding sequence to a COG function. This can result in a read

count for an artificial COG, or a large read count for a COG with

trivial abundance. One reason is that BLAST does not consider

conservation pattern embodied within true homologies. RPS-

BLAST, in contrast, considers such pattern. Thus, RPS-BLAST

may be more sensitive to exclude FSHs, and then assign smaller

read count to an artificial COG or a COG with trivial abundance.

The difference in read counts assigned to a COG by RPS-BLAST

and BLAST can then be used to identify artificial COG.

In other aspect, RPS-BLAST is good at finding more distant

homologues. The simulated reads were aligned against COG

database by RPS-BLAST (the specific tool is RPSTBLASTN). As

above, a read was annotated by its BH. RPS-BLAST detected

184,381 more annotated reads than BLAST did. However, the

results generated by BLAST and RPS-BLAST show a noticeable

difference in the proportions of TSHs, with 61% (89859 TSHs in

total 148305 annotated reads) by BLAST and 25% (83435 TSHs

in total 332686 annotated reads) by RPS-BLAST. The proportion

drop from 61% to 25% attests that RPS-BLAST inflates false

homologues. This is a less favorable feature of RPS-BLAST.

Nevertheless, RPS-BLAST remains competitive because FSHs

from its output are more clustered in the lower-score region, and

thus are easy to be filtered out. This characteristic is demonstrated

in Figure 3 (the left panel) for the simulated ,100 nt

metagenome. The related normalized penalty curve (the right

panel of Figure 3) is minimized at the similarity score of 61 (the

least penalty is 0.095). Though the least penalty is less than that

(0.23 in Figure 2) given by using BLAST output, the RPS-

BLAST produces more artificial COGs than BLAST. For

example, for the simulated ,100 nt metagenome, there are 789

Table 3. Influential artificial COGs defined in the simulated ,100 nt metagenome.

COGs No. of CDSs in the metagenome BLAST result (after score filtration)

Read Count assigned Read Count from TSHs Proportion of reads from TSHs

COG0457 1 93 2 0.02

COG0477 0 447 0 0

COG0500 0 193 0 0

COG2202 8 223 15 0.07

COG3210 1 110 7 0.06

doi:10.1371/journal.pone.0058669.t003

Figure 4. The plot of RRCs for the COGs with 95% percentile or
above read counts. The RRC values for five influential artificial COGs
range between 0 and 0.04. For the other COG families, the RRCs are
farther away from 0, with only one RRC being less than 0.05.
doi:10.1371/journal.pone.0058669.g004
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false COGs in RPS-BLAST output being filtered at cutoff score

61, and 312 false COGs in BLAST output being filtered at cutoff

score 66. Thus, our proposed strategy is to first filter out false

COGs in the BLAST-generated functional profile, and then use

the profile from RPS-BLAST output as a supporting tool to

further remove those remaining influential artificial COGs

(defined next). By so doing, we can take advantage of RPS-

BLAST for keeping out FSHs which do not share the same

conservation pattern, and at the same time avoiding the negative

impact of RPS-BLAST.

Before defining the influential artificial COG, we extend the

definition of artificial COG for this stage. That is, in addition to

those without any protein in the metagenome, a COG with a very

small proportion of classified reads from TSHs is considered as an

artificial COG too. An artificial COG with a large read count will

skew a functional profile dramatically. We call such COG an

influential artificial COG. Our goal is to identify and remove these

entries. We do not give explicit quantities for ‘very small

proportion’ and ‘large read count’ here, but recommend that,

after filtration by score cutoff, one may examine the COGs with

read counts above 95th percentile and above 75th percentile by

the following Step 1 and Step 2.

Step 1. We first define the influential artificial COGs and then

describe the method in this step to detect them. After the score

filtration, we obtained a class of COGs with 95% percentile or

above read counts. If one of such COGs has the proportion of the

reads from TSHs being less than 0.1, it is defined as an influential

artificial COG. By this definition, there are five influential artificial

COGs in the simulated ,100 nt metagenome data (Table 3).

To detect these influential artificial COGs, it is interesting to

observe that, among all the COGs with 95% percentile or higher

read counts, the RRCs, calculated by read counts before score

filtration, for influential artificial COGs (Table 3) are quite

different from those for other COGs (Figure 4). Specifically,

among the COGs with large read counts, the five influential

artificial COGs have RRCs ranging from 0 to 0.04, while the

RRCs for other COG families are farther away from 0, with only

one RRC less than 0.05. Thus the RRC can be used as the feature

for the classification of COGs.

We applied QDA, one of the popular nonlinear approaches for

classification, to detect influential artificial COGs. Let k be the

index of K groups, pk denote the probability of class kwith

PK

k~1

pk~1, X be the vector of all features and x as its observed

value. Suppose that the probability density f k(x) of X for the kth
group is a multivariate Gaussian with mean vector mk and

variance-covariance matrix Sk. Then a general QDA function can

be written as [26],

Table 4. Influential artificial COGs identified in Step 2.

COG
No. of CDSs in
metagenome

Read Count by
BLAST

Read Count by BLAST after score
filtration

Read Count by RPS-BLAST after score
filtration

COG0454 0 159 34 0

COG0500 0 511 193 0

doi:10.1371/journal.pone.0058669.t004

Figure 5. Work-flow for the proposed method.
doi:10.1371/journal.pone.0058669.g005
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dk(x)~{
1

2
log Skj j{

1

2
(x{mk)T S{1

k (x{mk)z log pk, ð1Þ

where pk, mk, and Sk are estimated from a training data set.

The classification for a future x can be determined by comparing

the value of dk(x).

Using the simulated metagenomic data as the training

data set, with RRC as its sole feature, we obtained

maximum likelihood estimates: p1~0:032, p2~0:968;
m1~0:011, m2~1:11; S1~0:014, S2~0:63, where subscript 1

and 2 refer to the influential artificial and true COG groups

respectively. Our proposed classifier is calculated by plugging these

values in equation (1). Four influential artificial COGs, COG0477,

COG0500, COG3210 and COG0457, were identified by

applying our method to the training dataset.

Step 2. There may be some influential artificial COGs whose

read counts are smaller than 95th percentile and thus cannot be

identified by Step 1. This step focuses on detecting such COGs.

After BLAST score filtration, for the class of COGs with 75%

percentile or above read counts, we proposed that, if a COG

family has zero read count in RPS-BLAST profile after score

filtration (similarity score .61), it is classified as an influential

artificial COG. The rationale of this step is that a true COG

should have reads assigned by both BLAST and RPS-BLAST. By

this rule, two COGs were further identified (Table 4), of which

COG0454 was not detected in Step 1.

The detection results in both steps, together with those in the

next section, indicate that the classifier is successful. We comment

that using QDA, over linear discriminant analysis, is because of

the inequality of two variances. There is no evidently violation of

normality of RRCs in the true COG group because the p value of

normality test is relative large (p value is 0.04 in Kolmogorov-

Smirno test, or 0.03 in Cramer-von Mises test) and the boxplot

(not shown) is very symmetric. Note that a small number of

influential artificial COGs make it difficult to check the normality

assumption in this group. It is possible that other more

complicated classifier such as kernel quadratic discriminant

analysis performs better than QDA. The evaluation of different

classifiers is interesting and will be our future research topic.

The work flow of the proposed method
The proposed method can be summarized in the following work

flow chart (Figure 5).

Results

In this section, we report the effect of our proposed method on

the accuracy of the functional profiles for both the simulated

metagenome and experimental metagenomes with different

coverages.

Improved functional profile on the simulated
metagenome

We constructed and compared the partial functional profiles,

using original BLAST BHs, our proposed method, two current

methods in the literatures (that is, homologues which have E-

values less than 1023 or 1025 were remained) separately. Only

included are true COGs in the functional profile built by the

original BLAST BHs. Without loss of generality, we selected for

comparison the top 20 COGs with the highest proportions in the

profile by the original BLAST BHs for comparison. The

corresponding proportions in the functional profiles built by the

other three methods are plotted in Figure 6 (each bar in the plots

of the top panel represents the proportion of one COG). In terms

of the similarity to the partial profile in the original BHs, our

proposed method outperforms those using E-value cutoffs. Note

that for complete profiles, the sums of absolute differences of

Figure 6. Partial functional profiles for the simulated meta-
genome by different methods. The plots indicate that, comparing
with the E-value cutoff methods, the proposed method produces a
function profile most similar to that in the original BHs.
doi:10.1371/journal.pone.0058669.g006

Table 5. Information of genomes in the data sets.

Genome
Accession NO. Organism Name

Genome
Length (nt.) No. of CDSs

No. of
COG-CDSs

NC_009438 Shewanella putrefaciens CN-32 4659200 3972 3125

NC_009092 Shewanella loihica PV-4 4602594 3859 3050

NC_008789 Halorhodospira halophila SL1 2678452 2407 1987

NC_009512 Pseudomonas putida F1 5959964 5250 4202

NC_009997 Shewanella baltica OS195 5347283 4499 3391

NC_011593 Bifidobacterium longum bv. Infantis ATCC 15697 2832748 2416 1656

NC_011071 Stenotrophomonas maltophilia R551-3 4573969 4039 3092

NC_009719 Parvibaculum lavamentivorans DS-1 3914745 3636 2943

doi:10.1371/journal.pone.0058669.t005
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proportions between the original BHs and our proposed method,

E-value method with cutoff 1023, and E-value method with cutoff

1025 are 0.21, 0.43 and 0.53, respectively. This implies that using

the homologues with very small E-values alone to generate

functional profiles not only decreases the sensitivity of true COGs

but also affects the proportion of abundance for a COG in the

profile. In other words, the read count for a COG collected solely

from regions with very large similarity scores is not enough to

represent the read count abundance with fidelity.

Effect of the read coverage
The read coverage is usually defined as the ratio of the total

length of all short reads sequenced and the total number of the

bases in the metagenome. It varies from one sample to another.

We used three metagenome data sets in [10], named M3_01X,

M3_1X, and M3_2X, as the benchmark data sets to evaluate the

performance of the proposed method at different read coverages.

In the file names, ‘01X’, ‘1X’ and ‘2X’ denote the read coverages

of 0.1, 1 and 2 respectively. The numbers of reads in these data

sets are 35865, 353054, and 706113, respectively. Each data set

consists of the same 8 genomes, sequenced on the 454 GS20

platform to produce short reads of ,100 nt at the Joint Genome

Institute, US Department of Energy. Different from the simulated

dataset used above, these data were generated through a genuine

sequencing platform. Thus the read length distribution and the

sequencing errors may differ from simulations. Since we know

which genomes are included in the dataset, we are able to evaluate

the performance of the methods.

A brief summary of these eight genomes is given in Table 5.

We obtained a total 3153 distinct families of COG-CDSs on these

genomes, based on NCBI genome protein annotations.

Table 6. Influential artificial COGs in M3_01X detected by Step 1 and Step 2.

COGs Estimated No. of truly existing CDSs Read Counts

By BLAST By RPS-BLAST

Step 1 COG0454 0 35 0

COG0500 0.2 54 0

COG2202 0.3 62 2

Step 2 COG0457 0 15 0

COG1226 0.5 7 0

COG2214 0 8 0

COG3210 0 7 0

Note: Two columns of read counts are obtained before score filtration (Step 1) and after score filtration (Step 2).
doi:10.1371/journal.pone.0058669.t006

Figure 7. Partial functional profiles for M3_01X by different methods. The plots show that for the data set with coverage less than 1, the
proposed method performs better than the two E-value cutoff methods in keeping the fidelity of the functional profile.
doi:10.1371/journal.pone.0058669.g007
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Results from the data set with read coverage less than 1
Analysis of the dataset M3_01X detected 2836 COGs using

BLAST to search and associate a read to its BH homolog. Of

them, 2502 were true COGs and 334 artificial COGs. After

applying a score cutoff of 66, we successfully reduced the number

of artificial COGs from 334 to 64 (i.e. 81% successfully filtered

out). Note that applying the score cutoff resulted in the loss of 313

true COGs (12.5%), averaging 1.5 reads per COG with a

maximum of 8 reads per COG. The loss of these COGs has

negligible impact on the overall construction of the functional

profile. Furthermore, by applying the trained QDA function (Step
1), we detected three influential artificial COGs (Table 6). The

small estimated numbers of existing CDSs in the table indicate

that the detection was successful.

Applying Step 2 resulted in another four influential artificial

COGs successfully identified (Table 6). These results indicate that

the combination of proposed methods work effectively for the

metagenomic data with read coverage less than 1.

Figure 7, similar to Figure 6, shows the partial functional

profiles with the 20 largest abundant COGs, using our proposed

method and the two E-value cutoff methods. The plots imply that

our method achieves the best profile fidelity for the metagenomic

data with read coverage less than 1. For the complete profiles, the

sums of absolute differences of proportions between the original

BHs and our proposed method, E-value method with cutoff 1023,

E-value method with cutoff 1025 and are 0.19, 0.32 and 0.41

respectively.

Results from the data set with read coverage equal to 1
BLAST searching of dataset M3_1X detected 4285 COGs,

including 3108 true COGs and 1177 artificial COGs. Again,

BLAST introduced a large proportion (27%) of artificial COGs.

By applying the score cutoff of 66, we filtered out 76% of these

COGs, resulting in 284 artificial COGs. Consequently, we lost 154

(5%) true COGs, each averaging 3.3 short reads with the

maximum read count of 20. Again, these have negligible impact

in the functional profile. Additional influential artificial COGs

were identified by Steps 1 and 2 (Table 7). Note that the values of

RRC for the COGs in Step 1 are 0, 0, and 0.037, respectively. In

conclusion, our proposed method is successful in identifying and

Table 7. Influential artificial COGs in M3_1X detected by Step 1 and Step 2.

COG ID Estimated No. of truly existing CDSs Read Counts

By BLAST By RPS-BLAST

Step 1 COG0454 0 362 0

COG0500 2 658 0

COG0477 0 2283 85

Step 2 COG0457 0 101 0

COG0639 2 58 0

Note: Two columns of read counts are obtained before score filtration (Step 1) and after score filtration (Step 2).
doi:10.1371/journal.pone.0058669.t007

Figure 8. Partial functional profiles for M3_1X by different methods. The plots show that for the data set with coverage greater than 1, the
proposed method outperforms the E-value cutoff methods in keeping the fidelity of the functional profile.
doi:10.1371/journal.pone.0058669.g008
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filtering out the false COGs and influential artificial COGs for the

metagenomic data with read coverage equal to 1.

The comparison of the partial functional profiles by different

methods is presented in Figure 8 and again demonstrates the best

performance by our proposed method in keeping the fidelity of the

functional profile.

Result from the data set with read coverage greater than
1

For the M3_2X dataset, the BLAST search detected 4546

COGs (3142 true COGs and 1404 artificial COGs). After score

filtration, there were 985 (70%) artificial COGs removed, while

3043 true COGs were successfully preserved and 99 (3%) true

COGs were erroneously filtered out. On average, only 5 reads

were assigned to each of these lost true COGs (the largest read

counts in this group was 26). Again, we regard these COGs as

trivial entries in the construction of the functional profiles

compared to the preserved COGs. Additional influential artificial

COGs were detected by Steps 1 & 2 and listed in Table 8. The

values of RRC for the COGs identified in Step 1 were 0, 0, 0.018

and 0.038, respectively. Comparison of partial functional profiles

by the different methods (figure not shown) has the same

conclusion as those in the previous two subsections.

Combining the results from the three data sets, we observe that

the percentage of artificial COGs by BLAST is positively related to

the read coverage. This is a serious problem because the higher

coverage means better assembly and becomes practically possible

as the cost of sequencing is dropping. The proposed method

successfully filtered out most (.70%) of the artificial COGs,

though the percentage of artificial COGs removed decreases as the

read coverage increases. Interestingly, the percentage of true

COGs erroneously removed drops simultaneously.

Discussion

Next-generation sequencing technology is dramatically chang-

ing the scenery in genomic/proteomic studies. The technology for

functional metagenomic profiling of microbiota has been widely

applied in environmental, biological and medical research. While

the BLAST homolog searching tool is powerful in detecting COG

families, it also introduces a significant amount of artificial

functional families to the data. Successfully filtering out these

families is essential to the construction of functional profile and the

down-stream analysis. Current methods in common practice

include E-value cutoffs, such as 10{3 or 10{5. As demonstrated in

previous sections, choosing the homologues with any of these E-

value cutoffs alone decreases the sensitivity of true COGs, and also

affects the proportional abundance of a COG in the profile.

Motivated by the empirical distributions of similarity scores of

true (false) short homologies in the simulated data, we applied in

this work the normalized penalty minimization method to obtain

an efficient similarity score cutoff of 66 for metagenome with short

reads of length ,100 nt. By this rule, we could successfully filter

out more than 70% of the artificial COGs generated by BLAST.

Though it is inevitable that the filtering will result in the loss of

some true COG families, we find that each of these lost true COGs

has, on average, low read count and thus is regarded as trivial

entries in the construction of the functional profile. By incorpo-

rating the RPS-BLAST searching results into the BLAST outputs,

we propose to use Quadratic Discriminant Analysis (Step 1) and

Step 2 to further filter out the artificial COG families that cannot

be removed by score filtration and have large read counts (i.e.,

influential artificial COGs).

Read coverage is an important factor in metagenomic studies. It

affects the assembly accuracy and integrity [27]. By analyzing

three experimental metagenomic data sets that consist of the same

genomes, but have different read coverages, we showed that the

proposed method can filter out most of artificial and influential

artificial COGs in these experiments, and thus, is robust against

the read coverage.

Another important issue in metagenomic functional profiling is

the across annotations of COGs [6]. This can greatly lower the

accuracy of the functional profile and needs to be corrected.

Developing methods for the correction will be one of our future

research topics.

Supporting Information

Text S1 Steps to show that, for the simulated metagenome, we

are highly confident that the score cutoff value should be between

63 and 68 in order to achieve a sensitivity of about 0.75.

(DOCX)
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Table 8. Influential artificial COGs in M3_2X detected by Step 1 and Step 2.

COGs Estimated No. of truly existing CDSs Read Counts

By BLAST By RPS-BLAST

Step 1 COG0454 0 813 0

COG0500 4 1338 0

COG0582 36 713 13

COG0477 0 4703 177

Step 2 COG0457 0 226 0

Note: Two columns of read counts are obtained before score filtration (Step 1) and after score filtration (Step 2).
doi:10.1371/journal.pone.0058669.t008
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