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ABSTRACT

CENP-B is a widely conserved centromeric satellite
DNA-binding protein, which specifically binds to a
17-bp DNA sequence known as the CENP-B box.
CENP-B functions positively in the de novo
assembly of centromeric nucleosomes, containing
the centromere-specific histone H3 variant, CENP-
A. At the same time, CENP-B also prevents un-
desired assembly of the CENP-A nucleosome
through heterochromatin formation on satellite
DNA integrated into ectopic sites. Therefore,
improper CENP-B binding to chromosomes could
be harmful. However, no CENP-B eviction mechan-
ism has yet been reported. In the present study, we
found that human Nap1, an acidic histone chaper-
one, inhibited the non-specific binding of CENP-B to
nucleosomes and apparently stimulated CENP-B
binding to its cognate CENP-B box DNA in nucleo-
somes. In human cells, the CENP-B eviction activity
of Nap1 was confirmed in model experiments, in
which the CENP-B binding to a human artificial
chromosome or an ectopic chromosome locus
bearing CENP-B boxes was significantly decreased
when Nap1 was tethered near the CENP-B box
sequence. In contrast, another acidic histone

chaperone, sNASP, did not promote CENP-B
eviction in vitro and in vivo and did not stimulate
specific CENP-B binding to CENP-A nucleosomes
in vitro. We therefore propose a novel mechanism
of CENP-B regulation by Nap1.

INTRODUCTION

Kinetochores assemble on the centromeric region of each
chromosome, where they form sites for microtubule at-
tachment. Kinetochores are highly complex, with >100
proteins (1–7), but centromeric chromatin is slightly
simpler, and its main constituents are CENPs A-C
(8–11), CENP-S (3), CENP-T (3), CENP-X (12) and
CENP-W (5). CENP-T, -W, -S and -X are assembled
into a novel nucleosome-like particle (13). CENP-A is a
centromere-specific histone H3 variant that is widely
conserved among eukaryotes. CENP-A is a key essential
component for the formation of functional kinetochores,
and significant chromosome missegregation has been
observed in CENP-A-depleted cells (14–19).
Structural studies revealed that human CENP-A and its

yeast Saccharomyces cerevisiae homolog, Cse4, form nu-
cleosomes containing a histone octamer with two each of
histones H2A, H2B, H4 and CENP-A (or Cse4) (20–22).
The DNA winds left-handedly around the histone octamer
containing CENP-A (or Cse4) (20–24). Unusual
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centromeric nucleosomes such as hemisomes and
hexasomes, which may be cell-cycle dependent intermedi-
ates, have also been proposed (25–33). In the CENP-A
nucleosome, the DNA at the entry/exit sites is detached
from the histone octamer surface, and is therefore more
accessible than its counterpart in canonical nucleosomes
(21–24,34,35). Indeed, CENP-A nucleosomes are slightly
less stable than canonical H3 nucleosomes (36).
CENP-A marks the centromeric chromatin as the site of

kinetochore assembly, and CENP-C assembly requires the
C-terminal six residues of CENP-A (37). The targeting of
CENP-A to its particular assembly sites on the DNA is
complex and depends on epigenetic factors, rather than
the specific DNA sequence (38,39). This is a topic that is
currently being intensively studied in a number of
laboratories. In contrast, the binding of CENP-B to
a-satellite DNA appears to be more straightforward—
the protein binds specifically to a 17-bp DNA sequence
known as the CENP-B box (40).
The CENP-B box sequence appears in centromeric sat-

ellite repeats in human (a-satellite DNA) and mouse
(minor satellite DNA) (10,40) and may be located at the
entry/exit regions of the CENP-A nucleosome (21,41–43).
CENP-B is required for stable de novo assembly of
CENP-A and the functional centromere on transfected
a-satellite DNA, during the formation of human artificial
chromosomes (HACs) (44). However, CENP-B function is
complex. When CENP-B binds to an ectopic chromo-
somal locus, CENP-A nucleosome assembly is suppressed
by the induction of heterochromatin formation around the
CENP-B binding site (44). The CENP-B mediated hetero-
chromatin formation is also observed in the fission yeast
Schizosaccharomyces pombe (45,46). These findings sug-
gested that CENP-B not only functions positively during
de novo centromere formation on the proper chromosome
locus but may also suppress centromere formation at
non-specific chromosome loci. This in turn implied that
non-specific CENP-B binding to chromosomes could po-
tentially be harmful, as it might induce heterochromatin
formation on inappropriate chromosome loci. However,
the mechanism by which CENP-B is evicted from
non-specific binding sites is not known.
Nap1 and sNASP are acidic histone chaperones that

promote nucleosome assembly with the core histones
H2A, H2B, H3 and H4 in vitro (47–55). Nap1 and
sNASP also stimulate linker histone H1 binding to chro-
matin in vitro (56–58). Thus, Nap1 and sNASP appear to
promote proper DNA binding of basic proteins, such as
core and linker histones, which have a propensity to
interact randomly with the phosphate backbone of DNA.
In the present study, we found that human Nap1 stimu-

lates the formation in vitro of specific complexes between
the CENP-B DNA-binding domain (CENP-B DBD) and
CENP-A or H3 nucleosomes containing CENP-B box se-
quences. Nap1 also potently reverses the non-specific
binding of CENP-B DBD to CENP-A or H3 nucleosomes
lacking the CENP-B box. In model experiments with
human cells, CENP-B eviction activity was observed
in vivo when Nap1 was tethered near bona fide CENP-B
binding sites, either in the centromere of a HAC or at an
ectopic chromosome locus. In contrast, another acidic

histone chaperone, sNASP, did not affect CENP-B
binding to the CENP-A nucleosome in vitro and did not
exhibit CENP-B eviction activity in vivo. We suggest that
Nap1 may function to eliminate non-specific CENP-B
binding to chromosomes and may promote its proper
loading onto correct chromosome loci.

MATERIALS AND METHODS

Purification of human histones, CENP-A, Nap1
and sNASP

Three human histones (H2A, H2B and H4) and CENP-A
were produced in Escherichia coli cells and purified by the
same methods described previously (21). CENP-B DBD
(1–129 amino acid residues) was overexpressed in E. coli
JM109(DE3) cells, as an N-terminally hexahistidine-
tagged protein. The DNA fragment encoding CENP-B
DBD was ligated into the NdeI and BamHI sites of the
pET15b vector (Novagen). Freshly transformed
JM109(DE3) cells were grown on an LB plate containing
ampicillin (100 mg/ml) at 37�C. After a 16 h incubation,
five colonies were inoculated into LB medium (2 l) con-
taining ampicillin (100mg/ml). The cells were cultured at
37�C. When the cell density reached an A600=0.6,
isopropyl-b-D-thiogalactopyranoside (0.5mM) was added
to induce CENP-B DBD expression, and the cells were
further cultured at 37�C for 12 h. The CENP-B DBD
was extracted from the cells and purified by the same
method as that for recombinant histones, including the
removal of the hexahistidine tag by thrombin protease
treatment (21). Human Nap1 and sNASP were produced
as N-terminally hexahistidine-tagged proteins and were
purified as described previously (52,55). The hexahistidine
tag was removed by protease treatment, and therefore,
the Nap1 and sNASP proteins purified by these methods
lacked the hexahistidine tag. These samples were dialyzed
against 10mM Tris–HCl buffer (pH 7.5), containing
0.5mM ethylenediaminetetraacetic acid (EDTA), 1mM
DTT and 10% glycerol.

Reconstitution and purification of CENP-A
or H3 nucleosomes

The histone octamer containing histones H2A, H2B,
H4 and CENP-A or H3 was reconstituted as described
previously (21,59). The 192-bp DNA fragments, with
or without the CENP-B box, were amplified by polymer-
ase chain reaction (PCR), as described previously (42).
The CENP-A nucleosomes were reconstituted with the
histone octamer and the 192-bp DNA fragment by the
salt dialysis method, and the reconstituted CENP-A nu-
cleosomes were purified by the method described previ-
ously (21).

Assay for nucleosome formation with CENP-B DBD

For the specific complex formation assay, CENP-A or H3
nucleosomes containing the CENP-B box sequence (Cb+)
were mixed with the CENP-B DBD in the presence or
absence of Nap1 or sNASP in 20mM Tris–HCl (pH 7.5)
buffer, containing 140mM NaCl and 1mM DTT. After
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incubation for 20min at 37�C, the samples were analyzed
by 5% polyacrylamide gel electrophoresis in 0.2�TBE
buffer (18mM Tris base, 18mM boric acid and 0.4mM
EDTA) at 16V/cm for 55min, and the DNA bands were
visualized by ethidium bromide staining.

The inhibition assay for non-specific CENP-B DBD
binding to CENP-A or H3 nucleosomes was performed
using CENP-A nucleosomes lacking CENP-B boxes
(Cb�). These CENP-A or H3 nucleosomes (Cb�) were
mixed with the CENP-B DBD in the presence of Nap1
or sNASP in 20mM Tris–HCl (pH 7.5) buffer, containing
140mM NaCl and 1mM DTT. For the control experi-
ment without the histone chaperone, CENP-A or H3 nu-
cleosomes (Cb�) were mixed with the CENP-B DBD in
20mM Tris–HCl (pH 7.5) buffer, containing 140mM
NaCl and 1mM DTT. After incubation for 20min at
37�C, the samples were analyzed by 5% polyacrylamide
gel electrophoresis in 0.2�TBE buffer (18mM Tris base,
18mM boric acid and 0.4mM EDTA) at 16V/cm for
55min, and the DNA bands were visualized by ethidium
bromide staining.

Assay for Nap1-CENP-B DBD binding

Hexahistidine-tagged Nap1 (His6-Nap1) was prepared by
the method described previously (52), without the removal
of the hexahistidine tag. The His6-Nap1 (14mg, 600 nM)
was mixed with the CENP-B DBD (1.5 mg, 200 nM) in
500 ml of 20mM Tris–HCl (pH 7.5) buffer, containing
100mM NaCl, 30mM imidazole and 10 mg/ml bovine
serum albumin (BSA). Ni-NTA-agarose beads (3 ml,
50% slurry) were added to the reaction mixtures, and
the samples were incubated for 60min at 4�C. After the
incubation, the beads were pelleted and washed three
times with 500 ml of 20mM Tris–HCl (pH 7.5) buffer, con-
taining 100mM NaCl, 50mM imidazole and 0.2% Tween
20. The proteins bound to the beads were analyzed by
sodium dodecyl sulphate (SDS)-15% polyacrylamide gel
electrophoresis with Coomassie brilliant blue staining.

Cell lines

The HeLa-HAC-2-4 cell line was established by the
transfection-based delivery (60) of an alphoidtetO HAC
from the HeLa-HAC-R5 cell line (61) to the common
HeLa cell line.

Constuction of tetR-EYFP-fusion protein
expressing plasmids

PCR products of Nap1 and sNASP were cloned into the
PacI and NotI sites of pJETY3-tetR-EYFP plasmid (61),
which expresses tetR-EYFP-alone.

Cell culture and transfection

HeLa cells were grown in Dulbecco’s modified Eagle’s
medium (Nacalai Tesque) supplemented with 10%
tet-approved FBS (Clontech) at 37�C in a 5% CO2 atmos-
phere. FuGENE HD (Roche) was used for transfection.

Indirect immunofluorescent staining

Cells grown on coverslips were washed once with phos-
phate buffered saline (PBS), fixed with 2.6% formalde-
hyde in PBS for 5min at RT and then quenched with
PBS containing 0.5% Triton X-100 and 125mM glycine
for 5min at RT. The cells were blocked with PBS contain-
ing 2% BSA and 0.1% Triton X-100 for 30min at RT,
incubated with primary antibodies for 60min, washed
twice with PBS containing 0.1% Triton X-100 and
incubated with secondary antibodies for 60min. The
cells were stained with Qnuclear

TM

Deep Red Stain
(Invitrogen), at a 1:30 000 dilution in PBS containing
0.1% Triton X-100, for 20min at RT. After a final set
of washes, the cells were mounted with VectaShield for
Fluorescence (Vector Labs).
The anti-CENP-B N-ter polyclonal antibody (BN1) was

used at 0.8mg/ml. The anti-CENP-A monoclonal antibody
(A1) was used at 1 mg/ml. Secondary antibodies [DyLight
405-conjugated Goat Anti-Mouse IgG (Thermo), Alexa
Fluor� 594-conjugated Goat Anti-mouse IgG (Invitrogen)
and Alexa Fluor� 594-conjugated Goat Anti-mouse IgG
(Invitrogen)] were used at 1 mg/ml. PBS containing 0.2%
BSA and 0.1% Triton X-100 was used for antibody
dilution.

Microscopy

Z-stack images with a spacing of 0.5 mm were acquired on
an LSM700 microscope (Zeiss) equipped with an
Objective Plan-Apochromat 40� /1.3 oil lens (Zeiss).
For quantification analysis, Z-stack images covering an
entire single nuclear signal were used for maximum inten-
sity projections.

Quantification of CENP-B and CENP-A assembly level

ImageJ (National Institutes of Health) was used for quan-
tification. The maximum intensity of each CENP-B and
CENP-A channel was normalized to 255. The amount of
the CENP-B or CENP-A signal on alphoidtetO HAC was
measured, after the ‘Subtract Background’ function was
performed to eliminate non-specific signals.
The total CENP-B (or CENP-A) signals on the

alphoidtetO HAC and endogenous centromeres in the
same single nucleus were measured, after subtracting the
residual noise below the threshold (=20). The CENP-B
(or CENP-A) assembly level on the alphoidtetO HAC was
standardized by dividing the CENP-B (or CENP-A)
signals on the HAC by the total of the CENP-B (or the
average of the CENP-A) signals from endogenous centro-
meres in the same single nucleus.

Fluorescent recovery after photobleaching

HeLa-Int-03 cells were transfected with a set of
tetR-EYFP-fusion expressing plasmids. A focus of the
tetR-EYFP-fusion proteins on the tetO array was
bleached, and the recovery rate was measured. The
Fluorescent recovery after photobleaching (FRAP) assay
was performed 1 day after transfection, using a confocal
microscope (FV-1000; Olympus) with a PlanSApo
60� (NA=1.35) oil-immersion lens. For Figure 6A and
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B, images (0.5 s/frame) were collected at 10 s intervals, and
a 3 mm diameter spot was bleached (100% 488-nm laser
transmission; two iterations) after three images. For
Figure 6C, 10 images were collected (65ms/frame)
before bleaching, and 90 images were further collected.
ImageJ (National Institutes of Health) was used for inten-
sity measurements and fitting analysis. As a control ex-
periment, YFP-H2B expressing cells were also measured
by bleaching the same diameter in the nucleus. The
YFP-H2B signals did not show a significant recovery
within the same time scale (data not shown).

Chromatin immunoprecipitation assay

Cells were collected 2 days after transfection and fixed
with 0.5% formaldehyde (Sigma: F8775) at 22�C for
10min. The cells were then sonicated with a Bioruptor
(Cosmobio) to generate an average DNA size of 0.5–
1 kb, in sonication buffer (10mM HEPES, 1mM EDTA,
1.5mM aprotinin, 10 mM leupeptin, 1mM DTT, 0.05%
SDS and 40 mM MG132). The soluble chromatin (input)
was recovered by centrifugation and immunoprecipitated
with chromatin immunoprecipitation (ChIP) buffer
(55mM HEPES, 150mM NaCl, 1mM EGTA, 2mM
MgCl2, 2mM ATP, 1.5 mM aprotinin, 10 mM leupeptin,
1mM DTT, 0.01% SDS and 1% NP-40), containing
2 mg of anti-CENP-B C-terminus antibody (5E6C1) and
Protein G Sepharose 4 Fast Flow (GE Healthcare). The
DNA was purified from the immunoprecipitates and
quantified by real-time PCR, using the following primer
sets: tetOF (50-CTCTTTTTGTGGAATCTGCAAGTG)
and tetOR (50-TCTATCACTGATAGGGAGAGCTCT)
for alphoidtetO, and 11-10R and mCbox-4 for the
11-mer of chromosome 21 alphoid DNA (21-I alphoid).

RESULTS

Reconstitution of non-specific CENP-B binding to
CENP-A and H3 nucleosomes

We reconstituted CENP-A and H3 nucleosomes with a
192-bp DNA (Supplementary Figure S1), in which a
CENP-B box sequence was located at the entry/exit
regions of the nucleosome (Figure 1A). This nucleosome
positioning was previously confirmed by micrococcal
nuclease mapping with the same DNA fragment (42).
We then tested CENP-B binding to the CENP-A and
H3 nucleosomes by an electrophoretic mobility shift
assay, using polyacrylamide gels. The CENP-B DBD,
which contains amino acid residues 1–129 of human
CENP-B (Supplementary Figure S1B) (41,62,63), was
used in this electrophoretic mobility shift assay. We pre-
viously reported that the CENP-B DBD forms specific
complexes with these CENP-A and H3 nucleosomes by
the salt dialysis method (42). However, when the
CENP-B DBD was incubated with the reconstituted
CENP-A and H3 nucleosomes under physiological salt
conditions, we detected only a small amount of the
specific complex with the CENP-B DBD bound to the
CENP-B box sequence of these nucleosomes (Figure 1B
and C, lanes 3 and 4). Thus, the salt-dialysis method may
suppress non-specific CENP-B binding to nucleosomes.

Furthermore, when the CENP-B DBD concentration
was increased, the bands corresponding to the specific
complex and the CENP-A and H3 nucleosomes dis-
appeared (Figure 1B and C, lanes 5 and 6), possibly
owing to the formation of aggregates resulting from
non-specific binding of the CENP-B DBD to
nucleosomes.

To test the non-specific binding of the CENP-B DBD to
nucleosomes, we reconstituted the CENP-A and H3 nu-
cleosomes with DNA lacking the CENP-B box sequence
(Supplementary Figure S1). As shown in Figure 1B and C
(lanes 7–12), the CENP-B DBD did not form specific
complexes with either the CENP-A or H3 nucleosomes
in the absence of the CENP-B box sequence. The bands
corresponding to the nucleosomes disappeared in the
presence of excess CENP-B DBD, probably by the forma-
tion of non-specific aggregates that did not enter the gel
(Figure 1B and C, lanes 11 and 12). Therefore, excess
CENP-B DBD apparently forms aggregates by binding
non-specifically to CENP-A and H3 nucleosomes under
physiological salt conditions.

Nap1 promotes specific CENP-B binding to nucleosomes
by eliminating non-specific CENP-B binding

Nap1, an acidic histone chaperone, reportedly inhibits
non-specific histone binding to DNA and promotes
correct nucleosome assembly (64). We therefore tested
the effects of purified recombinant Nap1 (Supplementary
Figure S2) on CENP-B binding to the CENP-A nucleo-
some. Remarkably, we found that Nap1 significantly
stimulated specific CENP-B binding to the CENP-A nu-
cleosome (Figure 2A, lanes 7–11, and B). The
Nap1-mediated stimulation of CENP-B DBD binding
was also observed with the H3 nucleosome containing
the CENP-B box (Figure 2C, lanes 7–11, and D). We
postulated that this might be caused by Nap1-mediated
inhibition of non-specific CENP-B binding to the
CENP-A and H3 nucleosomes. Consistent with this
idea, Nap1 dramatically inhibited the formation of
non-specific aggregates of the CENP-A and H3 nucleo-
somes without the CENP-B box, driven by the CENP-B
DBD (Figure 3A and C, lanes 7–11, and B and D). In
contrast, a second acidic histone chaperone, sNASP
(Supplementary Figure S2), did not significantly stimulate
specific complex formation (Figure 2A and C, lanes 18–22,
and B and D) and did not inhibit the formation of non-
specific aggregates in the presence of excess CENP-B DBD
(Figure 3A and C, lanes 18–22, and B and D).

We conclude that Nap1, but not sNASP, promotes the
specific binding of CENP-B to the CENP-B box in a nu-
cleosomal context by suppressing non-specific aggregate
formation. As sNASP is a highly acidic protein
(pI=4.35), the CENP-B regulating activity of Nap1
does not appear to be a consequence of non-specific inter-
actions between the acidic chaperone and the basic
CENP-B DBD.

Nap1 can remove CENP-B from chromosomes in vivo

The results of the aforementioned experiments strongly
suggested that Nap1 regulates CENP-B binding to
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nucleosomes in vitro. We therefore developed a protocol
to test whether Nap1 can regulate the association of
CENP-B with chromosomes in vivo.

Incubation with excess Nap1 in vitro dissociates the
CENP-B DBD from specific complexes with the
CENP-A nucleosomes containing the CENP-B box
(Supplementary Figure S3). Eviction of the CENP-B
DBD from specific complexes was never observed in the
presence of excess amounts of sNASP (Supplementary
Figure S3). Thus, we postulated that if Nap1 regulates
CENP-B binding in vivo, as it does in vitro, then Nap1
should be able to remove CENP-B from chromatin con-
taining CENP-B boxes.

To detect CENP-B eviction from chromatin by Nap1
in vivo, we tethered Nap1 adjacent to bona fide CENP-B
binding sites in a functional centromere. For this purpose,
we fused Nap1 to tetR-EYFP and expressed the chimeric
protein in HeLa cells bearing the alphoidtetO HAC
(Figure 4A). This HAC is based on a synthetic
alphoid DNA dimer, in which one monomer contains a
CENP-B box, and the adjacent monomer contains a tetra-
cycline operator sequence, instead of the CENP-B box
(61,65).

The tethering of tetR-EYFP alone did not affect the
levels of CENP-B and CENP-A at the HAC kinetochore

(Figure 4B) (61,65). In contrast, tethering of tetR-EYFP-
Nap1 dramatically decreased CENP-B levels at the
alphoidtetO HAC centromere. In controls, tethering of
tetR-EYFP-sNASP actually caused a small increase in
the CENP-B levels (Figure 4B and C). Similar results
were obtained when these proteins were tethered to an
ectopic insertion of alphoidtetO sequences on a chromo-
somal arm (Figure 5). This ectopic insertion lacks
CENP-A but contains bound CENP-B. As the protein
levels of tetR-EYFP-Nap1 and tetR-EYFP-sNASP were
similar (Supplementary Figure S4), the difference between
Nap1 and sNASP is unlikely to be explained by for
protein production and stability.
It is also possible that the binding residence time of

tetR-EYFP-Nap1 and tetR-EYFP-sNASP to the
alphoidtetO differs significantly and affects the CENP-B
removal activity. For example, if tetR-EYFP-sNASP
binds stably to the alphoidtetO, then it may not be able
to interact with CENP-B associated with the different se-
quences elsewhere in the repeats. To test this possibility,
the turnover of each tetR-EYFP-fusion protein on the
alphoidtetO was monitored by the FRAP technique
(Figure 6). Both tetR-EYFP-Nap1 and tetR-EYFP-
sNASP recovered over a time scale of minutes (t1/2� 9.3
and �3.5min, respectively). These turnover rates are

Figure 1. Specific and non-specific CENP-B DBD binding to the CENP-A and H3 nucleosomes. (A) Schematic representations of 192-bp a-satellite
DNAs. The box and the dashed circle indicate the location of the CENP-B box and the nucleosome positioning, respectively, as revealed by the
previous MNase mapping (42). (B) CENP-B DBD binding to the CENP-A nucleosomes with or without the CENP-B box DNA. The CENP-A
nucleosomes (140 nM) with the CENP-B box sequence (Cb+) (lanes 2–6) or without the CENP-B box sequence (Cb�) (lanes 8–12) were incubated
with the CENP-B DBD for 20min at 37�C. CENP-B DBD concentrations were 0 mM (lanes 2 and 8), 0.7 mM (lanes 3 and 9), 1.4 mM (lanes 4 and
10), 2.1 mM (lanes 5 and 11) and 2.8 mM (lanes 6 and 12). The samples were analyzed by non-denaturing 5% polyacrylamide gel electrophoresis,
followed by ethidium bromide staining. Lanes 1 and 7 indicate the 192-bp naked DNA. (C) CENP-B DBD binding to the H3 nucleosomes with or
without the CENP-B box DNA. The H3 nucleosomes (140 nM) with the CENP-B box sequence (Cb+) (lanes 2–6) or without the CENP-B box
sequence (Cb�) (lanes 8–12) were incubated with the CENP-B DBD for 20min at 37�C. CENP-B DBD concentrations were 0mM (lanes 2 and 8),
0.7 mM (lanes 3 and 9), 1.4 mM (lanes 4 and 10), 2.1 mM (lanes 5 and 11) and 2.8 mM (lanes 6 and 12). The samples were analyzed by non-denaturing
5% polyacrylamide gel electrophoresis, followed by ethidium bromide staining. Lanes 1 and 7 indicate the 192-bp naked DNA.
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relatively rapid compared with the analytical time scale of
CENP-B localization (1 day after the induction). Thus,
both fusion proteins should be able to diffuse around
the binding site to allow the interaction with nearby
CENP-B. Indeed, the FRAP analyses of EYFP-Nap1
and EYFP-sNASP revealed that these proteins diffuse in
the nucleus within seconds (Figure 6). The decreased
mobility of the Nap1 fusions than sNASPs might be

owing to the oligomerization of Nap1. These experiments
clearly indicated that Nap1, but not sNASP, can
regulate the association of CENP-B with chromatin
in vivo.

Nap1 inhibits non-specific CENP-B binding in cells

We next tested whether the Nap1 actually inhibits non-
specific CENP-B binding in cells by ChIP (Figure 7A).

Figure 2. Nap1 stimulates specific binding of the CENP-B DBD to the CENP-A and H3 nucleosomes. (A) CENP-B DBD binding to the CENP-A
nucleosomes with the CENP-B box DNA, in the presence of Nap1 or sNASP. The CENP-A nucleosomes (Cb+) (140 nM) were incubated with the
CENP-B DBD in the presence of Nap1 (2.8 mM, lanes 7–11) or sNASP (2.8 mM, lanes 18–22) for 20min at 37�C. Lanes 2–6 and 13–17 indicate
control experiments in the absence of Nap1 or sNASP. CENP-B DBD concentrations were 0 mM (lanes 2, 7, 13 and 18), 0.7 mM (lanes 3, 8, 14 and
19), 1.4 mM (lanes 4, 9, 15 and 20), 2.1 mM (lanes 5, 10, 16 and 21)s and 2.8 mM (lanes 6, 11,17 and 22). The samples were analyzed by non-denaturing
5% polyacrylamide gel electrophoresis, followed by ethidium bromide staining. Lanes 1 and 12 indicate the 192-bp naked DNA. (B) Graphic
representation of the specific complex formation. The relative band intensities of the specific CENP-B DBD-CENP-A nucleosome complexes were
plotted with the standard deviations (n = 3). (C) CENP-B DBD binding to the H3 nucleosomes with the CENP-B box DNA, in the presence of
Nap1 or sNASP. The H3 nucleosomes (Cb+) (140 nM) were incubated with the CENP-B DBD in the presence of Nap1 (2.8 mM, lanes 7–11) or
sNASP (2.8 mM, lanes 18–22) for 20min at 37�C. Lanes 2–6 and 13–17 indicate control experiments in the absence of Nap1 or sNASP. CENP-B
DBD concentrations were 0 mM (lanes 2, 7, 13 and 18), 0.7 mM (lanes 3, 8, 14 and 19), 1.4 mM (lanes 4, 9, 15 and 20), 2.1 mM (lanes 5, 10, 16 and 21)
and 2.8 mM (lanes 6, 11,17 and 22). The samples were analyzed by non-denaturing 5% polyacrylamide gel electrophoresis, followed by ethidium
bromide staining. Lanes 1 and 12 indicate the 192-bp naked DNA. (D) Graphic representation of the specific complex formation. The relative band
intensities of the specific CENP-B DBD-H3 nucleosome complexes were plotted with the standard deviations (n=3).
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Two point mutations within the canonical CENP-B box
sequence in alphoid DNA abolish the specific CENP-B
binding (Figure 7B). Consistently, these CENP-B box
mutations cause significant deficiencies in de novo
CENP-A assembly and de novo HAC formation in
human and mouse cells (44,66,67). However, the non-
specific binding of CENP-B to the mutant CENP-B box
was increased under conditions where Halo-CENP-B was
overexpressed (Figure 7C). We then tested whether Nap1
co-expression with Halo-CENP-B reduces non-specific

CENP-B binding to the mutant CENP-B box. As shown
in Figure 7D, Nap1 overexpression significantly reduced
the non-specific CENP-B binding to the mutant CENP-B
box selectively, whereas no significant reduction of the
specific CENP-B binding to the host centromere with
canonical CENP-B boxes was observed under the same
conditions. In controls, the CENP-B expression level
was not substantially decreased on Nap1 overexpression
(Figure 7E). In addition, an interaction between CENP-B
and Nap1 was detected by in vitro and in vivo pull-down

Figure 3. Nap1 dissociates non-specifically bound CENP-B DBD from the CENP-A nucleosome. (A) CENP-B DBD binding to the CENP-A
nucleosomes without the CENP-B box DNA, in the presence of Nap1 or sNASP. The CENP-A nucleosomes (Cb�) (140 nM) were incubated
with the CENP-B DBD in the presence of Nap1 (2.8 mM, lanes 7–11) or sNASP (2.8 mM, lanes 18–22) for 20min at 37�C. Lanes 2–6 and 13–17
indicate control experiments in the absence of Nap1 or sNASP. CENP-B DBD concentrations were 0 mM (lanes 2, 7, 13 and 18), 0.7 mM (lanes 3, 8,
14 and 19), 1.4 mM (lanes 4, 9, 15 and 20), 2.1 mM (lanes 5, 10, 16 and 21) and 2.8 mM (lanes 6, 11,17 and 22). The samples were analyzed by
non-denaturing 5% polyacrylamide gel electrophoresis, followed by ethidium bromide staining. Lanes 1 and 12 indicate the 192-bp naked DNA. (B)
Graphic representation of the experiments shown in panel A. The relative band intensities of the CENP-A nucleosomes were plotted with the
standard deviations (n=3). (C) CENP-B DBD binding to the H3 nucleosomes without the CENP-B box DNA, in the presence of Nap1 or sNASP.
The H3 nucleosomes (Cb�) (140 nM) were incubated with the CENP-B DBD in the presence of Nap1 (2.8mM, lanes 7–11) or sNASP (2.8 mM, lanes
18–22) for 20min at 37�C. Lanes 2–6 and 13–17 indicate control experiments in the absence of Nap1 or sNASP. CENP-B DBD concentrations were
0 mM (lanes 2, 7, 13 and 18), 0.7 mM (lanes 3, 8, 14 and 19), 1.4 mM (lanes 4, 9, 15 and 20), 2.1 mM (lanes 5, 10, 16 and 21) and 2.8 mM (lanes 6, 11,17
and 22). The samples were analyzed by non-denaturing 5% polyacrylamide gel electrophoresis, followed by ethidium bromide staining. Lanes 1 and
12 indicate the 192-bp naked DNA. (D) Graphic representation of the experiments shown in panel C. The relative band intensities of the H3
nucleosomes were plotted with the standard deviations (n=3).
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assays (Supplementary Figure S5). These results suggested
that the selective inhibition of non-specific CENP-B-DNA
binding by Nap1 may regulate proper CENP-B binding to
chromosomes in vivo.

The CENP-A assembly level positively correlates with
the CENP-B assembly level in vivo

Interestingly, Nap1-mediated dissociation of CENP-B
from centromeric chromatin was accompanied by a sig-
nificant decrease in the levels of CENP-A at the centro-
mere on the alphoidtetO HAC (Figure 4B and D). No such
correlation was observed when tetR-EYFP-alone or
tetR-EYFP-sNASP was tethered (Figure 4B and D and
Supplementary Figure S6). These results suggested that
CENP-B may be able to modulate CENP-A levels at kin-
etochores, as suggested by previous findings in which
CENP-B promoted the de novo assembly of CENP-A
chromatin and stable HAC formation on input alphoid
DNA (44,66,67).

DISCUSSION

CENP-B positively functions to promote de novo CENP-A
assembly on transfected alphoid DNA (44,66–68).
Paradoxically, CENP-B also acts as an inhibitor of
CENP-A loading onto alphoid DNA, through hetero-
chromatin formation (44). This suggests that if CENP-B
were improperly loaded on a chromosome arm, then this
might induce inappropriate heterochromatin formation.
Therefore, the non-specific binding of CENP-B may
need to be kept to a minimum.

Figure 4. The CENP-B and CENP-A assembly levels are reduced by the tethering of Nap1, but not sNASP, to the centromere. (A) A schematic
drawing of the tetR-fusion/alphoidtetO array tethering system on the HAC. A HeLa cell line containing a stable alphoidtetO HAC (61,
HeLa-HAC-2-4) was transfected with the tetR-EYFP-fusion protein expressing plasmids (tetR-EYFP alone, -Nap1 or -sNASP).
Immunofluorescence analysis was performed 2 days after transfection. (B) Cells were co-stained with antibodies against CENP-B and CENP-A.
The HAC centromere signals were determined by the EYFP signals (arrowhead), and DNA was visualized with Qnuclear

TM

Deep Red
Stain (Invitrogen). The scale bars represent 10 mm (light gray). (C and D) Immunofluorescence signals of CENP-B (C) and CENP-A (D) on the
HAC centromere, against those of all centromeres on host chromosomes within the same single nucleus, were quantified and plotted as
relative arbitrary fluorescence units (AFU). Solid lines indicate the median. Asterisks indicate significant differences, with P< 0.001 (Mann–
Whitney test).

Figure 5. Nap1 tethering reduces the CENP-B assembly level on
non-centromeric alphoid chromatin in vivo. (A) A schematic drawing
of the alphoidtetO ectopic integration site. (B) An alphoidtetO ectopic
integration cell line (61, HeLa-Int-03) was transfected with a set of
tetR-EYFP-fusion expressing plasmids. The CENP-B signals on the
ectopic site were apparently reduced by Nap1 tethering, but not by
sNASP tethering. Arrowheads indicate alphoidtetO DNA integration
sites. The scale bars represent 10 mm.
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In the present study, we found that human Nap1 sig-
nificantly inhibits non-specific CENP-B binding to nucleo-
somes in vitro. Furthermore, Nap1 also markedly
stimulates the specific binding of CENP-B to nucleo-
somes. These in vitro data strongly suggested that Nap1
functions to promote specific CENP-B binding to the
CENP-B box within CENP-A and H3 nucleosomes, by
inhibiting its non-specific binding. Consistent with this,
Nap1 interacted with the CENP-B DBD in vitro and
full-length CENP-B in vivo and markedly inhibited
non-specific CENP-B binding to DNA in vivo.

Intriguingly, similar Nap1-mediated inhibition of non-
specific DNA binding had been previously found with
histones (64). Andrews et al. (64) reported that Nap1 elim-
inates non-nucleosomal histone–DNA interactions and
promotes correct nucleosome assembly in vitro. Full-
length CENP-B is an acidic protein (10,69), but its DBD
(1–129 amino acid residues) is highly basic (pI=10.49).
Therefore, one role of Nap1 might be to mediate specific
DNA binding by basic proteins, such as histones and the
CENP-B DBD, which have a propensity for non-specific
electrostatic interactions with the negatively charged
DNA phosphate backbone.

Nap1 is an acidic histone-binding protein that could in
theory simply bind electrostatically to the basic CENP-B
DBD and non-specifically inhibit the CENP-B–DNA
interaction. However, we do not think this is the case
because another acidic histone-binding protein, sNASP,
affected neither specific nor non-specific CENP-B-
binding to nucleosomes in vitro and chromosomes in vivo.
Furthermore, in vivomodel experiments, in which Nap1 or
sNASP was tethered near CENP-B-binding sites, revealed
that the Nap1 tethering, but not the sNASP tethering,

significantly reduced CENP-B levels on kinetochore chro-
matin of a synthetic HAC and also on an ectopic array of
alphoid DNA containing CENP-B-binding sites in a
chromosome arm. The ectopic array lacked bound
CENP-A. Therefore, the promotion of specific CENP-B
binding to both H3 and CENP-A nucleosomes may be a
novel unidentified function of Nap1.
Our Nap1 tethering experiments also revealed that

CENP-A levels at the HAC kinetochore were correlated
with CENP-B levels. This suggests that either CENP-B
assembly on the HAC promotes CENP-A loading or
CENP-B stripping by Nap1 somehow destabilizes
CENP-A nucleosomes. The former is consistent with
previous observations that CENP-B promotes the de
novo formation of stable CENP-A-containing chromatin
during HAC formation from transfected alphoid DNA
(44). Our data therefore suggested that Nap1 may indir-
ectly regulate the specificity of CENP-A assembly, by
regulating CENP-B binding. It is also possible that
Nap1 may directly promote the assembly/disassembly of
CENP-A nucleosomes on HACs, independently of
CENP-B. We prefer the former explanation, as sNASP
tethering does not affect the levels of CENP-A on the
HAC in vivo, although both Nap1 and sNASP promote
the assembly of CENP-A nucleosomes with almost the
same efficiency in vitro (21,55).
These studies have led us to propose a novel Nap1

function: the regulation of specific CENP-B loading at
centromeric chromatin by the inhibition of non-specific
CENP-B binding to other chromosome loci. Thus,
Nap1 may indirectly promote the specific assembly of
CENP-A nucleosomes, key structural elements of active
centromeres.

Figure 6. Turnover of tetR-EYFP-fusion proteins on the tetO site. HeLa-Int-03 cells were transfected with a set of tetR-EYFP-fusion expressing
plasmids. A focus of the tetR-EYFP-fusion proteins on the tetO array was bleached, and the recovery rate was measured. (A) FRAP examples. A
3-mm diameter area containing the tetO array was bleached, and the fluorescence intensity in the bleached area was measured. Arrowheads indicate
tetO arrays. (B) FRAP results. The relative intensity of the bleached area for the indicated tetR-EYFP-fusion protein was plotted (averages of 10–15
cells with the standard deviations), and each halftime of recovery t1/2, obtained by fitting the curve to single exponential association kinetics, is
shown. (C) FRAP results for EYFP-alone, EYFP-NAP1 and EYFP-sNASP. The same diameter in the nucleus was bleached, and the recovery was
measured (averages of 15–20 cells). Note that the x-axis unit is ms. The FRAP assay was performed 1 day after transfection, using a confocal
microscope (FV-1000; Olympus) with a PlanSApo 60� (NA=1.35) oil-immersion lens. For panel (A) and (B), images (0.5 s/frame) were collected at
10 s intervals, and a 3-mm diameter spot was bleached (100% 488-nm laser transmission; two iterations) after three images. For panel (C), 10 images
were collected (65ms/frame) before bleaching, and 90 images were further collected. ImageJ (National Institutes of Health) was used for intensity
measurements and fitting analysis.
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Figure 7. Nap1 decreases non-specific CENP-B binding in cells. (A) Schematic diagram of the ChIP analysis. HeLa cells were transfected with
alphoidtetO DNA plus or minus each expression plasmid. The ChIP analysis was performed using an anti-CENP-B C-terminus antibody [5E6C1 (66)].
(B) CENP-B specifically binds to wild-type canonical CENP-B box on the alphoidtetO DNA. HeLa cells were transfected with alphoidtetO containing
wild-type or mutant CENP-B boxes (66). The ChIP analysis was performed on the introduced alphoidtetO DNAs. The rate of recovery of
immunoprecipitates using the anti-CENP-B antibody was normalized to the control IP without the antibody (beads). (C) CENP-B overexpression
increased its non-specific binding to the introduced alphoidtetO-containing mutant CENP-B boxes and its specific binding to endogenous alphoid
DNA containing canonical CENP-B boxes on the chromosome 21 centromere (21-I alphoid). The ChIP analysis was performed by co-transfecting
the alphoidtetO DNA-containing mutant CENP-B boxes and the Halo-CENP-B expression plasmid (0, 500 and 1500 ng). Real-time PCR analysis was
performed on the introduced alphoidtetO DNA and 21-I alphoid DNA. (D) Non-specific binding of CENP-B to the introduced alphoidtetO-containing
mutant CENP-B boxes was decreased by Nap1 overexpression. The ChIP analysis was performed by co-transfecting the alphoidtetO DNA-containing
mutant CENP-B boxes and the Halo-CENP-B expression plasmid (500 ng) with the EYFP, EYFP-Nap1 or EYFP-sNASP expression plasmid.
Real-time PCR analysis was performed as in panel C. Error bars, s.d. (n=3). P-values (t-test) are indicated in the figure. (E) Expression of
Halo-CENP-B and EYFP-fusion proteins in HeLa cells. HeLa cells co-transfected with each plasmid set were analyzed by western blotting, using
antibodies against CENP-B, GAPDH and GFP. Asterisks indicate non-specific signals with the anti-GFP antibody.
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sNASP, a histone H1-specific eukaryotic chaperone dimer that
facilitates chromatin assembly. Biophys. J., 95, 1314–1325.

58. Saeki,H., Ohsumi,K., Aihara,H., Ito,T., Hirose,S., Ura,K. and
Kaneda,Y. (2005) Linker histone variants control chromatin
dynamics during early embryogenesis. Proc. Natl Acad. Sci. USA,
102, 5697–5702.

59. Tachiwana,H., Kagawa,W., Osakabe,A., Kawaguchi,K., Shiga,T.,
Hayashi-Takanaka,Y., Kimura,H. et al. (2010) Structural basis of
instability of the nucleosome containing a testis-specific histone
variant, human H3T. Proc. Natl Acad. Sci. USA, 107,
10454–10459.

60. Suzuki,N., Itou,T., Hasegawa,Y., Okazaki,T. and Ikeno,M. (2010)
Cell to cell transfer of the chromatin-packaged human b-globin
gene cluster. Nucleic Acids Res., 38, e33.

61. Ohzeki,J.-I., Bergmann,J.H., Kouprina,N., Noskov,V.N.,
Nakano,M., Kimura,H., Earnshaw,W.C., Larionov,V. and
Masumoto,H. (2012) Breaking the HAC barrier: Histone H3K9
acetyl/methyl balance regulates CENP-A assembly. EMBO J., 31,
2391–2402.

62. Yoda,K., Kitagawa,K., Masumoto,H., Muro,Y. and Okazaki,T.
(1992) A human centromere protein, CENP-B, has a DNA
binding domain containing four potential alpha helices at the
NH2 terminus, which is separable from dimerizing activity.
J. Cell Biol., 119, 1413–1427.

63. Tanaka,Y., Nureki,O., Kurumizaka,H., Fukai,S., Kawaguchi,S.,
Ikuta,M., Iwahara,J., Okazaki,T. and Yokoyama,S. (2001) Crystal
structure of the CENP-B protein-DNA complex: the
DNA-binding domains of CENP-B induce kinks in the CENP-B
box DNA. EMBO J., 20, 6612–6618.

64. Andrew,A.J., Chen,X., Zevin,A., Stargell,L.A. and Luger,K.
(2010) The histone chaperone Nap1 promotes nucleosome
assembly by eliminating nonnucleosomal histone DNA
interactions. Mol. Cell, 37, 834–842.

65. Nakano,M., Cardinale,S., Noskov,V.N., Gassmann,R.,
Vagnarelli,P., Kandels-Lewis,S., Larionov,V., Earnshaw,W.C. and
Masumoto,H. (2008) Inactivation of a human kinetochore by
specific targeting of chromatin modifiers. Dev. Cell, 14, 507–522.

66. Ohzeki,J.-I., Nakano,M., Okada,T. and Masumoto,H. (2002)
CENP-B box is required for de novo centromere chromatin
assembly on human alphoid DNA. J. Cell Biol., 159, 765–775.

67. Okamoto,Y., Nakano,M., Ohzeki,J.-I., Larionov,V. and
Masumoto,H. (2007) A minimal CENP-A core is required for
nucleation and maintenance of a functional human centromere.
EMBO J., 26, 1279–1291.

68. Ikeno,M., Grimes,B., Okazaki,T., Nakano,M., Saitoh,K.,
Hoshino,H., McGill,N.I., Cooke,H. and Masumoto,H. (1998)
Construction of YAC-based mammalian artificial chromosomes.
Nat. Biotech., 16, 431–439.

69. Earnshaw,W.C. (1987) Anionic regions in nuclear proteins.
J. Cell Biol., 105, 1479–1482.

2880 Nucleic Acids Research, 2013, Vol. 41, No. 5


