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Abstract
Introduction—Pulmonary nodules of the adenocarcinoma spectrum are characterized by
distinctive morphological and radiological features and variable prognosis. Non-invasive high-
resolution computed-tomography (HRCT)-based risk stratification tools are needed to
individualize their management.

Methods—Radiological measurements of histopathologic tissue invasion were developed in a
training set of 54 pulmonary nodules of the adenocarcinoma spectrum and validated in 86
consecutively resected nodules. Nodules were isolated and characterized by computer-aided
analysis and data were analyzed by Spearman correlation, sensitivity, specificity as well as the
positive and negative predictive values.

Results—Computer Aided Nodule Assessment and Risk Yield (CANARY) can non-invasively
characterize pulmonary nodules of the adenocarcinoma spectrum. Unsupervised clustering
analysis of HRCT data identified 9 unique exemplars representing the basic radiologic building
blocks of these lesions. The exemplar distribution within each nodule correlated well with the
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proportion of histologic tissue invasion, Spearman R=0.87,p < 0.0001 and 0.89,p < 0.0001 for the
training and the validation set, respectively. Clustering of the exemplars in three-dimensional
space corresponding to tissue invasion and lepidic growth was used to develop a CANARY
decision algorithm, which successfully categorized these pulmonary nodules as “aggressive”
(invasive adenocarcinoma) or “indolent” (adenocarcinoma in situ and minimally invasive
adenocarcinoma). Sensitivity, specificity, positive predictive value and negative predictive value
of this approach for the detection of “aggressive” lesions were 95.4%, 96.8%, 95.4% and
96.8%, respectively in the training set and 98.7%, 63.6%, 94.9% and 87.5%, respectively in the
validation set.

Conclusion—CANARY represents a promising tool to non-invasively risk stratify pulmonary
nodules of the adenocarcinoma spectrum.
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Pulmonary nodules; lung adenocarcinoma; risk stratification; computer aided image analysis

Introduction
Lung cancer remains the leading cause of cancer-related deaths in the US and worldwide.1,2

While early diagnosis offers a chance of cure, in the absence of effective screening, most
patients present with advanced stage disease associated with poor outcomes.3 Recently the
National Lung Screening Trial (NLST) demonstrated that annual screening using low-dose
chest high-resolution computed tomography (HRCT) reduces lung-cancer specific mortality
by 20% in high-risk individuals. Unfortunately, CT screening was positive in 39.1% of all
participants and 24.2% of all screening CT-scans. The false positive rate was 96.4% among
all positive screening CTs.4

Data from prior single-arm observational studies of lung cancer screening suggest that some
HRCT-screen-detected lung cancers may be more indolent than their clinically detected
counterparts. The majority of these lesions belong to the recently re-classified lung
adenocarcinoma spectrum.5–7 The radiological manifestations of these lesions range from
pure ground glass opacities (GGO) to sub-solid opacities (SSO) and solid pulmonary
nodules (SPN). Whereas GGO and SSO typically progress slowly as evidenced by
prolonged volume doubling times of frequently > 400 days, SPN of the adenocarcinoma
spectrum commonly grow faster.5

Histologically, GGO and SSO are usually characterized by various combinations of lepidic
growth (malignant growth along the intact alveolar structures), tissue invasion and
associated desmoplasia. Therefore, depending on the presence and size of invasive foci, they
are classified as adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA,
invasion ≤5 mm) or invasive adenocarcinoma (IA, invasion >5 mm). In contrast, enlarging
solid areas and SPN on HRCT typically represent IA.8 Whereas the clinical outcomes of
patients with surgically resected AIS and MIA are excellent (approaching 100% disease
specific survival at 10 years), patients with IA have a more guarded prognosis.9–11 This
spectrum of biological behavior highlights the value of a comprehensive histological
examination of these lesions to predict patient outcomes and forms the basis of the recent
histological re-classification of the lung adenocarcinoma spectrum. As alternative
therapeutic strategies to standard lobectomy (such as sublobar resections) are currently being
investigated, the non-invasive risk stratification of these nodules will facilitate
individualized patient management. By definition, this assessment requires surgical
resection of the lesion with histopathologic examination of the entire lesion, which cannot
be reliably performed on non-surgical tissue biopsies. Due to the widespread availability and
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utilization of HRCT in clinical practice and lung cancer screening programs, HRCT-based
risk stratification would be ideal for this task. Unfortunately, currently available HRCT
based strategies remain suboptimal.

CALIPER (Computer-Aided Lung Informatics for Pathology Evaluation and Rating) is a
HRCT-based image analysis tool developed at Mayo Clinic, Rochester. CALIPER has
demonstrated considerable potential for automatic, rapid, and reliable lung parenchymal
isolation and tissue classification in patients with diffuse lung diseases such as diffuse
interstitial pneumonias and emphysema.12 Based on these observations we hypothesized that
CALIPER could facilitate the non-invasive radiological-pathological correlation of
pulmonary nodules of the adenocarcinoma spectrum. Herein we report the development of
Computer Aided Nodule Assessment and Risk Yield (CANARY) - an adjunct tool for the
characterization and categorization of pulmonary nodules.

Materials and Methods
Participants

Between 2008–2010 patients with surgically resected lesions of the pulmonary
adenocarcinoma spectrum (search terms “bronchioloalveolar carcinoma (BAC)”,
“adenocarcinoma with BAC features” and “adenocarcinoma”) were identified from the
Mayo Clinic Epidemiology and Genetics of Lung Cancer Study database as a training set.
An independent validation set of 80 cases, 86 consecutively resected (from January 1st, 2006
to December 31, 2007) pulmonary nodules of adenocarcinoma spectrum meeting the same
inclusion criteria as the training set were identified from the Mayo Clinic Thoracic Surgery
Registry. All Patients without a signed research authorization were excluded.

Histology review
Two independent expert pulmonary pathologists (J.B. and E.S.Y.) blindly (without clinical
or radiological information) reviewed all available Hematoxylin & Eosin slides of the
enrolled cases. As the proportion of lepidic growth was found to be technically easier to
estimate than the proportion of invasion, they estimated the proportion of lepidic growth. In
addition the presence or absence of stromal, vascular and/or pleural invasion was assessed
and the diameter of the largest area of invasion including surrounding scar was measured.
All measurements were adjusted to the nearest millimeter.

Based on the largest focus of tissue invasion all cases were also categorized as absent
invasion (adenocarcinoma in situ, AIS), ≤ 5mm invasion (minimally invasive
adenocarcinoma, MIA) or > 5mm invasion (invasive adenocarcinoma, IA), as previously
described.11 When there was disagreement between invasive category (AIS, MIA, and IA),
the consensus invasive category was determined by the third pathologist (M.C.A.). The
consensus value for the proportion of lepidic growth was determined using the following
algorithm (all values in cases where lepidic growth was <90% were rounded up to the
nearest 10%):

For cases < 50% lepidic growth by either pathologist, the results were averaged if the
discrepancy was ≤ 20%. Otherwise, a third pathologist reviewed the case and the two closest
lepidic growth values were averaged. For cases between 50% and 90% lepidic growth the
results were averaged if the discrepancy was ≤ 10%. Otherwise a third pathologist reviewed
the case and the two closest lepidic growth values were averaged. Cases ≥90% lepidic
growth were categorized as 90%, 95%, 99, or 100% by two pathologists. Any discrepant
cases were reviewed by a third pathologist and categorized based on the two closest values.
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CT imaging
Chest CT scans were done on a variety of scanners. The scanners were all multi-detector
scanners ranging from 8 to 64 detectors. Preoperative (≤ 3 months) thin section images were
required in all cases. Collimation ranged from 1.25–2.5mm. Reconstruction algorithms
varied by scanner and included both smoothing and high-resolution algorithms based on the
vendor algorithms.

Radiology review
All preoperative CT-scans included in the training set were reviewed independently in a
blinded fashion by two thoracic radiologists, (AMS and TEH). Both readers subjectively
categorized each case as aggressive or indolent and measured the Tumor/Consolidation (C/
T) ratio as previously described.13

Lung parenchymal characterization and nodule extraction
Lung parenchymal isolation and classification—The lung parenchyma was isolated
by segmentation of pre-operative HRCT data using an adaptive density-based morphology
approach involving threshold optimizing, region growing and hole filling. Lung
parenchymal classification was based upon the previously identified exemplars representing
five radiological lung tissue types, normal, emphysema, reticular, ground glass and
honeycomb change. An exemplar represents the most central region of interest (ROI) within
a natural cluster of ROIs and constitutes the basic building block for the CALIPER based
lung parenchymal classification. These exemplars were derived based on the statistical
analysis of representative HRCT data of patients with various parenchymal lung diseases
that were selected from the Lung Tissue Research Consortium.12 Consequently, each lung
parenchymal voxel was assigned to one of these five primal lung parenchymal HRCT
patterns using CALIPER (See Supplemental Material, Supplemental Figures 1 and 2,
Supplemental Table 1).

Nodule Extraction—The location of all surgically resected nodules was known a priori.
Hence the nodule of interest was extracted with a supervised approach using constrained
seeded region growing. Since GGO, SSO and SPN nodules are composed of reticular and
ground glass patterns, the region growing was constrained to include only those voxels
connected to the seed voxel and classified as either reticular or ground glass.

Statistical analysis
Multinomial logistic regression was used to generate equations predictive of the degree of
histologic invasion (see results).

Due to the absence of a Gaussian distribution of the data for AIS and invasion, non-
parametric Spearman correlation was used to analyze the relationship between
histopathological and radiological invasion as determined by CANARY. The sensitivity,
specificity as well as the positive and negative predictive value for CANARY to distinguish
histopathologically “aggressive” from “indolent” lesions were calculated. A p value of <
0.05 was considered statistically significant. Cohen’s kappa was calculated as a statistical
measure of the interrater-agreement between the thoracic radiologists. The Prism software
package (GraphPad, San Diego, CA) was used for the statistical analysis.

The Mayo Foundation Institutional Review Board (IRB) approved the study.
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Results
Subjects

For the training set 139 of the 208 identified cases were excluded due to absence of an
appropriate pre-operative HRCT scan. Of the remaining 70 patients, 16 patients with lung
masses (>3 cm) were excluded. Fifty-four patients with surgically resected pulmonary
nodules of the adenocarcinoma spectrum were included in the analysis as the training set.

For the independent validation set, 86 nodules (80 patients) of consecutively resected
pulmonary nodules with similar inclusion criteria as the training set were included in the
analysis. The demographic characteristics, TNM stage, pathological nodule size and
consensus histopathology diagnoses for these patients are included in Table 1 and
Supplemental Figure 3.

Radiological nodule analysis and development of Computer Aided Nodule Assessment
and Risk Yield (CANARY)

Conventional characterization of lung nodules on HRCT consists of semi-quantitative
estimates of the solid and ground glass components by a trained radiologist. However, these
nodules are represented by a complex combination of numerous contiguous voxels with a
broad range of densities. Consequently, reducing this information to only two categories,
solid or ground glass, likely results in the loss of potentially useful diagnostic information.
Using CANARY we were able to successfully reduce this complex pattern of voxel densities
to a limited number of representative exemplars, hypothesized to represent the essential
building blocks of lung nodules of the adenocarcinoma spectrum. These exemplars were
generated using the following approach. An expert thoracic radiologist (B.J.B.) arbitrarily
selected 774 regions of interest (ROI; size= 9×9 voxels, Figure 2) spanning the radiological
spectrum of these lesions across the HRCT scans of 37 randomly selected cases (37 of the
54 included cases). Natural clusters among these ROIs were identified by comparing all
ROIs to one another using affinity propagation (an unsupervised clustering technique) and
pairwise similarity metrics.14 This unsupervised analysis yielded 9 unique natural clusters of
ROIs. The most central ROI within each cluster was chosen as the exemplar, or essential
building block, of the lesions (see Supplemental material). These exemplars were color-
coded as Violet (V), Indigo (I), Blue (B), Green (G), Yellow (Y), Orange (O), Red (R),
Cyan (C) and Pink (P). These color-coded exemplars form the basic building blocks for the
analysis and risk stratification of pulmonary nodules of the adenocarcinoma spectrum by
CANARY (Figure 2.)

To characterize an extracted lung nodule, each voxel within the nodule was compared to all
9 exemplars. The most similar exemplar was computed using the pairwise comparison of
histograms of the 9 × 9 voxel neighborhood of each voxel to the respective exemplars. The
color code of the most similar exemplar was assigned to each individual voxel of the
analyzed nodule. This approach resulted in a specific combination of exemplars (and color
pattern) for each nodule. This distribution of exemplars within the nodule (signature) was
visualized yielding concentric color-coded areas (Figure 3A). Hence, CANARY signatures
were established without clinical input, solely based on radiologic characteristics.

CANARY based assessment of the relative contributions of tissue invasion and lepidic
growth in pulmonary nodules of the adenocarcinoma spectrum

In order to investigate the face validity of the CANARY lung nodule signatures, we
attempted to determine whether specific signatures (combination of exemplars) would
correlate with distinct histologic characteristics. We elected to compare these radiologic
signatures to a histologic measure of invasion defined as 100% - lepidic growth %. Sixteen
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nodules spanning the entire spectrum of invasion (from 0% to 100% as assessed by
consensus pathology) were included in a multinomial logistic regression analysis to generate
equations to radiologically predict the proportion of histologic tissue invasion. These
predictive equations were then validated on the remaining 38 nodules. In addition the
excellent correlation between CANARY and consensus histopathology was confirmed in an
independent Validation Set. (Figure 4)

With the exception of two cases, correlation between CANARY and consensus
histopathology was excellent (Spearman R=0.87, 95% CI [0.78–0.92], p < 0.0001) among
the 38 cases of the training set and even better, Spearman R=0.89, [0.83–0.93], p < 0.0001
in the independent Validation Set of 86 nodules from 80 patients. (Figure 4)

The two discrepant cases were reviewed in detail. For one case CANARY determined the
lesion to be 100% invasive whereas consensus histologic assessment found no invasion. For
the second case CANARY measured 80% invasion compared to 20% by consensus
histology. These cases were found to be solid opacities radiologically while characterized by
minimal invasion on histopathologic evaluation, explaining the discordant results between
CANARY assessment and histopathology.

CANARY based non-invasive radiological risk stratification of pulmonary nodules of the
adenocarcinoma spectrum

Subsequently, Multi-Dimensional Scaling was used to understand the three-dimensional
distribution of the 9 adenocarcinoma exemplars.15 The space partitioned into three natural
exemplar clusters corresponding to the V-I-R-O, Y-P and B-G-C exemplars. The
quantitative distribution of the different exemplars and the rule-based CANARY decision
algorithm were used to categorize each of the pulmonary nodules. Based on the observation
that V-I-R-O and B-G-C groups correlated predominantly with invasion and lepidic growth,
respectively, a rule-based CANARY decision algorithm was developed to categorize every
nodule as AIS, MIA or IA. (Figures 3B and 5)

Patients with AIS and MIA share a similarly favorable post-surgical prognosis. This
contrasts with the worse postoperative survival of patients with IA. Consequently, we
classified all cases as either Group 1histology “aggressive” (n=32, training set and n=75,
validation set) (IA) or Group 2histology “indolent” (n=22, training set and n=11 validation
set) (AIS & MIA) based on predominance of the VIRO (aggressive) YP (moderately
aggressive) or the BGC (indolent) cluster. Sensitivity, specificity, positive predictive value
and negative predictive value for the detection of histopathologic “aggressive” lesions
utilizing the CANARY decision algorithm were calculated. The sensitivity was 95.4% [95%
CI 75.1–99.7%] and 98.7% [95% CI 91.8–99.9%], the specificity was 96.8% [95% CI 82–
99.8%] and 63.6% [95% CI 31.6–87.6%], the positive predictive value was 95.4% [95% CI
75.1–99.7%] and 94.9% [95% CI 86.7–98.3%], and the negative predictive value was
96.8% [95% CI 82–99.8%] and 87.5% [95% CI 46.7–99.3%] in the training and validation
set respectively (Figure 6)

None of the “indolent” cases identified by CANARY in the training or validation sets
presented with locally advanced of metastatic disease. In the validation set lung cancer
specific post-surgical survival of the “indolent” and “aggressive” CANARY groups
mirrored that of the AIS/MIA and IA groups identified by consensus histopathology. (Figure
7)
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Semi-quantitative review of the training set
Based on the case review by the treating physician, the assessment of the clinical radiologist
and patient preferences all 140 nodules included in the training and validation sets were
judged to be worrisome enough to be resected. All 54 preoperative CT-scans analyzed by
CANARY in the training set were reviewed independently in a blinded fashion by two
thoracic radiologists, (AMS and TEH). Both readers subjectively categorized each case as
aggressive (IA) or indolent (AIS or MIA). There was moderate agreement with a kappa of
0.49, [95% CI 0.21–0.78]. Based on consensus histology 36 cases were correctly categorized
by both radiologists. In 10 cases the readers disagreed and 8 cases were incorrectly classified
by both. Seven cases were classified as aggressive as opposed to indolent and 1 case as
indolent as opposed to aggressive. Representative cases misclassified by both radiologists
but correctly identified by CANARY are shown in Figure 8.

Utilizing a C/T ratio of ≤ 0.25 to classify the pulmonary nodules as either indolent (≤ 0.25)
or aggressive (> 0.25) we observed better agreement (substantial agreement), kappa 0.78,
[95% CI 0.60–0.96], between the two readers. In the training set a C/T ratio ≤ 0.25 by
consensus or average between the two readers detected invasion with a sensitivity of 91%
[95% CI 74–98%] and a specificity of 55% [95% CI 33–75%].

Discussion
The ever-increasing utilization of HRCT imaging of the lungs has led to a substantial
increase in the number of detected pulmonary nodules. In addition, the results of the recently
published NLST will almost certainly prompt the implementation of comprehensive HRCT
screening programs for high-risk individuals. This strategy has already been endorsed by
some of the major medical societies.4,16 Pulmonary nodules of the adenocarcinoma
spectrum represent the majority of HRCT detected lung cancers and the biological behavior
of a sub-group of these lesions appears to differ significantly from their clinically detected
counterparts, though arguably the data regarding the natural history of these lesions are
limited.5. Radiologically, these lesions often present as solitary or not uncommonly multiple
subsolid or pure groundglass opacities, for which the optimal management strategies are
suboptimally defined. Consequently, the indiscriminate implementation of a mass HRCT
screening program and routine utilization of standard surgical therapy (lobectomy) as
opposed to currently available alternatives such as limited resection or stereotactic body
radiation therapy would potentially result in excess mortality, morbidity and healthcare cost.
This paradigm shift in our understanding of lung cancer will require the urgent development
and implementation of new non-invasive strategies for the risk stratification and guidance of
the individualized management of HRCT detected pulmonary nodules.13

Unsupervised CANARY based analysis of HRCT data identified nine exemplars across the
spectrum of pulmonary nodules of the lung adenocarcinoma spectrum. These exemplars
segregate into 3 clusters, which appear to visually correspond to the predominant
histopathology of the lesion. Whereas the B-G-C cluster represents lepidic growth, the V-I-
R-O cluster correlates with tissue invasion. By providing additional HRCT descriptors
beyond well-established categories such as ground glass opacity and consolidation,
CANARY based analysis facilitates the individualized characterization of pulmonary
nodules of the lung adenocarcinoma spectrum. Based on the CANARY analysis and the
consensus histopathology of the lesion we successfully designed and optimized a decision
algorithm for the non-invasive risk stratification into “aggressive” (IA) and “indolent”
lesions (AIS and MIA). Through automated volumetric quantitation of the lesions,
CANARY provides the opportunity for the non-invasive preoperative characterization and
risk stratification of pulmonary nodules of the lung adenocarcinoma spectrum. If validated
in future prospective studies, CANARY could ultimately become a valuable tool to assist in
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the individualized management of these lesions (e.g. limited surgical resection VS. standard
of care).17

Other investigators have successfully demonstrated the value of comprehensive histological
assessment to predict the postsurgical disease specific survival (biologic behavior) of these
pulmonary nodules. In this context pure lepidic growth (AIS) and ≤ 5 mm invasion (MIA)
are associated with significantly better patient outcomes than lesions with > 5 mm invasion
(IA).10,18–23 These observations are reflected in the revised 2011 histological classification
of pulmonary adenocarcinomas.11 Unfortunately, comprehensive histological tumor tissue
analysis requires the surgical removal of the lesion and is not feasible for preoperative
treatment planning. In contrast, HRCT allows the comprehensive and non-invasive
characterization of pulmonary nodules. However the accurate and reproducible assessment
of pulmonary nodules, including solid and sub-solid opacities, remains challenging.
Difficulties include large interobserver variability in the assessment of simple variables such
as variation of size over time to estimates of volume-doubling times. Despite previous
reports demonstrating some correlation between lepidic growth and tissue invasion with
ground glass and solid opacities by HRCT, respectively, these strategies remain
suboptimal.19,24–28

Previously reported semi-quantitative strategies to characterize pulmonary nodule evaluated
characteristics of these lesions include diameter, area, modified diameter (consolidation to
ground glass opacity ratio) and the vanishing ratio (portion of the nodule that remains visible
from parenchyma to mediastinal windows).29–31 While initial studies suggested that the
vanishing ratio might be the most reliable parameter to characterize these lesions, a recently
published large prospective study of 545 patients demonstrated that the consolidation to
tumor ratio (C/T ratio) might represent a better predictor in a Japanese patient population.32

In this study a C/T ratio more than 0.25 predicted the presence of invasive adenocarcinomas
among nodules ≤ 2 cm with a sensitivity of 98.7% (78/79, 95% CI: 93.2–100%) but with a
specificity of 16.2% (34/210, 95% CI: 11.5–21.9%).

In contrast to automated computer aided strategies such as CANARY, intra- and
interobserver variability remains a significant issue for the subjective classification and
operator driven semi-quantitative measurements of theses lesions. This was confirmed in our
study, as we observed only moderate agreement between two expert thoracic radiologists for
the subjective classification of the cases of our training set into “aggressive” or “indolent”
cases. Despite better agreement between the two expert readers, the diagnostic performance
of semi-quantitative tumor measurements (C/T ratio ≤ 0.25) was inferior to CANARY in our
training set. Most importantly the semi-quantitative assessment missed two additional
invasive cases.

Few previous reports have addressed the value of automated computer-aided imaging in the
characterization and categorization of these pulmonary nodules. In a pilot study, histogram
peaks of 2-dimensional CT images were found to be moderately discriminative between
atypical adenomatous hyperplasia and bronchioloalveolar carcinoma, but with significant
overlap.33 Volumetric analysis using density histograms was more discriminative and
seemed to categorize atypical adenomatous hyperplasia, bronchioloalveolar carcinoma and
invasive adenocarcinoma. However, the study was limited by very small sample size and a
lack of validation.34

Our study has several limitations. It is a pilot study and as such, the CANARY methodology
will have to be validated in further independent retrospective and prospective patient
cohorts. Prospective validation is currently ongoing. Another substantial limitation is the
absence of true gold standard test for the risk assessment of pulmonary nodules of the lung
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adenocarcinoma spectrum. The value of radiological-pathological correlation is limited for
several important reasons. First, histology represents a surrogate marker for patient
outcomes and consequently CANARY based nodule assessment ultimately will need to be
correlated to meaningful clinical outcome measures such as metastatic lymph node
involvement and progression free survival. This correlation is currently ongoing in our
validation study. Furthermore, in the absence of a standardized approach for semi-
quantitative assessment for histopathological evaluation, measurements of lepidic growth
and invasion size are subject to intra- and interobserver variability. In that regard, it is
important to consider that the comprehensive (volumetric) analysis of the histological
samples is limited by the thickness of the tissue blocks (5–10 mm) and the number of slides/
tissue block evaluated (1×10µm section/block), whereas CANARY allows a full volumetric
analysis of the lesion. While this may limit the interpretation of our current results
(radiological-pathological correlation), we also recognize that this may represent a strength
of CANARY when correlated to patient-centered outcome measures. In addition, we
acknowledge that the use of different scanners and acquisition protocols for the CT scans,
due to the retrospective nature of our study, may have influenced our results. We are
currently in the process of investigating the differences in the CANARY signatures due to
different CT scanners and determine the optimal reconstruction algorithm. Another
limitation of our study is that the natural history of screen-detected subsolid opacities of the
adenocarcinoma spectrum remains unknown. However, the post-surgical biological behavior
of these lesions appears to correlate well with the histologic predictors of outcomes that
correlated to CANARY.

Whereas this pilot study is restricted to cases of histologically confirmed adenocarcinomas,
we hope to expand the use of CANARY to classify screening detected pulmonary nodules.
We are currently investigating whether a CANARY based approach can classify screening
detected pulmonary nodules into benign and malignant lesions and identify clinically
“aggressive” lesions of the adenocarcinoma spectrum using the NLST dataset.

In conclusion, after further validation, the CANARY based non-invasive risk stratification
of pulmonary nodules of the adenocarcinoma spectrum using a preoperative HRCT could be
applied to guide the individualized management of these lesions and may offer valuable
insight into the biology of this type of lung cancer. Furthermore, future use of CANARY for
the assessment of serial imaging studies to highlight both qualitative and quantitative
longitudinal changes across serial imaging studies might improve its diagnostic yield beyond
that of the current single time point evaluation.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
CANARY workflow outlining the procedural steps involved in categorizing the HRCT
based nodules into one of AIS, MIA and IA. The first step involves the automated lung
parenchymal isolation and classification using CALIPER. Subsequently, each nodule is
identified by the operator using seed placement. This is followed the automated volumetric
extraction of the nodule and the characterization of each voxel within a given nodule based
on the 9 exemplars. This distribution of the exemplars within an individual lesion is than
used to categorize each nodule.
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Figure 2.
Natural clustering of HRCT regions of interest (ROI) of lung nodules. Panel A shows
representative ROIs selected from different nodules in the training set. Each of the 774 ROI
were compared with each other to derive the pairwise 774×774 similarity matrix and color
coded (Panel B) such that the darkness is proportional to the similarity. Panel C shows the
similarity matrix in the Affinity Propagation based clustered space wherein the arbitrarily
color-coded diagonal sub-blocks show the automatically computed natural clusters.
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Figure 3.
Representative signatures for invasive adenocarcinoma, minimally invasive adenocarcinoma
and adenocarcinoma in situ (Panel A). Representative CT images with the superimposed
distribution of the 9 adenocarcinoma exemplars are show for IA, MIA and AIS. Panel B
shows the three-dimensional distribution of the 9 adenocarcinoma exemplars using Multi-
Dimensional Scaling. It demonstrates the secondary clustering of the exemplars, violet-
indigo-red-orange (V-I-R-O) representing invasion, yellow-pink (Y-P) and blue-green-cyan
(B-G-C) representing lepidic growth.
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Figure 4. Radiological-histopathologic correlation of tissue invasion between CANARY based
nodule assessment and consensus histopathology
Examples of representative CT images with superimposed CANARY “signatures”
(distinctive combinations of exemplars within one nodule) associated with nodules with
varying degrees of histological invasion (%, 100 – consensus histopathology lepidic growth
%) (Panel A.).
Correlation between CANARY and consensus histopathology for pulmonary nodules of the
adenocarcinoma spectrum, Training Set, excluding 16 cases used to develop CANARY
(n=38), Panel B. and Validation Set (n=86), Panel C. Spearman’s correlation (p<0.0001),
line represents linear regression (Panels B. and C.).
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Figure 5.
Rule-based CANARY decision algorithm based on the distribution of exemplar clusters (%):
violet-red-orange (VIRO), yellow-pink (YP) and blue-green-cyan (BGC) within each lesion.
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Figure 6.
Two by two contingency table of CANARY’s diagnostic performance (rows) to predict
consensus histopathological tissue invasion (columns). Panel A. Training Set (n=54) and
Panel B. Validation Set (n=86)
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Figure 7.
Lung cancer specific post-operative survival. Panel A. Consensus histopathology and Panel
B. CANARY.
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Figure 8.
Representative nodules with discrepant radiologic and histologic classification. Nodules in
panels A and B were categorized differently by the expert radiologists (IA versus MIA) but
correctly identified by CANARY (histologic consensus MIA).
Histology confirmed MIA nodules in (C) and (D) were categorized by both radiologists as
IA. The histologically confirmed IA nodule in (E) was categorized by both the radiologists
as MIA. The rule-based CANARY categorization of these nodules was the same as
histology consensus.
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Table 1

Patient demographics, tumor stage, nodule size and histology

Demographics 54 patients
(n = 54 nodules)

Training Set

80 patients
(n = 86 nodules)
Validation Set

Age at diagnosis
years: median (range)

68 (40–89) 68 (35–91)

Gender n (%)

Women 35 (65) 48 (60)

Smoking n (%)

Never 17 (31) 9 (11)

TNM Stage n (%)

IA 42 (76) 42 (52)

IB 1 (2) 12 (15)

IIA 0 4 (5)

IIB 8 (16) 7 (9)

IIIA 1 (2) 8 (10)

IV 2 (4) 7 (9)

Nodule Size mm ± SD 16.7 ± 0.69 17.2 ± 0.61

Histopathological
Classification n (%)

AIS 2 (6) 1 (1)

MIA 20 (36) 10 (12)

IA 32 (58) 75 (87)
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