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Abstract

Triptolide, isolated from the herb Tripterygium wilfordii, has been shown to potently induce
apoptosis in various malignant cells by inhibiting RNA synthesis and NF-xB activity. Previously,
we showed that triptolide promotes apoptosis in acute myeloid leukemia (AML) cells via the
mitochondria-mediated pathway, in part by decreasing levels of the anti-apoptotic proteins XIAP
and Mcl-1. MRx102 is a triptolide derivative currently in preclinical development. Here, we show
that MRx102 potently promoted apoptosis in AML cell lines, with ECsq values of 14.5 £ 0.6 nM
and 37.0 £ 0.9 nM at 48 hours for OCI-AML3 and MV4-11 cells, respectively. MRx102, at low
nanomolar concentrations, also induced apoptosis in bulk, CD34* progenitor, and more
importantly CD34*CD38~ stem/progenitor cells from AML patients, even when they were
protected by co-culture with bone marrow mesenchymal stromal cells. MRx102 decreased XIAP
and Mcl-1 protein levels and inhibited RNA synthesis in OCI-AMLS3 cells. /n vivo, MRx102
greatly decreased leukemia burden and increased survival time in NOD/SCID mice harboring Ba/
F3-1TD cells. Collectively, we demonstrated that MRx102 has potent antileukemic activity both /n
vitroand in vivo, has the potential to eliminate AML stem/progenitor cells and overcome
microenvironmental protection of leukemic cells, and warrants clinical investigation.
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Introduction

Triptolide, isolated from a Chinese herb Tripterygium wilfordii, has been used in Chinese
medicine for centuries to treat inflammatory and autoimmune diseases. In recent years,
triptolide has attracted attention for its ability to inhibit growth and promote death of tumor
cells in vitroand in vivo(1-5) and to enhance the antitumor effects of various
chemotherapeutic agents.(3, 6-10) Triptolide exerts potent anti-tumor activity through
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multiple mechanisms. Its ability to inhibit NF-xB(11, 12) and HSP70;(13) decrease levels of
the anti-apoptotic proteins XIAP, Mcl-1, and Bcr-Abl;(3, 4, 14) induce expression of p53
and death receptor DR5;(9) and block the SDF-1/CXCR4 axis(15) are just a few examples.
Most, if not all, of these functions are probably attributable to the ability of triptolide to
target RNA polymerase, thereby decreasing the levels of short-lived anti-apoptotic proteins,
(16-18) and its ability to inhibit tumor cellular proteasome activity, as recently reported.(19)

Antitumor activity of triptolide was first identified in leukemia.(20) We previously showed
that triptolide decreased mRNA and protein levels of XIAP and Mcl-1 in myeloid leukemia
cells; decreased the level of Ber-Abl in chronic myeloid leukemia (CML) cells; induced
apoptosis in both acute myeloid leukemia (AML) and CML cells; sensitized AML cells to
TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5; and
importantly, induced apoptosis independent of cellular responses to imatinib in blast crisis
CML cells, including quiescent CD34™" primitive progenitor cells. (3, 4, 9) To optimize the
activity of triptolide for clinical applications, new triptolide derivatives with improved
pharmacokinetics and bioavailability have been designed and synthesized. Among them,
PG490-88Na (F60008)(21;22) has entered clinical development and has been shown to have
potent antitumor activity. Importantly, complete remissions were reported in a phase 1 study
in patients with refractory or relapsing acute leukemias.(23

MRx102 is a potent triptolide derivative currently under development by MyeloRx. To
determine the therapeutic potential of MRx102 in leukemia, we examined the effects of
MRx102 on AML cells, including primary human AML cells and AML stem/progenitor
cells and NOD/SCID mice injected with Ba/F3-1TD cells. Here, we report that MRx102
decreased XIAP and Mcl-1 protein levels, inhibited RNA synthesis in OCI-AML3 cells, and
had potent activity not only against AML cell lines and bulk AML blasts but also against
AML progenitor/stem cells, even when they were protected by co-culture with bone marrow
(BM)-derived mesenchymal stromal cells (MSCs) in vitroand in a murine model of AML.

Materials and Methods

Cells, cell culture, and treatment of cells

Human AML cell lines OCI-AML3 was kindly provided by Dr. M. Minden (Ontario Cancer
Institute, Ontario, Canada) and MV4-11 was purchased from the American Type Culture
Collection (Manassas, VA). Ba/F3-I1TD cells, a murine pro-B lymphocyte line stably
transfected with expression vector encoding human FLT3 with an internal tandem
duplication (ITD) mutation, were generated by Dr. D. Small’s laboratory (Johns Hopkins
University School of Medicine, Baltimore, MD). Ba/F3-ITD-GFP/Luc cells, which stably
express Renillaluciferase and green fluorescent protein (GFP), were generated by infecting
Ba/F3-ITD cells with a lentivirus-based construct as previously described.(24) All cell lines
were cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf
serum, 2 mM L-glutamine, 100 U/mL penicillin, and 100 pg/mL streptomycin.

Fresh BM or peripheral blood (PB) samples from AML patients with high blast counts and
BM samples from normal subjects were acquired after written informed consent had been
obtained according to the Declaration of Helsinki, and the study protocol was approved by
the MD Anderson Institutional Review Board. Mononuclear cells were purified by Ficoll-
Hypaque (Sigma, St. Louis, MO) density-gradient centrifugation and cultured in the same
medium as for the cell lines. The clinical characteristics of these samples are summarized in
Table 1.

OCI-AML3 and MV4-11 cells (0.4 x108/mL), Ba/F3-1TD-GFP/Luc cells (0.1 x 10%/mL), or
mononuclear cells from AML and normal BM samples (0.5 x 10%/mL) were treated with
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various concentrations of MRx102 for up to 72 hours. An appropriate amount of dimethyl
sulfoxide (DMSO) was used as the control. For treatment of AML cells co-cultured with
MSCs, early-passage MSCs isolated from human BM as previously described(25) were pre-
plated at 5 x 103/cm? for 24-96 hours; AML cells were then added and treated.

Cell viability assay

Viable cell counts were determined by flow cytometry using CountBright absolute counting
beads (Invitrogen, Carlsbad, CA) on annexin V-/7-amino-actinomycin D (7-AAD)negative
cell events. Apoptosis was assessed by flow cytometry of phosphatidy! serine(26)
externalization with annexin-V-Cy5 (BD Biosciences, San Diego, CA) using a FACSArray
Bioanalyzer (BD Biosciences). Membrane integrity was simultaneously assessed by 7-AAD
exclusion in the annexin V-stained cells. For AML patient samples, apoptosis was
determined in bulk as well as in primitive and stem/progenitor cell compartments after cells
were stained with anti-CD34 and anti-CD38 antibodies. For AML cells co-cultured with
MSCs, apoptosis induction in various cell compartments was analyzed separately for
detached cells (floaters) and attached (adherent) cells. Floaters were obtained by combining
all cells in suspension and cells collected after washing the wells twice with PBS. Adherent
cells were obtained by trypsinization. Leukemic cells were distinguished from MSCs by
gating on CD45" populations. Floaters or adherent cells were stained with CD45-APC-H7,
CD34-PE, CD38-PE-Cy7, and annexin-V-Cy5 (BD Biosciences). Apoptosis was determined
by flow cytometry of annexin-V-Cy5 positivity in bulk (CD45"), CD45*CD34",
CD45*CD34*CD38*, and CD45*CD34*CD38" cells. To eliminate the variation from
spontaneous apoptosis in AML patient samples and normal controls, the apoptosis measured
in these samples was expressed as specific apoptosis:

% of apoptosis in treated cells — % of apoptosis in untreated cells

- - X 100%
% of viable cells in untreated cells

Western blot analysis

Mcl-1 and XIAP protein levels were determined by western blot analysis, as described
previously.(27, 28) XIAP antibody was purchased from BD-Transduction Laboratories (BD
Biosciences) and Mcl-1 antibody from Cell Signaling Technology (Danvers, MA). Signals
were detected using the Odyssey Infrared Imaging System (LI-COR Biosciences, Lincoln,
NE), and quantitated using Odyssey software version 3.0 (LI-COR Biosciences). p-Actin
was used as a loading control.

Measurement of RNA synthesis

RNA synthesis was measured by quantitating incorporation of [3H]uridine into the
perchloric acid-insoluble materials. Briefly, MRx102-treated OCI-AML3 cells were labeled
with [3H]uridine (10 pCi/mL) for 1 hour, washed twice with 10 mL of ice-cold PBS, and
then lysed while vortexing with 0.5 mL of H,O and 0.5 mL of 0.8 N perchloric acid. The
pellet was collected by centrifugation, washed once with 1 mL of 0.4 N perchloric acid, and
then dissolved in 1 mL of H,O with 50 uL of 10 N potassium hydroxide overnight. The
supernatant was then transferred to scintillation vials, and radioactivity was quantitated.

Ba/F3-ITD-GFP/Luc murine model

Ba/F3-1TD-GFP/Luc cells (0.3 x 108) were injected into the tail vein of 7-week-old female
NOD/SCID mice (The Jackson Laboratory, Bar Harbor, ME). Starting on day 3, mice (11/
group) were treated with vehicle control (PBS/DMSO), 1.5 mg of MRx102/kg/day, or 3.0

mg of MRx102/kg/day for 5 weeks intraperitoneally. The percentage of circulating Ba/F3-
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ITD-GFP/Luc cells was determined by flow cytometry of GFP in blood samples. Tumor
infiltration was monitored by noninvasive bioluminescence imaging using the IVIS-200 /n
vivo imaging system (Xenogen, Hopkinton, MA) after mice were injected with the
luciferase substrate coelenterazine (Biotium, Hayward, CA). The extent of leukemic
infiltration of various organs was assessed by hematoxylin and eosin (H-&-E) or anti-GFP
staining of selected mice from each group. Mouse survival time was recorded.

Statistical analysis

Results

Experiments for cell lines were conducted 3 times, and results are expressed as mean *
standard deviation. For AML patient samples, results are expressed as mean + standard
error. I1Csg, the dose at which MRx102 inhibits cell growth by 50%, and ECs, the dose at
which MRx102 induces apoptosis in 50% of cells were calculated using CalcuSyn software
(Biosoft, Ferguson, MO). Statistical differences between groups or cell populations at each
dose level were determined using paired Student’s t-test where significant differences were
indicated (*) when p<0.05. Data of mouse survival time were analyzed using long-rank test.

MRx102 potently induces apoptosis in AML cell lines

To determine the efficacy of MRx102 /n vitroin AML cells, we first treated AML cell lines
with MRx102. We found that MRx102 had a potent antileukemic effect. MRx102, at low
nanomolar concentrations, induced pronounced apoptosis, decreased viability, and inhibited
growth of OCI-AML3 and MV4-11 cells (Figure 1). At 24 hours, EC5g = 108.0 £ 1.0 nM
and 1Cgp = 92.4 + 10.5 nM for MV4-11 cells and EC59 = 101.3 £ 3.5nM and IC55 = 76.1 +
6.5 nM for OCI-AML3 cells; at 48 hours, EC5p = 37.0 £ 0.9 nM and IC59 = 16.9 £ 1.1 nM
for MV4-11 cells and EC5¢ = 14.5 + 0.6 nM and ICgq = 6.9 £ 0.3 nM for OCI-AMLS3 cells,
respectively.

MRx102 decreases XIAP and Mcl-1 protein levels and inhibits RNA synthesis in OCI-AML3

cells

We showed previously that triptolide promotes apoptosis in leukemic cells in part by
decreasing expression of the short-lived anti-apoptotic proteins XIAP and Mcl-1.(3, 4)
Subsequently, triptolide was reported to suppress RNA polymerase Il-mediated RNA
synthesis.(16-18) To determine whether the triptolide derivative MRx102 exerts its activity
through similar mechanisms, we treated OCI-AML3 cells with MRx102 and examined
XIAP and Mcl-1 protein levels at 24 hours, by western blot analysis, and RNA synthesis at 4
hours and 24 hours, by quantitating uridine incorporation into these cells. We found that,
like triptolide, MRx102 greatly decreased protein levels of XIAP and Mcl-1 at 24 hours but
had minimal effect on the long-lived Bcl-2 protein at 24 hours (Figure 2A). At 4 hours,
RNA synthesis was inhibited by approximately 50% by 200 nM MRx102, whereas at 24
hours, RNA synthesis was completed inhibited even by 50 nM MRx102 (Figure 2B).

MRx102 induces apoptosis in leukemic cells, including leukemic stem/progenitor cells,
from patients with AML

We next determined the efficacy of MRx102 /n vitroin primary samples from patients with
AML. Mononuclear cells from AML patient samples (n = 12; Table 1) and normal BM
samples (n = 3) were treated with MRx102, and apoptosis was determined at 24 hours. We
found that MRx102, at low nanomolar concentrations, effectively induced apoptosis in all
the AML samples treated, regardless of the cytogenetics or clinical responses to various
therapies of the patients at the time of sampling (Figure 3A, EDgg = 132.1 £ 7.5 nM; Table
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1). MRx102 also promoted apoptosis in normal BM cells, but with less efficacy (Figure 3A,
EDsgp = 209.9 + 56.8 nM; P=.003 at 300 nM MRx102).

To examine the ability of MRx102 to eliminate AML stem/progenitor cells, which in

general are more resistant than bulk AML blasts to chemotherapy, we treated cells from
AML patients with MRx102 and determined the viabilities of primitive CD34* and
CD34*CD38* AML cells and CD34*CD38~ AML progenitor/stem cells at 24 hours. Among
12 samples treated, 9 had sufficient cells for apoptosis analysis in all cell compartments
(Table 1). We found that MRx102 potently promoted apoptosis in CD34*, CD34*CD38",
and CD34*CD38~ AML cells, although CD34*CD38~ cells were less sensitive than CD34*
cells at 150 nM (P =.033) and 300 nM (P =.015) (Figure 3B).

MRx102 effectively induces apoptosis in AML cells even when protected by the BM
microenvironment

Further, to examine the efficacy of MRx102 in eradicating AML cells protected by the BM
microenvironment, we co-cultured AML cells obtained from patients with BM-derived
MSCs, treated them with MRx102, and determined apoptosis in cells detached (floaters)
from and attached (adherent) to MSCs in CD34*, CD34*CD38*, and CD347CD38" cells.
We found that MRx102 efficiently promoted apoptosis in AML cells even when they were
co-cultured with MSCs, in all cell compartments for both floaters and adherent cells (Figure
4). Note that for adherent CD34*CD38" cells under co-culturing conditions, apoptosis was
determined only in 3 patient samples because of low numbers of cells; 7 samples were
analyzed for all the other conditions.

MRx102 significantly prolongs the life of NOD/SCID mice injected with Ba/F3-ITD-GFP/Luc

cells

To test the antileukemic activity of MRx102 /n vivoin a Ba/F3-1TD-GFP/Luc NOD/SCID
murine model, we first treated Ba/F3-1TD-GFP/Luc cells /n vitro with MRx102 and found
that MRx102 induced apoptosis and suppressed growth in these cells (Figure 5A). We then
injected Ba/F3-ITD-GFP/Luc cells intravenously into NOD/SCID mice and started
treatment on day 3 after the injection with 1.5 mg or 3.0 mg of MRx102/kg/day for 5 weeks.
Antileukemic activity of MRx102 was monitored by bioluminescence imaging of mice, by
recording mouse survival time, and by H-&-E and GFP staining for organ infiltration by
leukemic cells.

No significant differences were observed in luciferase intensity between control and
MRx102-treated groups at day 7 and day 14. At day 33, lower luciferase activity was
detected in both MRx102 treatment groups compared with the untreated control group,
especially in the group treated with 3.0 mg of MRx102/kg/day (Figure 5B), suggesting that
treatment with MRx102 decreased the leukemic burden in Ba/F3-1TD NOD/SCID mice. We
found that MRx102, administered at 1.5 mg/kg/day had no significant effect on the survival
of Ba/F3-ITD NOD/SCID mice (P=.095, median survival time 35 days vs. 36 days for
control, Figure C), suggesting that at this dose, although MRx102 decreased the leukemic
burden, it was not effective in prolonging survival of these mice. Mice treated with MRx102
at 3.0 mg/kg/day had significantly longer survival time (median survival time 43 days) than
control mice (£=.010) or mice treated with MRx102 at 1.5 mg/kg/day (P = .027), indicating
that MRx102 has antileukemic activity /n vivo.

H-&-E and GFP staining of various tissues showed that BM, spleens, livers, and lungs of
control mice were infiltrated with leukemic cells, whereas the amounts of leukemic cells in
these organs were lower in mice treated with MRx102 at 1.5 mg/kg/day and lowest in mice
treated with MRx102 at 3.0 mg/kg/day (Figure 5D). However, we observed no decrease, but
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rather an increase in the number of circulating Ba/F3-1TD cells at day 35 in mice treated
with MRx102 at 3.0 mg/kg/day compared with mice treated with MRx102 at 1.5 mg/kg/day
and untreated control mice, as determined by flow cytometry of GFP in blood (h = 3, results
not shown), probably because in the group treated with MRx102 at 1.5 mg/kg/day and in
untreated control mice, only animals with lower numbers of circulating leukemic cells
survived until day 35. No apparent treatment related toxicities such as weight loss or
diarrhea were observed. After prolonged treatment with MRx102 at 3.0 mg/kg/day, mice
showed signs of physical weakness that improved on stopping the treatment.

Discussion

Triptolide has been shown to be a potent antitumor agent, and various triptolide derivatives
have been developed or are being developed to optimize the activity and/or pharmacokinetic
properties of triptolide for clinical applications. In this study, we showed that the triptolide
derivative MRx102 is effective against AML cells /n vitro and also /n vivoin a murine
model of AML. MRx102 promoted apoptosis not only in bulk AML cells but also in AML
stem/progenitor cells even when they were protected by the BM microenvironment. In
addition, MRx102 greatly decreased the leukemic burden and increased the survival time of
NOD/SCID mice injected with Ba/F3-1TD cells.

MRx102 is believed to exert its biological activity after being converted to triptolide. Our
findings that MRx102 decreases XIAP and Mcl-1 levels and inhibits RNA synthesis in AML
cells, as triptodide does, support the notion that MRx102 acts through mechanisms similar to
those of triptolide.

Despite a high response rate to therapy, most AML patients relapse, largely because AML
stem/progenitor cells are not targeted effectively by available therapeutic regimens and are
responsible for drug resistance and relapse. Importantly, we found that MRx102 induced
apoptosis in all compartments of AML cells, with similar efficacies in bulk, CD34*CD38",
and CD34*CD38" cells. This result is not surprising given that as in the primitive CD34*
AML cells, NF-xB is constitutively activated in AML stem cells(29) and that triptolide is
known to inhibit NF-xB. We previously showed that triptolide is effective in killing not only
proliferating but also quiescent CML progenitor cells, independent of cellular response to
imatinib.(4) The ability of MRx102 to eliminate AML stem/progenitor cells will likely
enable improvement of the current treatment regimens for AML. Furthermore, increasing
evidence demonstrates the critical role of the BM microenvironment in supporting the
survival of leukemic cells; protecting AML cells, especially AML stem cells, from
therapeutic agents; and maintaining the self-renewal of AML stem cells. Here, we showed
that MRx102 was effective against AML stem/progenitor cells even when leukemic cells
were co-cultured with BM-derived MSCs, suggesting the potential of MRx102 to overcome
microenvironmental protection.

We found that MRx102 also killed normal BM cells, but with lower potency. A careful
MRx102 dosing schedule is needed to minimize toxicity and maximize the antileukemic
effect. Previous toxicology tests of MRx102 in rats with a 7-day subacute injections up to
the top dose of 1.5 mg/kg and an acute single dose up to the top dose of 3.0 mg/kg showed
no deaths and no adverse signs and the histopathology report showed no findings related to
administration of MRx102.(30) The no-observable-adverse-effects level is =21.5 mg/kg/day
for MRx102, whereas it is <0.1 mg/kg/day for other related compounds.(30) After prolonged
treatment of Ba/F3-ITD NOD/SCID mice with MRx102 at 3.0 mg/kg/day, we did observe
signs of physical weakness; these improved on stopping the treatment, suggesting that
treatment-related toxicity that can be alleviated with proper scheduling. The fact that
MRx102 markedly lowered the leukemic burden and prolonged the life of Ba/F3-1TD NOD/
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SCID mice suggests that MRx102 has /n vivo antileukemic activity, supported by our
previous data in a nude mouse subcutaneous xenograft model.(30)

Collectively, our results showed that MRx102, a triptolide derivative, has potent
antileukemic activity /7 vitro and in a murine model of AML. MRx102 is a potential
therapeutic agent in AML and warrants further investigation.
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Figure 1.

MRx102 induces apoptosis, decreases viability, and inhibits growth in AML cell lines. OCI-
AML3 and MV4-11 cells were treated with MRx102, and cell viability and apoptosis were
determined at 24 hours and 48 hours. M/mL, million cells/mL.
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Figure 2.

MRx102 decreases XIAP and Mcl-1 protein levels and inhibits RNA synthesis. OCI-AML3
cells were treated with MRx102 and triptolide. (A) XIAP and Mcl-1 protein levels were
determined at 24 hours by western blot analysis, and (B) RNA synthesis was assessed at 4
hours and 24 hours by quantitating uridine incorporation.
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MRx102 induces apoptosis in leukemic cells, including leukemic stem/progenitor cells from
patients with AML. BM or PB samples obtained from patients with AML and BM samples
from normal subjects (n=3) were treated with MRx102 for 24 hours and apoptosis was
determined in (A) bulk AML (n = 12) and normal BM cells and (B) CD34*, CD34*CD38~

and CD34*CD38* AML (n = 9) cells. *P < .05.
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Figure 4.

MRx102 induces apoptosis in leukemic cells, including leukemic stem/progenitor cells,
from patients with AML protected by the BM microenvironment. BM or PB samples
obtained from patients with AML (n = 7) were treated with MRx102 for 24 hours alone or
co-cultured with BM-derived MSCs. Apoptosis of floaters and adherent cells was
determined in CD34*, CD34*CD38~, and CD34*CD38* cells.
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Figure 5.

MRx102 shows antileukemic activity /n vivoin a Ba/F3-ITD NOD/SCID mouse model. (A)
MRx102 promotes apoptosis and suppresses growth of Ba/F3-1TD cells /n vitro. In NOD/
SCID mice harboring Ba/F3-1TD cells, MRx102 treatment (B) decreased luciferase activity,
(C) increased survival time of mice, and (D) lowered the leukemic burden in various organs.
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