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Abstract

Background: Inferring the structure of gene regulatory networks (GRN) from a collection of gene expression data has
many potential applications, from the elucidation of complex biological processes to the identification of potential
drug targets. It is however a notoriously difficult problem, for which the many existing methods reach limited accuracy.

Results: In this paper, we formulate GRN inference as a sparse regression problem and investigate the performance
of a popular feature selection method, least angle regression (LARS) combined with stability selection, for that
purpose. We introduce a novel, robust and accurate scoring technique for stability selection, which improves the
performance of feature selection with LARS. The resulting method, which we call TIGRESS (for Trustful Inference of
Gene REgulation with Stability Selection), was ranked among the top GRN inference methods in the DREAM5 gene
network inference challenge. In particular, TIGRESS was evaluated to be the best linear regression-based method in
the challenge. We investigate in depth the influence of the various parameters of the method, and show that a fine
parameter tuning can lead to significant improvements and state-of-the-art performance for GRN inference, in both
directed and undirected settings.

Conclusions: TIGRESS reaches state-of-the-art performance on benchmark data, including both in silico and in vivo
(E. coli and S. cerevisiae) networks. This study confirms the potential of feature selection techniques for GRN inference.
Code and data are available on http://cbio.ensmp.fr/tigress. Moreover, TIGRESS can be run online through the
GenePattern platform (GP-DREAM, http://dream.broadinstitute.org).
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Background
In order to meet their needs and adapt to changing
environments, cells have developed various mechanisms
to regulate the production of the thousands of proteins
they can synthesize. Among them, the regulation of gene
expression by transcription factors (TF) is preponder-
ant: by binding to the promoter regions of their target
genes (TG), TF can activate or inhibit their expression.
Deciphering and understanding TF-TG interactions has
many potential far-reaching applications in biology and
medicine, ranging from the in silico modeling and simula-
tion of the gene regulatory network (GRN) to the identifi-
cation of new potential drug targets. However, while many
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TF-TG interactions have been experimentally character-
ized in model organisms, the systematic experimental
characterization of the full GRN remains a daunting task
due to the large number of potential regulations.

The development of high-throughput methods, in par-
ticular DNA microarrays, to monitor gene expression on
a genome-wide scale has promoted new strategies to elu-
cidate GRN. By systematically assessing how gene expres-
sion varies in different experimental conditions, one can
try to reverse engineer the TF-TG interactions responsible
for the observed variations. Not surprisingly, many dif-
ferent approaches have been proposed in the last decade
to solve this GRN reverse engineering problem from col-
lections of gene expression data. When expression data
are collected over time, for example, several methods have
been proposed to construct dynamic models where TF-
TG interactions dictate how the expression level of a TG
at a given time allows to predict the expression levels
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of its TG in subsequent times [1-11]. When expression
data are not limited to time series, many methods attempt
to capture statistical association between the expres-
sion levels of TG and candidate TF using correlation or
information-theoretic measures such as mutual informa-
tion [12-14] or take explicit advantage of perturbations
in the experiments such as gene knock-downs [15]. The
difficulty to separate direct from indirect regulations has
been addressed with the formalism of Bayesian networks
[16-19], or by formulating the GRN inference problem as a
feature selection problem [20]. Mutual information-based
ARACNE [13] was also designed to eliminate redun-
dant edges. We refer to [21,22] for detailed reviews and
comparisons of existing methods.

Recent benchmarks and challenges have highlighted the
good performance of methods which formalize the GRN
inference problem as a regression and feature selection
problem, namely, identifying a small set of TF whose
expression levels are sufficient to predict the expression
level of each TG of interest. The general idea that edges
in a directed graph can be discovered node by node
was addressed in, e.g.,[23]. Regarding the GRN inference
application, this idea underlies the Bayesian network for-
malism [16], but is more directly addressed by GENIE3
[20], a method which uses random forests to identify
TF whose expression levels are predictive for the expres-
sion level of each TG, and which is now recognized as
state-of-the-art on several benchmarks [20,22]. Feature
selection with random forests remains however poorly
understood theoretically, and one may wonder how other
well-established statistical and machine learning tech-
niques for feature selection would behave to solve the
GRN inference problem.

In this paper, we investigate the performance of a
popular feature selection method, least angle regression
(LARS) [24] combined with stability selection [25,26], for
GRN inference. LARS is a computationally efficient pro-
cedure for multivariate feature selection, closely related to
Lasso regression [27]. Stability selection consists in run-
ning LARS or Lasso many times, resampling the samples
and the variables at each run, and in computing the fre-
quency with which each variable was selected across the
runs. We introduce a novel, robust and accurate scoring
technique for stability selection, which improves the per-
formance of feature selection with LARS. The resulting
method, which we call TIGRESS (for Trustful Inference
of Gene REgulation with Stability Selection), was ranked
among the top GRN inference methods in the DREAM5
gene reconstruction challenge and was evaluated to be
the best linear regression- based method [28]. We fur-
thermore investigate in depth the influence of the various
parameters of the method, and show that a fine parameter
tuning can lead to significant improvements and state-of-
the-art performance for GRN inference. Finally, we show

that TIGRESS performs well when TFs are not known
in advance, i.e. it can predict edge directionality.Overall
this study confirms the potential of state-of-the-art feature
selection techniques for GRN inference.

Methods
Problem formulation
We consider a set of p genes G =[ 1, p], including a subset
T ⊂[ 1, p] of transcription factors, among which we wish
to discover direct interactions of the form (t,g) for t ∈ T
and g ∈ G. We do not try to infer self-regulation, meaning
that for each target gene g ∈ G we define the set of possible
regulators as Tg = T \{g} if g ∈ T is itself a transcrip-
tion factor, and Tg = T otherwise. The set of all candidate
regulations is therefore E = {

(t, g), g ∈ G, t ∈ Tg
}

, and
the GRN inference problem is to identify a subset of true
regulations among E .

For that purpose, we assume we have gene expression
measurements for all genes G in n experimental condi-
tions. Although the nature of the experiments may vary
and typically include knock-down or knock-out experi-
ments and even replicates, for simplicity we do not exploit
this information and only consider the n × p data matrix
of expression levels X as input for the GRN inference
problem. Each row of X corresponds to an experiment
and each column to a gene. We assume that the expres-
sion data have been pre-processed for quality control and
missing values imputation.

In order to infer the regulatory network from the
expression data X, we compute a score s : E → R to
assess the evidence that each candidate regulation is true,
and then predict as true regulation the pairs (t, g) ∈ E for
which the evidence s(t,g) is larger than a threshold δ. We
let δ as a user-controlled parameter, where larger δ values
correspond to less predicted regulations, and only focus
on designing a significance score s(t,g) that leads to “good”
prediction for some values of δ. In other words, we only
focus on finding a good ranking of the candidate regu-
lations E , by decreasing score, such that true regulations
tend to be at the top of the list; we let the user control the
level of false positive and false negative predictions he can
accept. Note that such a ranking is the standard prediction
format of the DREAM challenge.

GRN inference with feature selection methods
Many popular methods for GRN inference are based on
such a score. For example, the correlation or mutual infor-
mation between the expression levels of t and g along the
different experiments is a popular way to score candidate
regulations [12-14]. A drawback of such direct approaches
is that it is then difficult to separate direct from indirect
regulations. For example, if t1 regulates t2 which itself
regulates g, then the correlation or mutual information
between t1 and g is likely to be large, although (t1, g) is not
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a direct regulation. Similarly, if t1 regulates both t2 and g,
then t2 and g will probably be very correlated, even if there
is no direct regulation between them. In order to over-
come this problem, a possible strategy is to post-process
the predicted regulations and try to remove regulations
likely to be indirect because they are already explained by
other regulations [13]. Another strategy is, given a target
gene g ∈ G, to jointly estimate the scores s(t,g) for all can-
didate regulators t ∈ Tg simultaneously, with a method
able to capture the fact that a large score for a candidate
regulation (t,g) is not needed if the apparent correlation
between t and g is already explained by other, more likely
regulations.

Mathematically, the latter strategy is closely related to
the problem of feature selection in statistics, as already
observed and exploited by several authors [20,23]. More
specifically, for each target gene g ∈ G, we consider the
regression problem where we wish to predict the expres-
sion level of g from the expression level of its candidate
regulators t ∈ Tg :

Xg = fg(XTg ) + ε , (1)

where Xi represents the expression level of the i-th gene
across different experiments (modeled as a random vari-
able), XTg = {

Xt , t ∈ Tg
}

is the set of expression levels
of the candidate transcription factors for gene g, and ε

is some noise. Any linear or nonlinear statistical method
for regression can potentially be used to infer fg from the
observed expression data. However, we are not directly
interested in the regression function fg , but instead in the
identification of a small set of transcription factors which
are sufficient to provide a good model for Xg . We there-
fore need a score sg(t) for each candidate transcription
factor t ∈ Tg to assess how likely it is to be involved in the
regression model fg . For example, if we model fg as a linear
function

fg(XTg ) =
∑
t∈Tg

βt,gXt , (2)

then the score sg(t) should typically assess the probabil-
ity that βt,g is non-zero [23]. More general models are
possible, for example [20] model fg with a random forest
[29] and score a predictor sg(t) with a variable importance
measure specific to this model. Once a score sg(t) is cho-
sen to assess the significance of each transcription factor
in the target-gene-specific regression model (1), we can
combine them across all target genes by defining the score
of a candidate regulation (t, g) ∈ E as s(t, g) = sg(t),
and rank all candidate regulations by decreasing score for
GRN inference.

Feature selection with LARS and stability selection
We now propose a new scoring function sg(t) to assess
the significance of a transcription factor t ∈ Tg in the

regression model (1). Our starting point to define the scor-
ing function is the LARS method for feature selection in
regression [24]. LARS models the regression function (1)
linearly, i.e. it models the expression of a target gene as a
linear combination of the expression of its transcription
factors, as in (2). Starting from a constant model where no
TF is used, it iteratively adds TF in the model to refine the
prediction of Xg . Contrary to classical forward stepwise
feature selection [30,31], LARS does not fully re-optimize
the fitted model when a new TF is added to the model,
but only refines it partially. This results in a statistically
sound procedure for feature selection, akin to forward
stage-wise linear regression and the Lasso [27,31], and a
very efficient computational procedure. In practice, after
L steps of the LARS iteration, we obtain a ranked list of
L TF selected for their ability to predict the expression of
the target gene of interest. Efficient implementations of
LARS exist in various programming languages including
R (lars package, [24]) and MATLAB (SPAMS toolbox,
[32]). Since the selection of TF is iterative, LARS has the
potential to disregard indirect regulations.

The direct use of LARS to score candidate regulations
has, however, two shortcomings. First, LARS can be very
sensitive and unstable in terms of selected features when
there exist high correlations between different explana-
tory variables. Second, it only provides a ranking of the
TF, for each TG of interest, but does not provide a score
sg(t) to quantify the evidence that a TF t regulates a target
gene g. Since we want to aggregate the predicted regula-
tions across all target genes to obtain a global ranking of
all candidate regulations, we need such a score.

To overcome both issues, we do not directly score can-
didate regulations with the LARS, but instead perform
a procedure known as stability selection [26] on top of
LARS. The general idea of stability selection is to run a
feature selection method many times on randomly per-
turbed data, and score each feature by the number of times
it was selected. It was shown that stability selection can
reduce the sensitivity of LARS and Lasso to correlated fea-
tures, and improve their ability to select correct features
[25,26]. In addition, it provides a score for each feature,
which can then be aggregated over different regression
problems, i.e. different target genes in our case. More pre-
cisely, to score the candidate target genes t ∈ Tg of a given
target gene g using LARS with stability selection, we fix a
(large) number of iterations R, and repeat R/2 times the
following iterations: we randomly split the experiments
into two halves of equal or approximately equal size, we
multiply the expression levels of the candidate transcrip-
tion factors in Tg on each microarray by a random number
uniformly sampled on the interval [ α, 1] for some 0 ≤
α ≤ 1, and we run the LARS method for L > 0 steps
on the two resulting reduced and reweighed expression
matrices. We therefore perform a total of R LARS runs
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on randomly modified expression matrices. For each run,
the result of LARS after L steps is a ranked list of L TF.
After the R runs, we record for each g ∈ G, t ∈ Tg and
l ∈[ 1, L] the frequency F(g,t,l) with which the TF t was
selected by the LARS in the top l features to predict the
expression of gene g. We thus obtain a final score between
0 and 1, 1 meaning that t is always selected by LARS in
the top l features to predict the expression level of g, and 0
that is is never selected. Figure 1 displays graphically these
frequencies, for a given gene g fixed, all candidate TF in
Tg , and l = 1, . . . , 15. When l increases, the frequency
F(g,t,l) for fixed g and t is non-decreasing because the
LARS method selects increasing sets of TF at each step.
In addition, since the total number of TF selected after l
LARS steps is always equal to l, taking the average over the
R LARS runs leads to the equality

∑
t∈Tg F(g, t, l) = l, for

any gene g and LARS step l.
Once the frequency table F(g,t,l) is computed for l =

1, . . . , L, we need to convert it into a unique score s(t,g)
for each candidate pair (t,g). The original stability selec-
tion score [25,26] is simply defined as the frequency of
selection in the top L variables, i.e.,

soriginal(t, g) = F(g, t, L) . (3)

As suggested by Figure 1, this score may be very sensitive
to the choice of L. In particular, if L is too small, many TF
may have zero score (because there are never selected in
the top L TFs), but when L is too large, several TF may
have the same score 1 because they are always selected
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Figure 1 Stability selection. Illustration of the stability selection
frequency F(g,t,L) for a fixed target gene g. Each curve represents a TF
t ∈ Tg , and the horizontal axis represents the number L of LARS steps.
F(g,t,L) is the frequency with which t is selected in the first L LARS
steps to predict g, when the expression matrix is randomly perturbed
by selecting only a limited number of experiments and randomly
weighting each expression array. For example, the TF corresponding
to the highest curve was selected 57% of the time at the first LARS
step, and 81% of the time in the first two LARS steps.

in the top L TFs. To alleviate this possible difficulty, we
propose as an alternative score to measure the area under
each curve up to L steps, i.e. to consider the following area
score:

sarea(t, g) = 1
L

L∑
l=1

F(g, t, l) . (4)

It is worth noting that for a given target gene g, the
sum of the scores over the potential transcription factors
does not depend on g. Indeed, for any fixed g, there are
exactly L TF selected in the first L LARS steps on any ran-
domly modified expression matrix, which implies that the
frequencies of selection also sum to L:∑

t
soriginal(t, g) =

∑
t

F(g, t, L) = L .

Moreover, the area score is also normalized as follows:

∑
t

sarea(t, g) =
∑

t

1
L

L∑
l=1

F(g, t, l) = 1
L

L∑
l=1

l = L + 1
2

.

This shows that the scores output by TIGRESS are nat-
urally normalized per target gene, and we therefore do
not consider further normalization before aggregating all
scores together across target genes.

The difference between soriginal(t, g) and sarea(t, g)

becomes clear if we consider the rank of t in the list pro-
duced by LARS in one run as a random variable Ht (with
Ht = 1 meaning that t is ranked first by LARS). F(g,t,l)
is then, by definition, the empirical probability P(Ht ≤ l)
that Ht is not larger than l. The original score has there-
fore an obvious interpretation as P(Ht ≤ L), which we can
rewrite as:

soriginal(t, g) = E
[
φoriginal(Ht)

]
with

φoriginal(h) =
{

1 if h ≤ L ,
0 otherwise.

Interestingly a small computation shows that the area
score has a similar probabilistic interpretation:

sarea(t, g) =
L∑

l=1
F(g, t, l)

=
L∑

l=1
P(Ht ≤ l)

=
L∑

l=1

l∑
h=1

P(Ht = h)

=
L∑

h=1
(L + 1 − h)P(Ht = h)

= E [φarea(Ht)] ,
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with

φarea(h) =
{

L + 1 − h if h ≤ L ,
0 otherwise.

In other words, both the original and the area scores can
be expressed as E[ φ(Ht)], although with a different func-
tion φ. While the original score only assesses how often
a feature ranks in the top L, the area score additionally
takes into account the value of the rank, with features
more rewarded if they are not only in the top L but also
frequently with a small rank among the top L. Since sarea
integrates the frequency information over the full LARS
path up to L steps, it should be less sensitive than soriginal
to the precise choice of L, and should allow to investigate
larger values of L without saturation effects when several
curves hit the maximal frequency of 1. We note that other
scores of the form E[ φ(Ht)] for non-increasing function
φ could be investigated as well.

Parameters of TIGRESS
In summary, the full procedure for scoring all candidate
edges in E , which we call TIGRESS, splits the GRN infer-
ence problem into p independent regression problems
taking each target gene g ∈ G in turn, and scores each
candidate regulation (t,g) for a candidate TF t ∈ Tg with
the original (3) or area (4) stability score applied to LARS
feature selection. In addition to the choice of the scor-
ing method (original or area), the parameters of TIGRESS
are (i) the number of runs R performed in stability selec-
tion to compute the scores, (ii) the number of LARS steps
L, and (iii) the parameter α ∈[ 0, 1] which controls the
random re-weighting of each expression array in each sta-
bility selection run. Apart from R that should be taken
as large as possible to ensure that frequencies are cor-
rectly estimated, and is only limited by the computational
time we can afford to run TIGRESS, the influence of α

and L on the final performance of the method are not
obvious. Taking α = 1 means that no weight randomiza-
tion is performed on the different expression arrays, while
α = 0 leads to maximal randomization. [26] advocate that
a value between 0.2 and 0.8 is often a good choice. Regard-
ing the choice of L, [26] mentions that it has usually little
influence on the result, but as discussed above, the choice
of a good range of values may not be trivial in particu-
lar for the original score. We investigate below in detail
how the performance of TIGRESS depends on the scoring
method and on these parameters R, α and L.

Performance evaluation
We experimentally compare TIGRESS to several other
GRN inference methods. We use the MATLAB imple-
mentations of CLR [14] and GENIE3 [20]. We run
ARACNE [13] using the R package minet. We keep

default parameter values for each of these methods.
Results borrowed from the DREAM5 challenge [28] were
directly obtained by each participating team.

Given a gene expression data matrix, each GRN infer-
ence method outputs a ranked list of putative regulatory
interactions. Taking only the top K predictions in this list,
we can compare them to known regulations to assess the
number of true positives (TP, the number of known reg-
ulations in the top K predictions), false positives (FP, the
number of predicted regulations in the top K which are
not known regulations), false negatives (FN, the number
of known interactions which are not in the top K predic-
tions) and true negatives (TN, the number of pairs not in
the top K predictions which are not known regulations).
We then compute classical statistics to summarize these
numbers for a given K, including precision (TP/(TP +
FP)), recall (TP/(TP +FN)), and fall-out (FP/(FP +TN)).
We assess globally how these statistics vary with K by
plotting the receiver operating characteristic (ROC) curve
(recall as a function of fall-out) and the precision-recall
curve (precision as a function of recall), and computing
the area under these curves (respectively AUROC and
AUPR) normalized between 0 and 1.

For the datasets of DREAM5, we further compute a
P-value for the AUROC and AUPR scores, based on all
DREAM5 participants’ predictions. This method, which
was used by the DREAM5 organizers to rank the teams,
involves randomly drawing edges from the teams’ predic-
tion lists and computing the probabilities of obtaining an
equal or larger AUPR (resp. AUROC) by chance. More
precisely, random lists are constructed as follows: for each
row of the predicted list, an edge at the same position
is drawn at random from all predictions. For an ensem-
ble of such random lists, the areas under the curves are
computed, allowing to estimate a random distribution.
P-values were obtained by extrapolating the resulting his-
togram. We refer to [28] for more details on this scoring
scheme. Finally, we compute a score for a GRN inference
method by integrating the AUROC and AUPR P-values as
follows:

overall score = 1
2

log10(pAUPR pAUROC) . (5)

Data
We evaluate the performance of TIGRESS and other GRN
inference methods on nine benchmark datasets, each con-
sisting of a compendium of gene expression data, option-
ally a list of known TF, and a gold standard set of verified
interactions which we ideally would like to recover from
the expression data only. Expression data are either sim-
ulated or experimentally measured under a wide range of
genetic, drug and environmental perturbations. Table 1
summarizes the statistics of these nine networks.
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Table 1 Datasets

Network � TF � Genes � Chips � Verified interactions

DREAM5 Network 1 (in-silico) 195 1643 805 4012

DREAM5 Network 3 (E. coli) 334 4511 805 2066

DREAM5 Network 4 (S. cerevisiae) 333 5950 536 3940

E. coli Network from [14] 180 1525 907 3812

DREAM4 Multifactorial Network 1 100 100 100 176

DREAM4 Multifactorial Network 2 100 100 100 249

DREAM4 Multifactorial Network 3 100 100 100 195

DREAM4 Multifactorial Network 4 100 100 100 211

DREAM4 Multifactorial Network 5 100 100 100 193

The datasets used in our experiments.

The first three benchmarks are taken from the
DREAM5 challenge [28]. Network 1 is a simulated dataset.
Its topology and dynamics were modeled according to
known GRN, and the expression data were simulated
using the GeneNetWeaver software [33]. We refer the
interested reader to [22,34] for more information on this
network. The second and third benchmarks are Network 3
and Network 4 of the DREAM5 competition, correspond-
ing respectively to real expression data for E. coli and S.
cerevisiae. Note that we do not use in our experiments
Network 2 of DREAM5, because no verified TF-TG inter-
action is provided for this dataset consisting in expression
data for S. aureus.

Additionally, we run experiments on the E. coli dataset
from [14], which has been widely used as a benchmark
in GRN inference literature. The expression data was
downloaded from the Many Microbe Microarrays (M3D)
database [35] (version 4 build 6). It consists in 907 exper-
iments and 4297 genes. We obtained the gold standard
data from RegulonDB [36] (version 7.2, May 6th, 2011)
that contains 3812 verified interactions among 1525 of the
genes present in the microarrays experiments.

Finally, we borrowed the five DREAM4 [22] size 100
multifactorial networks [34] for which the TFs are not
known in advance in order to assess TIGRESS’ ability to
predict directionality.

As a pre-processing step, we simply mean-center and
scale to unit variance the expression levels of each gene
within each compendium.

Results
DREAM5 challenge results
In 2010 we participated to the DREAM5 Network Infer-
ence Challenge, an open competition to assess the perfor-
mance of GRN methods [28]. Participants were asked to
submit a ranked list of predicted interactions from four
matrices of gene expression data. At the time of submis-
sion, no further information was available to participants

(besides the list of TF), in particular the “true” network of
verified interactions for each dataset was not given. After
submissions were closed, the organizers of the challenge
announced that one network (Network 1) was a simulated
network with simulated expression data, while the other
expression datasets were real expression data collected for
E. coli (Network 3) and S. cerevisiae (Network 4), respec-
tively. Teams were ranked for each network by decreasing
score (5), and an overall score was computed summarizing
the network-specific p-values [28].

We submitted predictions for all networks with a ver-
sion of TIGRESS that we could not optimize since the
benchmarks were blinded at the time of the challenge. We
refer to it as Naive TIGRESS below. Naive TIGRESS is the
variant of TIGRESS which scores candidate interactions
with the original score (3) and uses the arbitrarily fixed
parameters α = 0.2, L = 5, R1 = 4, 000, R3 = R4 = 1, 000,
where Ri refers to the number of runs for network i. The
number of runs were simply set to ensure that TIGRESS
would finish within 2 days on a single-core laptop com-
puter. R1 is larger than R3 and R4 because the size of
network 1 is smaller than that of networks 3 and 4, imply-
ing that each TIGRESS run is faster. The choice α = 0.2
followed previous suggestions for the use of stability selec-
tion [26], while the choice L = 5 roughly corresponded to
the largest value for which no TF-TG pair had a score of 1.

Naive TIGRESS was among the top GRN prediction
methods at DREAM5, ranking second among 29 partici-
pating teams in the in silico network challenge, and third
overall. Table 2 summarizes the results of the first three
teams as well as two state-of-the-art methods in average
overall score.

The winning method, both in silico and overall, was
the GENIE3 method of [20]. GENIE3 already won the
DREAM4 challenge, confirming its overall state-of-the-
art performance. It had particularly strong performance
on the in silico network, and more modest performance
on both in vivo networks. The ANOVA-based method of
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Table 2 DREAM5 networks results

Method Network 1 Network 3 Network 4 Overall

AUPR AUROC Score AUPR AUROC Score AUPR AUROC Score

GENIE3 [20] 0.291 0.815 104.65 0.093 0.617 14.79 0.021 0.518 1.39 40.28

ANOVerence [37] 0.245 0.780 53.98 0.119 0.671 45.88 0.022 0.519 2.21 34.02

Naive TIGRESS 0.301 0.782 87.80 0.069 0.595 4.41 0.020 0.517 1.08 31.1

CLR [14] 0.255 0.773 55.02 0.075 0.590 5.29 0.021 0.516 1.07 20.46

ARACNE [13] 0.187 0.763 24.47 0.069 0.572 3.24 0.018 0.504 1.1e-4 9.24

TIGRESS 0.320 0.789 105.28 0.066 0.589 3.25 0.020 0.514 0.46 36.33

AUPR, AUROC and minus the logarithm of related p-values for all DREAM5 Networks and state-of-the-art methods.

[37] ranked second overall, with particularly strong per-
formance on the E. coli network. Naive TIGRESS ranked
third overall, with particularly strong performance on the
in silico network, improving over GENIE3 in terms of
AUPR.

Interestingly, GENIE3 and TIGRESS follow a similar
formulation of GRN inference as a collection of feature
selection problems for each target gene, and use simi-
lar randomization-based techniques to score the evidence
of a candidate TF-TG interaction. The main difference
between the two methods is that GENIE3 aggregates the

features selected by decision trees, while TIGRESS aggre-
gates the features selected by LARS. The overall good
results obtained by both methods suggest that this formal-
ism is particularly relevant for GRN inference.

Influence of TIGRESS parameters
In this section, we provide more details about the influ-
ence of the various parameters of TIGRESS on its perfor-
mance, taking DREAM5 in silico network as benchmark
dataset. Obviously the improvements we report below
would require confirmation on new datasets not used to
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Figure 3 Optimal values of the parameters. Optimal values of parameters L, α and N with respect to the number of resampling runs.

optimize the parameters, but they shed light on the fur-
ther potential of TIGRESS and similar regression-based
method when parameters are precisely tuned.

Starting from the parameters used in Naive TIGRESS
(R = 4, 000, α = 0.2 and L = 5, original score), we assess
the influence of the different parameters by systematically
testing the following combinations:

• original (3) or area (4) scoring method;
• randomization parameter α ∈ {0, 0.1 . . . , 1};

• length of the LARS path L ∈ {1, 2 . . . 20};
• number of randomization runs

R ∈ {1, 000; 4, 000; 10, 000}.

Figure 2 summarizes the score (5) obtained by each com-
bination of parameters on Network 1.

A first observation is that the area scoring method con-
sistently outperforms the original scoring method, for any
choice of α and L. This suggests that, by default, the newly
proposed area score should be preferred to the classical
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Figure 5 Distribution of the number of TFs selected per gene for L=2. Histograms of the number of TFs selected per gene with respect to the
total number of predictions when L = 2.

original score. We also note that the performance of the
area score is less sensitive to the value of α or L than that
of the original score. For example, any value of α between
0.2 and 0.8, and any L less than 10 leads to a score of at
least 90 for the area score, but it can go down to 60 for
the original score. This is a second argument in favor of
the area scoring setting: as it is not very sensitive to the
choice of the parameters, one may practically more eas-
ily tune it for optimal performance. On the contrary, the

window of (α, L) values leading to the best performance is
more narrow with the original scoring method, and there-
fore more difficult to find a priori. The recommendation
of [26] to choose α in the range [ 0.2, 0.8] is clearly not
precise enough for GRN inference. The best overall per-
formance is obtained with (α = 0.4, L = 2) in both scoring
settings.

Regarding the relationship between α and L, we observe
in Figure 2 a slight positive correlation for the optimal
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Figure 6 Distribution of the number of TFs selected per gene for L=20. Histograms of the number of TFs selected per gene with respect to the
total number of predictions when L = 20.
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Figure 7 Performance on network 1. ROC (left) and Precision/Recall (right) curves for several methods on Network 1.

L as a function of α, particularly for the area score. For
example, for R = 104, L = 2 is optimal for α ≤ 0.4, but
L ≥ 4 is optimal for α ≥ 0.8. The effect is even more pro-
nounced for R = 4, 000. This can be explained by the fact
that when α increases, we decrease the variations in the
the different runs of LARS and therefore reduce the diver-
sity of features selected; increasing the number of LARS is
a way to compensate this effect by increasing the number
of features selected at each run. Another way to observe
the need to ensure a sufficient diversity is to observe
how the best parameters L and α vary as a function of
R (Figure 3). It appears clearly that the optimal number
of steps L∗ decreases when the number of resampling
runs increases and stabilizes at 2. This is not a surprising
result. Indeed, when more resampling is performed, the
chance of selecting a given feature increases. The number
N of non zero scores subsequently increases and it thus
becomes unnecessary to look further in the regulariza-
tion path. On the other hand, the value of α∗ lies steadily
between 0.3 and 0.5, suggesting that the adjustment to the
number of bootstraps can mostly be made through the
choice of L.

Furthermore, we unsurprisingly observe that increas-
ing the number R of resampling runs leads to better

performances. On Figure 4, we show the score as a func-
tion of R with L = 2 and α = 0.4. We clearly see that, for
both scoring methods, increasing the number of runs is
beneficial. The performance seems to reach an asymptote
only when R becomes larger than 5, 000.

Finally, we were interested in the number of TFs selected
per gene. Figures 5 and 6 show how the distribution of
this number changes with respect to the total number
of predictions for L = 2 and L = 20 respectively. We
observe a lower variance and a larger median when L is
larger, which suggests that choosing a small value for L
leads to predicting more variable numbers of interactions
per TG whereas a large value will force all TGs to be
linked to a similar and higher number of TFs. This obser-
vation sheds some light on the choice of L in general, when
assumptions can be made on the topology of the network
to predict.

Comparison with other methods
Figure 7 depicts both the ROC and the Precision/Recall
curves for several methods on Network 1. Table 2 summa-
rizes these performances in terms of AUPR, AUROC and
related p-values as well as the score (5). Here, TIGRESS
was run with α = 0.4, L = 2 and R = 8, 000 which
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Figure 8 Performance on DREAM5 network 3. ROC (Left) and Precision/Recall (Right) curves for several methods on DREAM5 network 3.
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Figure 9 Performance on DREAM5 network 4. ROC (Left) and Precision/Recall (Right) curves for several methods on DREAM5 network 4.

corresponds to the best performance of the algorithm, as
investigated in the previous section.

TIGRESS, as tuned optimally on this network, out-
performs all methods in terms of AUPR and all meth-
ods but GENIE3 in terms of AUROC. Moreover, the
shape of the Precision/Recall curve suggests that the
top of the prediction list provided by TIGRESS con-
tains more true edges than other methods. The ROC
curve, on the other hand, focuses on the entire list of
results. Therefore, we would argue that TIGRESS can
be more reliable than GENIE in its first predictions
but contains overall more errors when we go further in
the list.

These results suggest that TIGRESS has the potential to
compare with state-of-the-art methods and confirm the
importance of correct parameter tuning.

In vivo networks results
Since Naive TIGRESS did not perform very well on the
in vivo networks at the DREAM5 competition (Table 2),
we now test on these networks TIGRESS with the best
parameters selected on the in silico (area score, α = 0.4,
L = 2 and R = 10, 000). Table 2 also shows the values of

AUPR, AUROC, related p-values and score for DREAM5
networks 3 and 4 reached by TIGRESS and ROC and P/R
curves were drawn on Figures 8 and 9.

The results on these two networks are overall dis-
appointing: TIGRESS does not do better than Naive
TIGRESS. In fact, both sets of results are very weak.
Without attempting to re-optimize all parameters for
each network, one may wonder whether the parameters
chosen using the in silico network are optimal for the in
vivo networks. As a partial answer, Figure 10 shows the
behavior of the score with respect to L for Networks 3 and
4. Interestingly, it seems that a much larger L is preferable
in this case, suggesting that one may have to adapt the
parameters to the size of the network in terms of number
of transcription factors. Indeed, networks 3 and 4 contain
respectively 334 and 333 transcription factors, making
them much larger than the in silico and the E. coli net-
works (195 and 180 TFs respectively), for which a small
L leads to a better performance. Choosing L = 100 for
DREAM5 in vivo networks yields much better results. As
a matter of fact, TIGRESS obtains the best results on Net-
work 4 with this value of L and doubles its performance
on Network 3.
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Figure 11 Performance on the E. coli network. ROC (Left) and Precision/Recall (Right) curves for several methods on the E. coli dataset.

On Figure 11 we compare Precision/Recall and ROC
curves obtained with TIGRESS with several other
algorithms on the E. coli network from1 [14]. Table 3
compares the areas under the curves. TIGRESS is compa-
rable to CLR, while GENIE3 outperforms other methods.
However the overall performance of all methods remains
disappointing.

Analysis of errors on E. coli
To understand further the advantages and limitations of
TIGRESS, we analyze the type of errors it typically makes
taking the E. coli dataset as example. We analyze FP, i.e.
cases where TIGRESS predicts an interaction that does
not appear in the gold standard GRN.

We focus in particular on quantifying how far a wrongly
predicted interaction is from a true one, and introduce for
that purpose the notion of distance between two genes
as the shortest path distance between them on the gold
standard GRN, forgetting about the direction of edges. For
two genes G1 and G2, we call G1-G2 a distance-x link if
the shortest path between G1 and G2 on the true network
has length x. Figure 12 shows the distribution of these
distances for spuriously discovered edges over the gold
standard network, i.e. the actual proportion of distance-x
links, with x ∈ {1, 2, 3, 4, > 4}. We write p̂x the proportion
of spurious TF-TG interactions with distance x.

Figure 13 depicts the distribution of distance-x propor-
tions among the spuriously detected edges, as a function

Table 3 E. coli network results

Method AUPR AUROC Score

TIGRESS 0.0624 0.6026 0.3325

ARACNE 0.0498 0.5531 0.3014

CLR 0.0641 0.6019 0.3330

GENIE3 0.0814 0.6375 0.3594

TIGRESS compared to state-of-the-art methods on the E. coli network. Since no
p-value can be computed here, the score is simply the average between AUROC
and AUPR.

of the number of predicted edges. Dotted lines represent
the 95% confidence interval around the exact distribution
(p̂x)x. For a given number r of spuriously predicted edges,
this interval is computed as[

q0.025(p̂x)

r
;

q0.975(p̂x)

r

]
,

where qa(p̂x) represents the quantile of order a of a hyper-
geometric distribution H(NS, p̂xNS, r) and NS is the total
number of spuriously predicted edges.

We observe that most of the recovered false positives
appear as distance-2 edges in a significantly higher pro-
portion than p̂2 whereas significantly less distance-> 4
edges are discovered. These results strongly suggest that
most of TIGRESS errors - especially at the top of the
list - are indeed sensible guesses, where the two nodes,
spuriously discovered with a parent/child relationship are
actually separated by only one other node. In Figure 14,
we detail the three possible patterns observable in this
situation.

1 2 3 4 > 4
0

0.1

0.2

0.3

Length of shortest path

Figure 12 Spurious edges shortest path distribution. Exact
distribution of the shortest path between spuriously predicted TF-TG
couples.
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Figure 13 Distribution of the shortest path with respect to the number of predictions. Distribution of the shortest path length between
nodes of spuriously detected edges and 95% confidence interval for the null distribution. These edges are ranked by order of discovery.

Figure 15 focuses on distance-2 errors. Note that some
edges show more than one pattern, e.g. the first spuri-
ous edges are both siblings and couples. It appears that
most of them are siblings and can thus be interpreted
as spurious feed-forward loops. We believe that this can
be explained by three main reasons: i) the discovered
edges actually exist but have not been experimentally
validated yet; ii) there is more of a linear relationship
between siblings than between parent and child; iii) some
nodes have very correlated expression levels, making it
difficult for TIGRESS to tell between the parent and
the child.

Directionality prediction : case study on DREAM4 networks
In order to check whether TIGRESS can predict edge
directions, we additionally ran it on the five size 100 mul-
tifactorial DREAM4 networks, for which the TFs are not
known. The five datasets contain 100 samples and 100
genes. We observe that TIGRESS can indeed perform well
in this setting. Table 4 shows the results with the default
parameter setting (L = 2, α = 0.4, R = 10, 000) compared
with those of GENIE3, that won the DREAM4 network
inference challenge. Without further optimization of the
parameters on these networks, TIGRESS achieves a better
overall performance than GENIE3.
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Figure 14 Distance-2 patterns. The three possible distance-2 patterns: siblings, couple and grandparent/grandchild relationships.

Furthermore, we ran the complete analysis of the
parameters on these networks, to check whether the
optimal parameters change when TFs are unknown.
Figure 16 shows the overall performance, that is the aver-
age performance on all five networks, as a function of
α and L. Given the small size of the networks, it is not
surprising that the optimal L is equal to 1. It also seems
that the optimal value for α lies in between 0 and 0.1,
corresponding to a strong randomization.

Computational Complexity
The complexity of running L LARS steps on a regression
problem with q covariates and n samples is O(nqL + L3)
[24]. In our case, q is the number of TF and n is the

number of expression arrays, which we divide by two
during the resampling step, and we pay this complex-
ity for each TG and each resampling. Multiplying by p
TG and R resampling runs, we therefore get a total com-
plexity of order O(pR(n/2qL + L3)), which boils down to
O(pRnqL/2) in the situation where L is smaller than n/2
and q.

Table 5 compares the running time of TIGRESS,
GENIE3, ARACNE, ANOVerence and CLR on Network 1.
We define running units units for GENIE3 and TIGRESS
that correspond to one element of computation, i.e. the
equivalent of K = T = p = q = n = 1 for GENIE3
and L = R = p = q = n = 1 for TIGRESS. As
stated in [20], the complexity of GENIE3 is of the order

Figure 15 Distribution of distance-2 errors. Distribution of distance 2 errors with respect to the number of predictions. 95% error bars were
computed using the quantiles of a hypergeometric distribution.



Haury et al. BMC Systems Biology 2012, 6:145 Page 15 of 17
http://www.biomedcentral.com/1752-0509/6/145

Table 4 DREAM4 networks results

Method Network 1 Network 2 Network 3 Network 4 Network 5 Overall score

AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR AUROC

GENIE3 0.154 0.745 0.155 0.733 0.231 0.775 0.208 0.791 0.197 0.798 37.482

TIGRESS 0.165 0.769 0.161 0.717 0.233 0.781 0.228 0.791 0.234 0.764 38.848

Results on the 5 DREAM4 size 100 multifactorial networks. The results are shown for the directed setting.

of O(pTKn log(n)). It is then a matter of multiplication to
get the approximate running time for a given dataset and
a given set of parameters. The total running time for these
two methods is computed using default parameters, that is
GENIE3(T = 1, 000; K = √q) and TIGRESS(L = 2; R =
10, 000). All algorithms were run on a 12GB RAM Intel
X5472 3.00GHz computer.

Discussion and conclusions
In this paper, we presented TIGRESS, a new method
for GRN inference. TIGRESS expresses the GRN infer-
ence problem as a feature selection problem, and solves
it with the popular LARS feature selection method com-
bined with stability selection. It ranked in the top 3 GRN
inference methods at the 2010 DREAM5 challenge, with-
out any parameter tuning. We clarified in this paper the
influence of each parameter, and showed that further
improvement may result from finer parameter tuning.

We proposed in particular a new scoring method for
stability selection, based on the area under the stabil-
ity curve. It differs from the original formulation of [26]
which does not take into account the full distribution of
ranks of a feature in the randomized feature selection pro-
cedure. Comparing the two, we observed that the new
area scoring technique yields better results and is less

sensitive to the values of the parameters: practically all
values of, e.g., the randomization parameter α yield the
same performance. Similarly, the choice of the number
L of LARS steps to run seems to have much less impact
on the performance in this new setting. As we showed,
the original and area scores for a feature t can be both
expressed in a common formalism as E[ φ(H)] for dif-
ferent functions φ, where Ht is the rank of feature t as
selected by the randomized LARS. It could be interest-
ing to systematically investigate variants of these scores
with more general non-increasing functions φ, not only
for GRN inference but also more generally as a generic
feature selection procedure.

Comparing TIGRESS - as tuned optimally - to state-of-
the-art algorithms on the in silico network, we observed
that it achieves a similar performance to that of GENIE3
[20], the best performer at the DREAM5 challenge. How-
ever, TIGRESS does not do as good as this algorithm on
in vivo networks. GENIE3 is also an ensemble algorithm
but differs from TIGRESS in that it uses a non-linear tree-
based method for feature selection, while TIGRESS uses
LARS. The difference in performance could be explained
by the fact that the linear relationship between TGs and
TFs assumed by TIGRESS is far-fetched given the obvious
complexity of the problem.
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Figure 16 Results on DREAM4 networks. Overall score on the five multifactorial size 100 DREAM4 networks, as a function of α and L.
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Table 5 Runtime

Method Unit running time (s) Total running time (s)

GENIE3 1.2e-6 2.208e+4

TIGRESS 1.5e-8 1.957e+4

ARACNE - 15.54

ANOVerence - 8.46

CLR - 3.86

We compare the runtime of TIGRESS to those of other methods mentioned in
the paper.

A further analysis of our results on the E. coli network
from [14] showed that many spuriously detected edges
follow the same pattern: TIGRESS discovers edges when
in reality the two nodes are siblings, and thus tends to
wrongly predict feed-forward loops. This result suggests
many directions for future work. Among them, we believe
that operons, i.e. groups of TGs regulated together could
be part of the problem. Moreover, it could be that there
is more of a linear relationship between siblings than
between parent and child, as TFs are known to be operat-
ing as switches, i.e. it is only after a certain amount change
in expression of the TF that related TGs are affected.
However, it is worth noting that in vivo networks gold
standards may not be complete. Therefore, the hypothe-
sis that TIGRESS is actually correct when predicting these
loops cannot be discarded.

TIGRESS depends on four parameters: the scoring
method, the number R of resampling runs, the randomiza-
tion factor α and the number of LARS steps L. We showed
in this paper that changing the value of these parameters
can greatly affect the performance and provided guide-
lines to choose them. It is worth noting, though, that other
modifications can be imagined. In particular, one may
wonder about the influence of the resampling parameters
(with or without replacement, proportion of samples to
be resampled). These questions will be tackled in future
work.

While it seems indeed more realistic not to restrict
underlying models to linear ones, it is fair to say that
no method performs very well in absolute values on in
vivo networks. For example, performances on the E. coli
network seem to level out at some 64% AUROC and
8% AUPR which cannot be considered satisfying. This
suggests that while regression-based procedures such as
TIGRESS or GENIE3 are state-of-the-art for GRN infer-
ence, their performances seem to hit a limit which prob-
ably cannot be outdistanced without some changes. It is
worth noting that, as argued in [28], combining these
methods together leads to improvement, as different sets
of interactions are discovered by each method. Another
way to overcome these limits may be a change in the global
approach such as adding some supervision in the learning
process as, e.g., investigated in [38].

Endnotes
1Unfortunately, we were not able to run ANOVerence on
this particular dataset due to heavy formatting require-
ments of the data by the algorithm that we did not have
the necessary information to perform.
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