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Do regulatory regions
matter in FOXG1
duplications?

European Journal of Human Genetics (2013) 21, 365–366;
doi:10.1038/ejhg.2012.142; published online 4 July 2012

Duplications of FOXG1 gene at 14q12 have been reported in patients
with infantile spasms and developmental delay of variable severity.1,2,3

FOXG1 encodes the forkhead protein G1, a brain-specific
transcriptional repressor, regulating corticogenesis in the developing
brain and neuronal stem cell self-renewal in the postnatal brain.4

Recently, Amor et al.5 reported on this journal an interstitial
duplication of B88 kb at 14q12 in a father–son pair with hemifacial
microsomia and normal neurocognitive phenotype. The duplication
contains only two polypeptide-encoding genes, FOXG1 and C14orf23,
suggesting that FOXG1 duplication may be benign or at least
incompletely penetrant. That makes the involvement of FOXG1
duplication in the pathogenesis of the neurocognitive impairment
and epilepsy controversial. As also discussed by Brunetti-Pierri et al,6

we feel that this statement needs special caution.
Functional consequences of chromosomal microduplication and

microdeletion rely on the final gene dosage, which is strongly
influenced by the location of the breakpoint. In this context, the
understanding of the contribution of regulatory sequences in gene
transcription is critical to understand the relationship between CNVs
and human diseases. With this purpose, the Encyclopedia of DNA
Elements (ENCODE) project has recently performed a systematic
analysis of transcriptional regulation in different human cell lines,

providing new understanding about transcription start sites, including
their relationship with specific regulatory sequences and histone
modification and features of chromatin accessibility.7,8 Interestingly,
analysis of histone modifications from the ENCODE project revealed
the presence of a putative regulatory element upstream FOXG1 gene
between 28 188 and 28 217 kb (UCSC genome browser, NCBI Build
36/hg18) (Figure 1). This conserved region localizes about 130 kb
upstream FOXG1 gene and contains histone modifications typical
of enhancers of gene transcription (eg, histone H3 and Lysine 4
monomethylation) in eight different human cells lines. Analysis of
regulatory potential scores, comparing frequencies of short alignment
patterns between known regulatory elements and neutral DNA,9 also
disclose two additional putative elements typical of cis-regulatory
modules within this region (Figure 1). Moreover, it contains a DNaseI
hypersensitive site (DHS). DHSs reflect genomic regions thought
to be enriched for regulatory information and many DHSs reside at
or near transcription start site. Notably, no other polypeptide-
encoding genes or non-coding RNAs and pseudogenes are present
in the region, suggesting that this regulatory element might regulate
FOXG1 transcription. Analysis of duplication breakpoints previously
reported on 14q12 revealed that duplications associated with an
epileptic phenotype localizes uniquely upstream this regulatory
element, whereas downstream duplications were identified only in
the cases without seizures (Figure 1). On the basis of this finding, we
suggest that FOXG1 duplication including this putative regulatory
region allows the efficient transcription of the supernumerary copy of
FOXG1 gene, resulting in an effective increase in FOXG1 expression
and, thereby, in brain hyperexcitability. In contrast, duplications
starting downstream this putative regulatory site do not allow efficient
transcription of FOXG1, which may underlie the lack of neurological
phenotype in the case reported by Amor et al5.

Even if the functional relevance of this putative long-range
regulatory element on FOXG1 transcription deserves to be
experimentally verified, it provides an interesting clue to dissect
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genotype–phenotype correlation in FOXG1 microduplication and to
uncover the real actual contribution of FOXG1 in the neurodevelop-
mental phenotype associated with 14q12 duplication.

Notably, chromosome rearrangements disrupting or displacing
putative cis-regulatory elements distal to FOXG1 gene in patients
with severe cognitive disabilities has been also reported,10,11 pointing
out the relevance of regulatory sequences in the expression of
FOXG1 gene.
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