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Summary
Objectives—In breast cancer research, it is important to identify genomic markers associated
with prognosis. Multiple microarray gene expression profiling studies have been conducted,
searching for prognosis markers. Genomic markers identified from the analysis of single datasets
often suffer a lack of reproducibility because of small sample sizes. Integrative analysis of data
from multiple independent studies has a larger sample size and may provide a cost-effective
solution.

Methods—We collect four breast cancer prognosis studies with gene expression measurements.
An accelerated failure time (AFT) model with an unknown error distribution is adopted to
describe survival. An integrative sparse boosting approach is employed for marker selection. The
proposed model and boosting approach can effectively accommodate heterogeneity across
multiple studies and identify genes with consistent effects.

Results—Simulation study shows that the proposed approach outperforms alternatives including
meta-analysis and intensity approaches by identifying the majority or all of the true positives,
while having a low false positive rate. In the analysis of breast cancer data, 44 genes are identified
as associated with prognosis. Many of the identified genes have been previously suggested as
associated with tumorigenesis and cancer prognosis. The identified genes and corresponding
predicted risk scores differ from those using alternative approaches. Monte Carlo-based prediction
evaluation suggests that the proposed approach has the best prediction performance.

Conclusions—Integrative analysis may provide an effective way of identifying breast cancer
prognosis markers. Markers identified using the integrative sparse boosting analysis have sound
biological implications and satisfactory prediction performance.
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1. Introduction
Worldwide, breast cancer is the commonest cancer death among women. In 2008, breast
cancer caused 458,503 deaths worldwide (13.7% of cancer deaths in women).

Correspondence to: Shuangge Ma 60 College ST, New Haven CT 06520, USA School of Public Health Yale University Tel:
203-785-3119 Fax: 203-785-6912 Shuangge.ma@yale.edu.

NIH Public Access
Author Manuscript
Methods Inf Med. Author manuscript; available in PMC 2013 March 15.

Published in final edited form as:
Methods Inf Med. 2012 ; 51(2): 152–161. doi:10.3414/ME11-02-0019.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Epidemiologic studies have been extensively conducted, searching for risk factors of breast
cancer. In the literature, established risk factors include age, lack of childbearing or
breastfeeding, higher hormone levels, race, economic status and dietary iodine deficiency.
Multiple models have been developed for the prediction of breast cancer etiology and
prognosis based on those risk factors. Despite considerable effort, it has been recognized
that models containing only epidemiologic risk factors and environmental exposures are not
sufficient, and genomic markers can improve predictive power [1,2]. Multiple high-
throughput profiling studies have been conducted, searching for genomic markers associated
with breast cancer prognosis. Considerable progresses have been made. Examples include
the 97-gene signature [3], which includes genes UBE2C, PKNA2, TPX2, FOXM1, STK6,
CCNA2, BIRC5, MYBL2 and others, and the 70-gene signature [4], which involves the
hallmarks of cancer including cell cycle, metastasis, angiogenesis, and invasion. A
comprehensive review is provided in [1].

In high-throughput cancer studies with gene expression measurements, genomic markers
identified from the analysis of a single dataset often suffer a lack of reproducibility. With
breast cancer prognosis gene signatures, the lack of reproducibility has been noted [1]. This
is reconfirmed by our data analysis (Section 5). Multiple factors may contribute to the lack
of reproducibility, including the incomparability of study subjects, inherent variation in the
profiling process, and insufficient accounting for the hierarchical structure. Another, perhaps
more important, reason for the lack of reproducibility is the small sample sizes of individual
cancer gene expression studies. Large-scale, prospective studies may provide an ideal
solution. However, such studies can be extremely expensive and time-consuming. For breast
cancer prognosis as well as several other cancer outcomes, there are multiple independent
studies sharing comparable designs, which makes it possible to conducted pooled analysis
and increase sample size [5,6,7].

Available multi-datasets analysis approaches can be classified as meta-analysis and
integrative analysis approaches [7,8]. In meta-analysis, multiple datasets are analyzed
separately. Then summary statistics, for example the lists of identified genes, p-values or
effect sizes, are pooled across multiple datasets. In contrast, integrative analysis approaches
pool and analyze raw data from multiple studies. With gene expression data, intensity
approaches, a family of integrative analysis approaches, search for transformations that
make gene expressions comparable across multiple studies and platforms. After
transformation, multiple datasets are combined and analyzed using single-dataset methods.
Intensity approaches do not demand new analysis approaches. However, they may be
limited in that they need to be conducted on a case-by-case basis, and there is no guarantee
that the desired transformations always exist.

The goal of this study is to identify genes associated with breast cancer relapse-free survival.
For this purpose, four independent breast cancer studies are collected. We describe the
relationship between survival and gene expressions using the accelerated failure time (AFT)
models. Unlike the commonly adopted Cox model, the AFT model assumes a linear function
for the transformed event time, and thus its regression coefficients may have a more
straightforward interpretation. In addition, its estimation objective function can be simpler
than Cox model's partial likelihood function and hence incurs lower computational cost. In
addition, studies have shown that the AFT model can be an appropriate choice when the
proportional hazard assumption has been violated. This model has been adopted in
[6,10,11,12] for modeling prognosis data with gene expression measurements. We adopt a
sparse boosting approach for marker selection. Boosting provides an effective way of
combining multiple weak learners into a strong one. It can be appropriate for cancer gene
expression data as individual genes usually have weak effects, but combined together, they
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may have a strong effect [13,14]. We provide a brief introduction of the most relevant
boosting techniques in Section 3 and refer to [15,16] and others for comprehensive reviews.

The rest of the article is organized as follows. In Section 2, we describe the data and model
setup. We describe marker selection using an integrative sparse boosting approach in
Section 3. We conduct simulation study in Section 4 to examine performance of the boosting
approach. In Section 5, we analyze four breast cancer studies and identify prognosis
markers. The article concludes with discussion in Section 6.

2 Integrative Analysis of Multiple Heterogeneous Prognosis Studies
2.1 Integrative analysis

Consider the scenario where there are multiple independent studies investigating the
association between the same cancer prognosis response variable and the same set of genes.
With such data, our goal is to identify genes showing consistent associations across multiple
studies. Such genes are more likely to represent the essential features of cancer development
[17,18]. Although those studies share a certain common ground, it is inappropriate to
directly combine data and analyze as if they were generated in a single study. Particularly
with gene expression data, the comparability of measurements using different platforms and/
or from different batches is still debatable. There is a lack of generically applicable
transformation/function that links one unit increase in cDNA measurement to that in
Affymetrix measurement. In addition, confounding from unmeasured clinical and
environmental risk factors may lead to different strengths of association between genes and
prognosis in different studies. To tackle this heterogeneity problem, recent studies suggest
allowing for different statistical models in different studies [5,6,7].

2.2 Statistical modeling
Consider data from M independent prognosis studies. Assume that the same set of gene
expressions (also referred to as “covariates”) are measured in all studies. Denote T1,...,TM as
the logarithm of failure times and X1,..., XM as length-d covariates. In study m(= 1,...,M),
assume the AFT model

Here αm is the unknown intercept, βm is the regression coefficient, βm’ is the transpose of
βm, and εm is the random error with an unknown distribution. Denote C1,...,CM as the
logarithm of random censoring times. Under right censoring, one observation consists of
(Ym,δm, Xm), where Ym = min(Tm,Cm) and δm = I(Tm ≤ Cm).

Denote β = (β1,...,βM as the d × M matrix of regression coefficient. Recent studies [5,6,7]
suggest that β should have the following characteristics. First, βm s are sparse in the sense
that only a few elements are nonzero. In genome-wide studies, a large number of genes are
profiled. However, only a few genes are associated with prognosis and hence have nonzero
regression coefficients. Considering that so far only less than 400 genes have been identified
as “cancer genes”, this sparsity property is reasonable. Second, β1,...,βM have the same
sparsity structure. That is, elements of β in the same row are either all zero or all nonzero.
This characteristic reflects the fact that multiple studies share the same set of markers. Third,
for a cancer marker with nonzero regression coefficients, the magnitudes of regression
coefficients are allowed to differ across studies to accommodate heterogeneity.
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2.3 Weighted least squares estimation

In study m (= 1,..., M), assume nm iid observations . Denote

 are the order statistics of ,  as the associated censoring

indicators and  as the associated covariates. Let F̂m be the Kaplan-Meier
estimate of Fm, the distribution function of Tm. It can be computed as

.  are the jumps in the Kaplan-Meier estimate and
computed as

For study m , the weighted least squares loss function is

Center  and  as  and . The
overall loss function is

In this study, it is assumed that the error distribution is unknown. Thus the likelihood based
approach in [10] is not applicable. Multiple methods have been developed for estimating the
AFT model with an unknown error distribution. Commonly used approaches include the
Buckley-James approach, rank-based approach and others [11]. In theoretical studies with a
fixed number of covariates, it is shown that none of the existing estimation methods
dominates the others. We adopt the weighted least squares approach [19], which is
equivalent to the inverse probability weighted approach, because of its low computational
cost.

3. Marker Selection with Integrative Sparse Boosting
3.1 Boosting

Boosting approaches assemble multiple weak learners into a strong learner. Compared with
alternative approaches, boosting approaches may be preferred because of their flexibility,
affordable computational cost and satisfactory empirical performance [20,21]. The literature
on boosting is too vast to be reviewed here. Below, we provide brief descriptions of L2
boosting [22] and sparse boosting [5,16], which have statistical framework closest to the
approach we adopt. With boosting approaches, there are usually multiple choices for weak
learners. In this study, we take the linear functions of gene expressions as weak learners. It is
possible to adopt more complex weak learners, for example classification trees and
polynomial functions. However, such weak learners can lead to high computational cost and
a lack of interpretability and hence are not pursued.
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L2 Boosting is designed for the analysis of a single dataset with a squared error loss
function. It iteratively fits working residuals with weak leaners. It can be derived from a
generic functional gradient descent algorithm using the squared error loss [22]. For the
completeness of this article, we describe the L2 Boosting algorithm below and refer to
published studies for more details.

Consider the data and model settings described in Section 2. Without loss of generality,
consider the first study (m = 1). Then the least squared loss function is

. The L2 Boosting proceeds as follows.

Step 1: Initialize k = 0, the working residual  and

.  is an estimate of ;

Step 2: Fit and update. k = k + 1. Compute

. Here  is the s th component of .

Update , where . ν is the step
size.

Following [16] and references therein, we set ν=0.1.

Update .

Step 3: Repeat Step 2 until a certain stopping rule is reached.

This approach iteratively selects one weak learner, which leads to the most improvement of
goodness-of-fit, and updates its estimate. In Step 2, a tuning parameter is the step size.
Buhlmann and Yu [16] suggests that the choice of step size is not critical, as long as it is
small enough. Our limited numerical study confirms this observation. We note that it may be
possible to select the step size in a data-dependent way. However, to reduce computational
cost, in this study we fix the step size. In Step 3, there are multiple choices for the stopping
rule, including AIC, BIC, cross validation, GCV and others. With high dimensional gene
expression data, it is not clear what the optimal stopping rule is. In this study, we choose k̂,
the optimal number of iterations, to minimize a BIC criterion. In our simulation, we have
experimented with a few other stopping rules but failed to identify one significantly better
than BIC. As this approach adds one weaker at each iteration, when the stopping rule is
appropriate, the resulted strong learner may enjoy a certain degree of sparsity.

Sparse boosting is first proposed in [16] for simple linear regression. A different sparse
boosting approach is proposed in [23]. Ordinary boosting may enjoy a certain degree of
sparsity, if the weak learners and stopping rule are properly chosen. However, numerical
studies suggest that with high dimensional data, ordinary boosting is not “sparse enough”.
That is, it may identify a considerable number of false positives. Sparse boosting may
introduce further sparsity by modifying the loss function and stopping rule. Specifically, the
sparse boosting loss function consists of two parts. The first part is the same as that with
ordinary boosting and measures goodness-of-fit. The second part is a penalty term and
measures model complexity. Choices for model complexity measure include AIC, BIC,
MDL (minimum description length) and others. Weak learners are chosen in a way that
balances sparsity and goodness-of-fit and differ from those chosen based only on goodness-
of-fit.
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3.2 Integrative sparse boosting
The boosting approaches described in Section 3.1 are designed for the analysis of a single
dataset. In a recent study, we develop a sparse boosting approach for the integrative analysis
of multiple heterogeneous diagnosis studies [5]. In this article, we extend the approach in [5]
to prognosis studies. Two boosting algorithms, integrative L2 boosting (iBoost) and
integrative sparse L2 boosting (iSBoost), will be considered. They significantly differ from
existing approaches along the following aspects. First, they advance from the L2 Boosting
and sparse boosting in [16,23] by analyzing multiple heterogeneous datasets. Second, in this
study, we analyze censored prognosis data, whereas [5] focuses on diagnosis data with
binary responses. Thus the statistical models and loss functions are significantly different. In
addition, the BIC criterion is adopted for boosting and stopping. It is much more commonly
adopted and easily extendable than the MDL in [5,16]. More importantly, this study is the
first time the sparse boosting technique is applied to identify breast cancer prognosis
markers.

3.2.1 iBoost—Consider the data and model settings described in Section 2. In study m(=
1,..., M), denote fm (xm*) = E(Ym* | Xm* = xm*). Following [5,6,7] and discussions in
Section 2, we allow for study-specific fm(m = 1...M) to accommodate heterogeneity. The
iBoost algorithm proceeds as follows.

Step 1: Initialize k = 0. For m = 1,...,M, initialize the working residuals

 and f ̂m[k] = 0. Here f̂m[k](Xm*) is an estimate of

E(Ym* | Xm*). As only linear weak learners are used, write ;

Step 2: Fit and update. k = k + 1. Compute

. Here  is the sth

component of .

Compute .

Update  , where ν is the step size as in L2
boosting;

Update .

Step 3: Repeat Step 2 for K iterations.

Step 4: At iteration k, compute

. The optimal number of
iterations is computed as k̂ = arg min1≤k≤KS[k].

Rationale With multiple independent datasets and without making assumptions on gene
effects across studies, the overall loss function is taken as the sum of individual loss
functions. iBoost is a boosting approach in that at each iteration, it searches for one weak
learner and then updates its estimates. It differs from existing boosting approaches in that
when choosing the weak learners, iBoost evaluates the overall effects of genes across M
studies. The selected gene has the strongest overall effect, however, not necessarily the
strongest effects in individual datasets. When a gene is selected, it is selected in all M
studies, leading to the same set of genes identified as prognosis markers and the same

sparsity structure for all M models. The regression coefficients  are allowed to differ
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for different m, which is in line with discussions in Section 2. In Step 4, we adopt a BIC
criterion for stopping.

3.2.2 iSBoost—iSBoost takes a different approach for selecting weak learners.
Particularly, it modifies Step 2 of iBoost as

Other steps remain the same.

This modification has been motivated by the following considerations. iBoost takes the
goodness-of-fit as the weak learner selection criterion. Thus there is a risk that it may
introduce genes that can only improve goodness-of-fit by a small amount but add model
complexity by selecting more genes. In classic statistical analysis as well as [16], it has been
suggested that model complexity should be considered along with goodness-of-fit in model/
variable selection. With iSBoost, we use a BIC-type objective function as the criterion for
weak learner selection to encourage sparsity. As a different weak learner selection rule is
adopted, the sequence of weak learners selected by iSBoost may differ from that selected by
iBoost. Specifically, with penalty on the number of selected genes, iSBoost tends to select
fewer genes.

4. Simulation Study
For simplicity of notation, we have assumed that multiple studies have matched gene sets.
When different gene sets are measured in different studies, we can adopt a simple rescaling
approach. Assume that gene s is only measured in the first Ms studies. We modify Step 2 of
iBoost as

Other quantities can be rescaled in a similar manner.

We simulate four independent datasets, each with 100 subjects. We simulate 50 and 100
gene clusters, with 20 genes per cluster. Thus the total numbers of gene expressions
simulated are 1000 and 2000. Gene expressions have marginally normal distributions. Genes
in different clusters have independent expressions. For genes within the same clusters, their
expressions have the following correlation structures: (i) auto-regressive correlation, where
expressions of genes j and k have correlation coefficient ρ|j–k|; (ii) banded correlation, where
expressions of genes j and k have correlation coefficient max(0,1–|j–k|ρ); and (iii)
compound symmetry, where expressions of genes j and k have correlation coefficient ρ
when j ≠ k . Under each correlation scenario, we consider two different values of ρ . Within
each of the first 4 clusters, there are 5 genes associated with prognosis. Thus there are a total
of 20 prognosis-associated genes, and the rest are noises. For prognosis-associated genes, we
generate their nonzero regression coefficient from . 20%
prognosis-associated and 10% noisy genes are measured only in the first two studies. We
generate the logarithm of event times from the AFT models with standard normal random
errors. The censoring times are generated independently from exponential distributions. We
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adjust the censoring parameters so that the overall censoring rate is close to 50%. The
simulated data closely mimics observed data. Genes have the pathway structure, where
genes within the same pathways tend to have correlated expressions, and genes within
different pathways tend to have weakly correlated or independent expressions. Only some
pathways are associated with prognosis, and within those pathways, only a few genes are
associated with prognosis.

To better quantify performance of the proposed approach, we also consider the following
alternative approaches. (a) Meta-analysis. We analyze each dataset separately. The lists of
identified genes are combined using a vote counting approach. When analyzing each dataset,
we consider the following three approaches. The first is the elastic net (Enet), which is a
penalization approach. It contains a Lasso component for penalized marker selection and a
ridge component to accommodate correlations among genes. It has two tuning parameters,
which are selected using 4-fold cross validation. Computation with Enet is realized using the
R package glmnet. The second is the L2 boosting approach described in Section 3.1
(denoted as “Boost” in Table I). With this approach, the number of iterations is the only
tuning parameter and selected using a BIC criterion. The third is the sparse L2 boosting
approach (denoted as “SBoost” in Table I). This approach is the single-dataset counterpart
of the proposed iSBoost approach, with the weak learner selection and stopping rule
determined by a BIC criterion; (b) An intensity approach. In simulation, the similarity
among the four datasets is much higher than that encountered in practice. We adopt an
intensity approach, transform gene expressions to achieve comparability, combine the four
datasets, and analyze as if they were from a single study. For the combined dataset, we
analyze using the Enet, Boost and SBoost approaches; and (c) Integrative analysis. We
extend the approach in [7] and use a group Enet approach for penalized selection.

In our simulation, data is generated under the AFT model. We first examine performance of
the Cox model, which is the most commonly adopted model. Under the simulation scenarios
described in rows 1 and 2 of Table I, with the iBoost and iSBoost algorithms for marker
selection, the Cox model identifies 8 and 7 true positives, respectively. The unsatisfactory
performance of the Cox model under model mis-specification is not surprising and has been
previously noted [24]. We do not further pursue the Cox model in simulation.

Simulation suggests that the proposed approach is computationally affordable. Analysis of
one replicate takes less than five minutes on a regular desktop PC. Summary statistics based
on 100 replicates are shown in Table I. We can see that with the meta-analysis approaches,
the majority or all of the true positives can be identified. However, a large number of false
positives are also identified. With the simulated data, the degree of heterogeneity is
significantly less than that with real data, which favors intensity approaches. Intensity
approaches significantly outperform meta-analysis approaches, with considerably fewer
false positives and sometimes more true positives. Performance can further improve with
integrative analysis. Among the three integrative analysis approaches, loosely speaking,
iSBoost imposes the strongest control on model complexity. Thus it is sensible it identifies
the fewest genes. Under the auto-regressive and banded correlation structures, it identifies
all of the true positives with almost no false positives. Under the compound symmetry
structure, it still can identify the majority of true positives, with a reasonable number of false
positives. Such a result is intuitively reasonable, as under the compound symmetry structure,
one gene is correlated with many genes, which makes it difficult to identify truly important
genes.
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5. Identification of breast cancer prognosis markers
With gene expression data, preprocessing and normalization are needed prior to analysis.
With Affymetrix data, a floor and a ceiling may be added, and then measurements are log2
transformed. With both Affymetrix and cDNA data, we fill in missing expressions with
means across samples. We then standardize each gene expression to have zero mean and
unit variance. A significant advantage of the proposed integrative analysis is that it does not
require the full comparability of measurements from different studies. Thus, cross-study/
platform transformation or normalization is not needed.

We analyze four breast cancer prognosis studies with gene expression measurements. We
provide brief descriptions of the four studies in Table II and refer to the original publications
[4,25,26,27] for more detailed information. Among the four datasets, two used cDNA, one
used oligonucleotide arrays, and one used Affymetrix chips for profiling. We match genes in
the four studies using their Unigene Cluster IDs. Although the proposed analysis can
accommodate partially matched gene sets, we focus on the 2,555 genes that are measured in
all four studies to increase reliability.

With the iSBoost approach, 44 genes are identified as associated with breast cancer
prognosis (Table III). Searching published literature suggests that quite a few of the
identified genes have sound biological implications, which may partly support the
effectiveness of the proposed approach. Particularly, gene IGFBP1 is a member of the
insulin-like growth factor binding protein (IGFBP) family and encodes a protein with an
IGFBP domain and a thyroglobulin type-I domain. It has been identified as a breast cancer
marker in [28,29]. Gene DCAF8 encodes a WD repeat-containing protein that interacts with
the Cul4-Ddb1 E3 ligase macromolecular complex. Its involvement in breast cancer
pathogenesis is proposed in [30]. The amino acid sequence of the protein encoded by gene
CIB2 is similar to that of KIP/CIB, calcineurin B and calmodulin. This suggests that the
encoded protein may be a Ca2+-binding regulatory protein that interacts with DNA-
dependent protein kinase catalytic subunit (DNAPKcs). It is one the of breast cancer
prognosis markers identified in [4]. Cyclic AMP-dependent protein kinase A (PKA; encoded
by gene PRKAR1B) is an essential enzyme in the signaling pathway of the second
messenger cAMP. Through phosphorylation of target proteins, PKA controls many
biochemical events in the cell including regulation of metabolism, ion transport and gene
transcription [31]. Gene LFNG is a member of the fringe gene family which also includes
radical and manic fringe genes. They all encode evolutionarily conserved
glycosyltransferases that act in the Notch signaling pathway to define boundaries during
embryonic development. Its involvement in breast cancer prognosis has been established in
[32,33]. Gene NUCB1, also known as CALNUC, encodes a member of a small calcium-
binding EF-hand protein family. Calnuc protein may be a tumor-associated antigen (TAA)
that induces autoantibody response in human cancers [34]. Gene IRAK1 encodes the
interleukin-1 receptor-associated kinase 1, one of two putative serine/threonine kinases that
become associated with the interleukin-1 receptor (IL1R) upon stimulation. This gene is
partially responsible for IL1-induced upregulation of the transcription factor NF-kappa B. It
is identified as a breast cancer prognosis marker in [4,27]. The protein encoded by gene
SMARCC2 is a member of the SWI/SNF family of proteins, whose members display
helicase and ATPase activities and are thought to regulate transcription of certain genes by
altering the chromatin structure around those genes. The encoded protein is part of the large
ATP-dependent chromatin remodeling complex SNF/SWI and contains a predicted leucine
zipper motif typical of many transcription factors. Its implication in breast cancer prognosis
is suggested by [34]. The proteins encoded by gene FGF2 and FGF7 are members of the
fibroblast growth factor (FGF) family. FGF family members possess broad mitogenic and
cell survival activities and are involved in a variety of biological processes, including

Ma et al. Page 9

Methods Inf Med. Author manuscript; available in PMC 2013 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



embryonic development, cell growth, morphogenesis, tissue repair, tumor growth and
invasion. These proteins have been implicated in diverse biological processes, such as limb
and nervous system development, wound healing and tumor growth [35,36]. The protein
encoded by gene GSN binds to the “plus” ends of actin monomers and filaments to prevent
monomer exchange. The encoded calcium-regulated protein functions in both assembly and
disassembly of actin filaments. Defects in this gene are a cause of familial amyloidosis
Finnish type (FAF). It is one of the identified breast cancer markers in [35]. The protein
encoded by gene MAP2K1 is a member of the dual specificity protein kinase family, which
acts as a mitogen-activated protein (MAP) kinase. MAP kinases, also known as extracellular
signal-regulated kinases (ERKs), act as an integration point for multiple biochemical signals.
This protein kinase lies upstream of MAP kinases and stimulates the enzymatic activity of
MAP kinases upon a wide variety of extra- and intracellular signals. As an essential
component of MAP kinase signal transduction pathway, this kinase is involved in many
cellular processes such as proliferation, differentiation, transcription regulation and
development. This gene has been implicated in multiple types of cancers, including lung
cancer, bladder cancer, colorectal cancer, endometrial cancer and pancreatic cancer. Gene
MST1 is an identified breast cancer marker in [25]. Gene MGP is identified as a breast
cancer marker in [36]. Gene SF3B4 encodes one of four subunits of the splicing factor 3B.
The protein encoded by this gene cross-links to a region in the pre-mRNA immediately
upstream of the branchpoint sequence in pre-mRNA in the prespliceosomal complex A. It
also may be involved in the assembly of the B, C and E spliceosomal complexes. In addition
to RNA-binding activity, this protein interacts directly and highly specifically with subunit 2
of the splicing factor 3B. Involvement of this gene in breast cancer prognosis is suggested in
[34]. The protein encoded by gene ARHGEF9 is a Rho-like GTPase that switches between
the active (GTP-bound) state and inactive (GDP-bound) state to regulate CDC42 and other
genes. Defects in this gene are a cause of startle disease with epilepsy (STHEE), also known
as hyperekplexia with epilepsy. Its implication in breast cancer progression has been
inferred in [35]. Gene IMPA2 has also been identified in [4]. The protein encoded by gene
WASF1, a member of the Wiskott-Aldrich syndrome protein (WASP)-family, plays a
critical role downstream of Rac, a Rho-family small GTPase, in regulating the actin
cytoskeleton required for membrane ruffling [32]. Members of the Rab protein family,
encoded by gene RAB2A, are nontransforming monomeric GTP-binding proteins of the Ras
superfamily that contain four highly conserved regions involved in GTP binding and
hydrolysis. Rabs are prenylated, membrane-bound proteins involved in vesicular fusion and
trafficking [35]. Vasodilator-stimulated phosphoprotein (VASP) is a member of the Ena-
VASP protein family. Ena-VASP family members contain an EHV1 N-terminal domain that
binds proteins containing E/DFPPPPXD/E motifs and targets Ena-VASP proteins to focal
adhesions. VASP is associated with filamentous actin formation and likely plays a
widespread role in cell adhesion and motility. VASP may also be involved in the
intracellular signaling pathways that regulate integrinextracellular matrix interactions [34].
We note that although some of the identified genes have been previously identified as breast
cancer prognosis markers, this study might be the first time they are identified in an
integrative analysis context. In addition, there are new findings that need to be further
studied.

We also analyze the same data using multiple alternative approaches. Specifically, we
consider both Cox and AFT models. As simulation has shown the satisfactory performance
of the sparse boosting, under the Cox model, we only analyze using the sparse boosting
approach. Under the AFT model, both Enet and two boosting approaches are considered.
Table IV shows that different approaches may identify significantly different sets of genes.

With practical data, it is difficult to objectively evaluate marker identification accuracy. As
an alternative, we evaluate prediction performance, which may provide an indirect
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evaluation of gene identification accuracy. Particularly, it is expected that if the identified
genes are more meaningful, prediction using those genes is more accurate. We conduct
evaluation using a cross-validation based approach. We first split each dataset randomly into
a training set and a testing set with sizes 3:1. We then analyze the training set (including
tuning parameter selection, marker identification and estimation) and use the training set
models to make prediction for the testing set subjects. Using the predicted risk score βm’
Xm , we generate two risk groups with equal sizes. The logrank statistics, which measure the
survival difference between the two groups, are computed. For each random split, we
compute the mean logrank statistic over four datasets. To avoid biased evaluation caused by
an extreme split, we repeat the whole process 100 times, compute the mean logrank statistics
and present the results in Table IV. iSBoost under the AFT model has the best prediction
performance with the logrank statistic equal to 5.611 (chi-squared distributed with degree of
freedom one, p-value 0.018). We also compute the correlations between predicted risk
scores generated using iSBoost and those using alternative approaches and then calculate the
averages among splits. The mean correlations are shown in Table IV. We can see that the
predicted risk scores are moderately correlated, with correlation coefficients ranging from
0.209 to 0.679, suggesting that the iSBoost models are significantly different from those
under alternative approaches.

6. Discussion
The identification of breast cancer prognosis markers is of great importance. Integrative
analysis provides an effective way of analyzing multiple heterogeneous datasets and
identifying reproducible markers. In this study, we analyze four breast cancer prognosis
studies with gene expression measurements. We adopt the AFT model to describe survival
and the integrative sparse boosting approach for marker selection. Simulation shows
satisfactory performance of iSBoost. In data analysis, we show that iSBoost may identify
genes significantly different from those using alternative approaches. The identified genes
have important biological implications and satisfactory prediction performance.

Although not as popular as the Cox model, the AFT model provides a flexible alternative
and has been adopted in multiple cancer prognosis studies. To the best of our knowledge,
with extremely high-dimensional data, there is still a lack of model diagnostics tool. With
the four breast cancer datasets, the AFT and Cox models identify different sets of genes and
different predicted risk scores. The AFT model has slightly better prediction performance.
As its regression coefficients have simple interpretations, the AFT model can be preferred.
However, we cautiously note that the model will have to be further validated using
prospective, independent data. The adopted AFT model assumes an unknown error
distribution and can be more flexible than the parametric models in [10]. The weighted least
squares estimation may be computationally more affordable than the approach in [11].

In this study, the loss function has a least squares form. The integrative sparse boosting
algorithms can also accommodate other types of loss functions. We propose using BIC as
the model complexity measure. It is more commonly adopted than MDL [16]. Gene
expressions can be highly correlated. It has been pointed out that de-correlation may be
needed in marker selection. Under the penalization framework, the Enet approach uses a
ridge penalty for de-correlation. We note that the proposed iSBoost does not have an explicit
de-correlation component. In our simulation and data analysis, there are correlated but very
few extremely highly correlated genes. iSBoost is shown to outperform Enet under such
scenarios. It is possible to extend iSBoost, for example adding a ridge penalty to the loss
function. However, such an extension will incur higher computational cost and mix the
boosting and penalization framework and is not pursued.
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In data analysis, we show that iSBoost may identify genes different from alternatives. We
are unable to objectively determine which approaches identify gene sets that are “more
meaningful”. A cross validation based approach is used for prediction evaluation. Although
it does not use completely independent data, it compares all approaches on the same basis
and is expected to be reasonably fair. In the literature, quite a few different evaluation
approaches have been suggested. However, most of them are ad hoc, and there is a lack of
consensus. We note that ultimately the identified markers need to be validated using
mechanisms studies.
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Table II

Breast cancer prognosis studies.

Reference Platform Gene Sample

Huang et al. (2003) Affymetrix 12625 71

Sorlie et al. (2001) cDNA 8102 58

Sotiriou et al. (2003) cDNA 7650 98

Van't Veer et al. (2002) Oligonucleotide 24481 78
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