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INTRODUCTION
The pulmonary circulation is a unique system that differs from the systemic circulation in
structure, function, and regulation. For example, hypoxia causes pulmonary vaso-
constriction but dilates the systemic circulation. In neonates with hypoxemic respiratory
failure (HRF), circulatory changes in the lung can be primary, as in idiopathic persistent
pulmonary hypertension of the newborn (PPHN), or secondary to lung disease. This article
provides a brief overview of normal pulmonary circulation, changes in neonatal pulmonary
circulation in common causes of neonatal HRF, and its response to therapeutic interventions
in the neonatal intensive care unit (NICU).

FETAL CIRCULATION
Gas exchange is the primary function of the postnatal lung. The low-resistance, high-volume
pulmonary circulation, which receives half of the combined ventricular output, is a crucial
factor in achieving efficient gas exchange by the aerated lung during post-natal life. During
fetal life, the placenta serves as the organ of gas exchange; placental vascular resistance is
low and receives nearly half of fetal combined ventricular output. During this period, fetal
pulmonary vascular resistance (PVR) is high (physiologic pulmonary hypertension), and
blood flow is diverted from the pulmonary artery to the aorta and umbilical arteries toward
the placenta.1 Fetal pulmonary circulation must prepare the lungs for adequate structural
growth and functional maturation in anticipation for the switch to air breathing in the
postnatal period. During the normal transition at birth, PVR decreases and is associated with
an increase in pulmonary blood flow. Abnormal pulmonary transition leads to sustained
increase of PVR, similar to the fetal state, resulting in PPHN. Parenchymal lung diseases
such as meconium aspiration syndrome can result in ventilation-perfusion (V/Q) mismatch,
hypoxemia, and structural and functional changes in pulmonary circulation resulting in
HRF.

Most of the knowledge of fetal pulmonary hemodynamics is derived from studies in fetal
lambs. Data from fetal lambs suggest that PVR is high, with only 8% to 10% of combined
ventricular output entering the lungs during fetal life.2,3 More recently, Doppler flow studies
in human fetuses have shown significantly higher flow into the left and right pulmonary
arteries with 13% of combined ventricular output at 20 weeks’ gestation (canalicular stage),
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increasing to 25% at 30 weeks (saccular stage) and 21% at 38 weeks (alveolar stage).4 The
fetal PVR is high during the canalicular stage secondary to paucity of pulmonary vascular
network and reduced cross-sectional area of an immature pulmonary vascular bed (Fig. 1).
Rasanen and colleagues5 showed that, between 20 and 26 weeks of gestation, maternal
hyperoxygenation using 60% humidified oxygen by face mask does not result in pulmonary
vasodilation in human fetuses, suggesting a lack of sensitivity to oxygen in early gestation.
During the early saccular stage, rapid proliferation of pulmonary vessels decreases fetal
PVR. During late preterm and early term gestation (34–36 and 37–38 weeks gestational age
[GA], respectively), there is a marked increase in cross-sectional area of the pulmonary
vascular bed. However, pulmonary vessels become more sensitive to vaso-constrictive
mediators, such as endothelin (ET) and relative hypoxemia, resulting in active pulmonary
vasoconstriction and an increase in PVR.6,7 During this period, maternal hyperoxygenation
increases pulmonary blood flow in human fetuses5 and fetal lambs.8

In fetal lambs, pulmonary vasodilation in response to endothelium-independent mediators,
such as nitric oxide (NO), precedes responses to endothelium-dependent mediators, such as
acetylcholine and oxygen. Response to NO depends on activity of its target enzyme, soluble
guanylate cyclase (sGC), in the smooth muscle cell. In the ovine fetus, sGC messenger RNA
levels are low during early preterm (126 days) gestation and increase during late preterm
and early term gestation (137 days).9 In rats, abundant sGC activity is present in the lung at
late gestation and early newborn periods and gradually decreases in adulthood.10 Low levels
of pulmonary arterial sGC activity during late canalicular and early saccular stages of lung
development are probably responsible for the poor response to iNO observed in preterm
infants delivered at less than 29 weeks GA.11

Modulation of Fetal PVR
Conditions such as congenital diaphragmatic hernia (CDH), antenatal closure of the ductus
arteriosus, and idiopathic PPHN are often associated with vascular remodeling and increased
PVR during fetal life. Studies in animal models suggest that maternal therapy can alter fetal
PVR. Loong and colleagues reported that antenatal administration of sildenafil improved
lung structure (decreased mean linear intercept) and reduced pulmonary hypertension
(decreased right ventricle/left ventricle + septum ratio) in nitrofen-induced CDH rat pups.12

Maternal betamethasone similarly reduces oxidative stress and improves relaxation response
to adenosine triphosphate (ATP) and NO donors in fetal lambs with PPHN induced by
ductal ligation.13 Antenatal tracheal occlusion in animal models of CDH reduces pulmonary
circulatory impedance and pulmonary arterial remodeling.14–17 Further translational and
clinical research into reducing fetal PVR and improving lung structure and function by
antenatal medical and surgical intervention is critical to reduce mortality and morbidity in
CDH. Maternal medications can also increase fetal PVR and increase the risk of PPHN.
Two classes of medications, antidepressants and antiinflammatory agents, have been well
studied.

Selective serotonin uptake inhibitors—Maternal intake of selective serotonin uptake
inhibitors (SSRIs) during the last half of pregnancy has been associated with an increased
risk of PPHN.18 Exposure of pregnant rats to fluoxetine resulted in pulmonary hypertension
in rat pups (more profound in female pups) and was associated with hypoxia and increased
mortality.19,20 The mechanism by which fluoxetine induces pulmonary hypertension in
newborns is unknown. It is speculated that higher drug-induced serotonin levels result in
pulmonary vasoconstriction. A more recent retrospective analysis has questioned this
association.21 Obstetricians must weigh the maternal psychological benefits of
antidepressant therapy during pregnancy against the risk of adverse neonatal effects.
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Nonsteroidal antiinflammatory medications—Ingestion of nonsteroidal
antiinflammatory drugs (NSAIDs), such as aspirin, during late gestation may be associated
with in utero closure of the fetal ductus arteriosus.22 Experimental ligation of the ductus
arteriosus in lambs during fetal life is associated with pulmonary vascular remodeling and
PPHN.23 Prostaglandins maintain ductal patency in utero and are important mediators of
pulmonary vasodilation in response to ventilation at birth. Pharmacologic blockade of
prostaglandin production by NSAIDs can result in PPHN. Analysis of meconium from
newborn infants with PPHN revealed the presence of NSAID in approximately half of the
samples,24 linking antenatal NSAID exposure to PPHN.

TRANSITION AT BIRTH
The entry of air into the alveoli with crying and breathing improves oxygenation of the
pulmonary vascular bed, decreasing PVR and increasing pulmonary blood flow.25 The
increase in pulmonary blood flow raises left atrial pressures more than right atrial pressures,
closing the foramen ovale. Removal of the low-resistance placental bed from the systemic
circulation at birth increases systemic vascular resistance (SVR; see Fig. 1). As PVR
decreases to less than SVR, flow reverses across the ductus. Oxygen-induced vasodilation
and lung expansion decrease PVR to approximately half of SVR within a few minutes after
birth. Over the first few hours after birth, the ductus arteriosus closes, largely in response to
the increase in oxygen tension, and with this the normal postnatal circulatory pattern is
established. The recognition of the role of NO in mediating pulmonary vascular transition at
birth26 has led to the development of inhaled NO (iNO) as a therapeutic strategy in the life-
threatening clinical disorder of PPHN. A detailed review of NO and other mediators of
pulmonary vascular transition at birth is presented in a previous issue.1

Factors Altering Pulmonary Vascular Transition at Birth
Mode of delivery—Vaginal delivery is associated with reduction in fetal PVR at birth.
Delivery by elective cesarean section27,28 delays the decrease in pulmonary arterial pressure
(see Fig. 1), as shown by prolonged right-sided systolic time intervals, and increases the risk
for PPHN.21 Compared with matched controls, infants with PPHN are more likely to have
been delivered by cesarean section.29

Timing of delivery—Timing of delivery influences the risk and outcome of HRF in
neonates. Delivery during late preterm or early term gestation is associated with a higher
risk of admission to the NICU with respiratory distress.30 Among patients with severe HRF
requiring extracorporeal membrane oxygenation (ECMO), mortality is higher among late
preterm and early term infants compared with term infants.31 However, infants with CDH
without other anomalies have been observed to have reduced need for ECMO and
marginally better survival when delivered early term compared with late term.32 More
recent population-based studies have not confirmed these findings.33

Antenatal glucocorticoids—Administration of glucocorticoids, such as betamethasone,
before elective cesarean section has been shown to reduce the incidence of respiratory
distress and admission to the NICU.34,35 This regimen is being adapted in some centers in
Europe.36 Preliminary data from our laboratory suggest that antenatal betamethasone
decreases PVR and increases fetal pulmonary blood flow. Recent identification of genetic
variations involving corticotropin-releasing hormone in patients with PPHN, as well as the
effectiveness of hydrocortisone in improving oxygenation in lambs with PPHN, suggest that
glucocorticoids may have a role in prevention and management of PPHN and HRF.37,38
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Early versus delayed cord clamping—The current neonatal resuscitation guidelines
recommend delayed umbilical cord clamping for at least 1 minute for newborn infants who
do not require resuscitation at birth.39 Delayed cord clamping results in more stable blood
pressures and improved iron status. Arcilla and colleagues40 evaluated the effect of late cord
clamping on pulmonary hemodynamics in newborn infants by catheterizing the pulmonary
artery. The mean ratio of pulmonary artery to systemic arterial pressure decreased to 0.7 by
2 hours and to 0.5 by 4 hours following early cord clamping. Following late cord clamping,
pulmonary arterial pressures were almost 90% of systemic pressures by 9 hours. The
investigators speculated that increased blood volume following late cord clamping results in
distension of the pulmonary capillary and venous bed, resulting in increased pulmonary
arterial pressure. Polycythemia with increased viscosity may contribute to high PVR. There
are no reports of an increased incidence of PPHN associated with delayed cord clamping.

Temperature—Induction of severe hypothermia in lambs between 1 and 3 days old
(decreasing temperature from 40°C to 30°C) increases mean pulmonary arterial pressure
from 29 to 40 mm Hg.41 Perinatal asphyxia is a well-known predisposing factor for
PPHN.42 There was considerable concern that therapeutic hypothermia in asphyxiated
infants would increase the risk of PPHN. Pooled analysis of randomized trials has not shown
an increased incidence of PPHN with hypothermia in this population.43 The type of cooling
(selective head cooling vs whole body cooling) does not alter the incidence of PPHN.44

Asphyxia—Perinatal asphyxia interferes with the mechanisms of pulmonary transition at
birth and modifies this complex adaptation impeding the decrease in PVR, and increasing
the risk for PPHN.42 Multiple mechanisms cause respiratory failure and affect pulmonary
circulation in asphyxia: fetal hypoxemia, ischemia, meconium aspiration, ventricular
dysfunction, and acidosis can all increase PVR.42 Acute asphyxia is associated with
reversible pulmonary vasoconstriction45 but chronic in utero asphyxia with or without
meconium aspiration may be associated with vasoconstriction and vascular remodeling.46

Oxygen during neonatal resuscitation—Oxygen is a potent and specific pulmonary
vasodilator. The use of 100% oxygen during initial ventilation of normal lambs at birth
results in a small but significant decrease in PVR during the first few minutes of life
compared with 21% or 50% oxygen.47 However, ventilation with 100% oxygen at birth
impairs subsequent relaxation to iNO and acetylcholine, probably because of the formation
of reactive oxygen species (ROS). Similar results were observed in lambs with pulmonary
hypertension and a remodeled pulmonary vasculature.48 In lambs with asphyxia induced by
umbilical cord occlusion, PVR was lower with 100% oxygen resuscitation compared with
21% oxygen at 1 minute of age but, by 2 minutes, PVR was similar in both groups. These
findings suggest that optimal ventilation (and not hyperoxygenation) is the key to reducing
PVR.49 Thirty minutes of resuscitation with 100% oxygen increased pulmonary arterial
contractility and superoxide anion formation in pulmonary arteries. Using 100% oxygen
therefore has transient advantages in rapidly reducing PVR but increases ROS formation,
increases pulmonary arterial contractility, and impairs vasodilation to endothelium-
dependent (acetylcholine) and endothelium-independent (iNO) agents. These findings
support the neonatal resuscitation guidelines’ recommendations to use room air for initial
resuscitation of term asphyxiated newborn infants.39

PULMONARY CIRCULATORY CHANGES IN HRF
Fig. 2 shows the 4 different patterns of pulmonary vascular changes in neonatal HRF. PPHN
is characterized by increased ratio of pulmonary vascular resistance (PVR) to SVR resulting
from (1) vasoconstriction; (2) structural remodeling of the pulmonary vasculature (Fig. 3);
(3) intravascular obstruction from increased viscosity of blood, as in polycythemia; or (4)
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lung hypoplasia. This condition leads to right-to-left shunting of blood across the foramen
ovale and ductus arteriosus, resulting in hypoxemia. Numerous disease states with diverse
causes can result in a similar final pathophysiology. About 10% of cases with PPHN are
idiopathic, with no associated pulmonary airspace disorder. However, PPHN is usually
associated with other acute respiratory conditions, such as meconium aspiration syndrome
(MAS), respiratory distress syndrome (RDS), pneumonia, or CDH. Hypoxemia in these
conditions can be caused by parenchymal lung disease, surfactant deficiency (RDS) or
inactivation (MAS, pneumonia), ventilation/perfusion (V/Q) mismatch, and intrapulmonary
as well as extrapulmonary right-to-left shunting of blood (Fig. 4). In some newborns with
HRF, a single mechanism predominates (eg, extrapulmonary right-to-left shunting in
idiopathic PPHN). However, more commonly, several of these mechanisms contribute to
hypoxemia. In MAS, obstruction of the airways by meconium results in decreasing V/Q
ratios and increasing intrapulmonary right-to-left shunt. Other segments of the lungs may be
overventilated relative to perfusion, causing increased physiologic dead space. The same
patient may also have severe PPHN with extrapulmonary right-to-left shunting at the level
of the ductus arteriosus and foramen ovale.

Pneumonia or meconium aspiration may release inflammatory mediators that induce
vasoconstriction. Vasoconstrictors such as leukotrienes, platelet-activating factor,
thromboxanes,50 and ET-151 have been found to be increased in PPHN. Chronic intra-
uterine ETA receptor blockade following antenatal ductal ligation decreases pulmonary
arterial pressure in utero, decreases right ventricular hypertrophy and distal muscularization
of small pulmonary arteries, and further decreases the PVR at delivery in newborn lambs
with PPHN.52 Thus ET-1 acting through ETA receptor stimulation might contribute to the
pathogenesis and pathophysiology of PPHN. Derangements in the NO pathway of
vasodilation can also result in the physiologic characteristics of PPHN. Pulmonary
endothelial nitric oxide synthase (eNOS) gene and protein expression and enzyme activity
are decreased in fetal lambs with PPHN induced by antenatal ductal ligation.53 In addition,
the response to stimulators of eNOS is lost.54 In these lambs with PPHN, the vascular
response to NO is also diminished,55 whereas the response to cyclic guanosine
monophosphate-phosphodiesterase (cGMP) is normal. Thus, the decreased responsiveness
seems to result from decreased vascular smooth muscle sensitivity to NO at the level of
sGC. Because NO relaxes smooth muscle and inhibits vascular smooth muscle growth,
diminished eNOS expression may contribute to both abnormal vasoreactivity and excessive
muscularization of pulmonary vessels in PPHN.

Pulmonary hypertension sometimes occurs because of an abnormal pulmonary vascular bed
despite the absence of alveolar hypoxia and hypercapnia and of lung inflammation. These
infants can be grouped according to the degree of muscularization and the number of
pulmonary arteries.56 In infants with hypoplastic lungs, as in CDH and oligohydramnios
sequence (sometimes secondary to fetal renal dysfunction), PPHN may arise primarily as a
consequence of a decreased number of vessels, causing decreased cross-sectional area of the
pulmonary vascular bed, and leading to flow restriction. Patients with alveolar capillary
dysplasia may have a similar vascular hypoplasia. These cases may be complicated by
increased muscularization of the vessels.

Many infants who have HRF do not have right-to-left extracardiac shunting, and may have
hypoxia because of intrapulmonary shunting or cardiac dysfunction (see Fig. 4).
Determination of the hemodynamic profile of these babies using functional
echocardiography is important to make the diagnosis, initiate therapy, and follow the
changes with therapy.57 The gold standard in defining PPHN rests on the echocardiographic
findings of right-to-left shunting of blood at the foramen ovale and/or the ductus arteriosus,
as well as estimates of pulmonary arterial pressure using tricuspid regurgitation jet velocity.
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Using the modified Bernoulli equation, systolic right ventricular pressure (mm Hg) is
estimated by 4v2 + right atrial pressure, where v is the maximal velocity of tricuspid
regurgitation jet in meters per second on continuous-wave Doppler echocardiogram.58 The
velocity of tricuspid regurgitation jet may also be influenced by right ventricular
dysfunction, leading to underestimation of pulmonary arterial pressure. Right ventricular
dysfunction caused by excessive afterload seems to be a major risk factor for poor outcome
in HRF.42

Doppler measurements of atrial and ductal level shunts provide essential information to
optimize management of a newborn with HRF. For example, left-to-right shunting at the
foramen ovale and ductus arteriosus with marked hypoxemia suggests predominant
intrapulmonary shunting, and interventions should be directed at optimizing lung inflation
and recruitment. Increasing mean airway pressure and administering surfactant are likely to
be more effective than iNO in improving oxygenation in babies with parenchymal lung
disease and left-to-right shunt at patent ductus arteriosus (PDA) and patent foramen ovale
(PFO).Presence of right-to-left shunting at the ductal level and left-to-right shunting at the
atrial level similarly suggests PPHN with left ventricular dysfunction with some pulmonary
venous hypertension (Table 1). This finding may be associated with the CDH59 and left
ventricular dysfunction seen in sepsis and asphyxia.60 If right-to-left shunting is present at
ductal and atrial levels and is associated with labile hypoxemia and tricuspid regurgitation,
PPHN is the most likely diagnosis. However, patients with fixed hypoxemia with right-to-
left shunting at ductal and atrial levels associated with a small left atrium without tricuspid
regurgitation may have anomalous pulmonary venous return (see Table 1).

Pulmonary Circulatory Changes in Some Specific Conditions Resulting in Neonatal
Respiratory Failure

Idiopathic PPHN—Idiopathic PPHN (also known as black-lung PPHN) is characterized
by increase of PVR without a primary parenchymal lung disease. Autopsy studies of fatal
idiopathic PPHN show severe hypertensive structural remodeling with vessel wall
thickening and smooth muscle hyperplasia. The vascular smooth muscle extends to the level
of intra-acinar arteries,61 resulting in increased PVR and failure to respond to birth-related
stimuli, such as ventilation and oxygenation.62 A well-known cause of black-lung PPHN is
exposure to indomethacin during the third trimester, resulting in closure of the ductus
arteriosus in utero.24,63 A fetal lamb model of idiopathic PPHN is created by antenatal
ductal ligation.64 This model shows the clinical and histopathologic features of PPHN.23

Abnormalities of the nitric oxide pathway (decreased eNOS,53 decreased sGC,55 and
increased phosphodiesterase type 5 [PDE565]), superoxide anion pathway (increased
superoxide66 and hydrogen peroxide67), and prostacyclin pathway (decreased prostacyclin
synthase and prostacyclin IP receptor68) have been described in this model. Similar
abnormalities in enzyme pathways may occur in human neonates with idiopathic PPHN.

CDH—CDH occurs in approximately 1 in 3000 births and is the most common cause of
pulmonary hypoplasia in the neonate. Diaphragmatic hernia is associated with ipsilateral and
contralateral lung hypoplasia, vascular paucity, and vascular remodeling. Most cases are
diagnosed in the antenatal period. Initial delivery room management focuses on
stabilization, gastrointestinal decompression, and immediate intubation. Bag-mask
ventilation and introduction of more gas into the gastrointestinal tract should be avoided.
Early corrective surgery is often associated with deterioration of respiratory function in the
immediate postoperative period. There has been a paradigm shift focusing on
cardiorespiratory stabilization and management of PPHN followed by surgery. There are 2
animal models of CDH: the rat model created by maternal ingestion of nitrofen, a herbicide,
resulting in lung hypoplasia and a diaphragmatic defect; and a second model that is created
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by fetal surgery in lambs. Abnormalities in the nitric oxide synthase,69 sGC, and PDE5
function70 have been observed in these models. These abnormalities, associated with left
ventricular hypoplasia, may contribute to poor response to iNO in CDH.

MAS—A combination of preexisting in utero hypoxia and meconium aspiration into the
lungs with pulmonary hypertension often carries high morbidity. In the 1980s and 1990s,
MAS was the most common cause of severe HRF and PPHN in neonates, but the incidence
has decreased in recent years in the United States. A review of annual neonatal ECMO data
from the Extracorporeal Life Support Organization (ELSO) registry (accessed in February
2012) shows that CDH accounts for more ECMO runs than MAS in recent years. This
reduction is partly caused by reduction in postterm births in the United States in recent
years, because MAS is more common in this population. Meconium aspiration with
perinatal asphyxia leads to an immediate release of circulating vasoactive substances, which
favor contraction and proliferation of smooth muscle fibers in the pulmonary circulation.
Most cases of fatal MAS show evidence of smooth muscle hypertrophy in small pulmonary
arteries.46 In addition, a decrease in the expression of eNOS was reported in umbilical
venous endothelial cells isolated from human infants with MAS.71 In piglets, meconium
instillation into the lungs increases PVR and asphyxia decreases SVR, and a combination of
MAS and asphyxia worsen the ratio between PVR and SVR.72

Transient tachypnea of the newborn with HRF and PPHN (malignant transient
tachypnea of the newborn)—Ramachandrappa and Jain27 reviewed the pathogenesis of
respiratory morbidity following elective cesarean section. Many infants with hypoxemia
following elective cesarean section are considered to have transient tachypnea of the
newborn and wet lung syndrome and are placed on oxygen by hood or nasal cannula without
positive pressure. Absorption atelectasis results in increasing oxygen requirements and
progressive respiratory failure. It is possible that formation of ROS from high alveolar PaO2
may lead to increased pulmonary vascular reactivity and contribute to PPHN. Severe
respiratory failure following elective cesarean section may occasionally require therapy with
ECMO.73

Premature infant with bronchopulmonary dysplasia and pulmonary
hypertension—Bronchopulmonary dysplasia (BPD) continues to be a major cause of
morbidity and late mortality in extremely preterm infants. Pulmonary hypertension is
observed in approximately 1 in 6 extremely low birth weight (ELBW) infants.74 BPD is
associated with reduced cross-sectional perfusion area with decreased arterial density and
abnormal muscularization of peripheral pulmonary arteries.75 Risk factors for developing
pulmonary hypertension include low birth weight (small for GA), oligohydramnios,76 and
prolonged mechanical ventilation. A recent prospective analysis showed that the onset of
pulmonary hypertension in BPD is variable and can be as late as 3 to 4 months of age.74 A
delay in diagnosis is associated with progressive pulmonary vascular disease, cor pulmonale,
and high mortality. It is prudent to screen babies that are ventilated or require greater than
30% oxygen or have radiological evidence of BPD with an echocardiogram at 1 month of
age and every 4 weeks until discharge to diagnose pulmonary hypertension early, leading to
appropriate therapy. The optimal intervention strategies for reversing early pulmonary
hypertension or treating established pulmonary hypertension are not clear. Multiple
therapies, such as maintaining higher oxygen saturations, iNO, and sildenafil, are reported
anecdotally to have been tried with mixed results.77–79

Air-leak syndromes—Air-leak syndromes such as pulmonary interstitial emphysema
(PIE), pneumothorax, and pneumomediastinum are common complications of mechanical
ventilation in preterm infants and are associated with respiratory failure. Among late preterm
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and term newborn infants, spontaneous pneumothorax is common and results in respiratory
failure. Most of these infants improve spontaneously or require thoracocentesis or chest tube
drainage with resolution of HRF. Smith and colleagues80 recently reported that almost half
of late preterm/term infants with spontaneous, symptomatic pneumothorax that required
needle or chest tube drainage developed PPHN. Acute increases in PVR with shunting
secondary to hypoxemia or acidosis or caused by the primary lung disease must be
considered in the differential diagnosis of persistent HRF in infants with pneumothorax.

PULMONARY HEMODYNAMIC CHANGES CAUSED BY THERAPY
A detailed review of inhaled NO, sildenafil, milrinone, and other pulmonary vasodilator
agents is provided in the March 2012 issue of Clinics.81 This article focuses on the impact of
various therapies in the NICU on the pulmonary circulation.

Mechanical Ventilation
Optimal lung recruitment during mechanical ventilation with appropriate use of positive end
expiration pressure (PEEP) and/or mean airway pressure is a critical step during the
management of HRF. When lungs are inflated at functional residual capacity (FRC), PVR is
low. PVR is a combination of resistance offered by alveolar vessels and extra-alveolar
vessels. When the lungs are underinflated or collapsed, the alveolar vessels are wide open
but the extra-alveolar vessels are narrowed, resulting in increased PVR. When the alveoli are
overinflated, the alveolar vessels are compressed, resulting in high PVR. Moreover, high
PEEP or mean airway pressure may impair venous return and reduce cardiac output.82 An
optimal balance is achieved when the lung expansion is at FRC. It is important to check
frequent radiographs during the acute phase of PPHN to assess optimal lung expansion.

Many clinicians use high-frequency ventilation (HFV) to manage infants with PPHN.
Considering the important role of parenchymal lung disease in specific disorders resulting in
PPHN, adequate lung inflation and optimal ventilation are as essential as pharmacologic
vasodilator therapy. In the case of inhaled vasodilators, optimal inflation and ventilation
may be necessary for drug delivery.83 Infants with PPHN with a variety of causes have been
successfully treated with HFV.84 High-frequency oscillatory ventilation (HFOV) decreases
PaCO2 and increases oxygenation in infants with PPHN. HFOV may improve oxygenation
through safer use of higher mean airway pressures to maintain lung volume and prevent
atelectasis. Two studies have evaluated the effectiveness of HFV compared with
conventional ventilation in rescuing infants with respiratory failure and PPHN from
potential ECMO therapy.85,86 Neither mode of ventilation was more effective in preventing
ECMO in these infants. In clinical pilot studies using iNO, a combination of HFOV and iNO
resulted in the greatest improvement in oxygenation in some newborns who had severe
PPHN complicated by diffuse parenchymal lung disease and underinflation.87 A randomized
controlled trial showed that treatment with HFOV and iNO was often successful in patients
who failed to respond to HFOV or iNO alone in severe PPHN, and the differences in
responses were related to the specific disease associated with PPHN. Infants with RDS and
MAS benefit most from a combination of HFOV and iNO therapy.88,89

Oxygen
Oxygen is a specific and potent pulmonary vasodilator and increased oxygen tension is an
important mediator of reduction in PVR at birth. Alveolar hypoxia and hypoxemia increase
PVR and contribute to the pathophysiology of PPHN. Avoiding hypoxemia by mechanical
ventilation with high concentrations of oxygen used to be the mainstay of PPHN
management. However, exposure to hyperoxia may result in formation of oxygen free
radicals and lead to lung injury. As mentioned previously, brief exposure to 100% oxygen in
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newborn lambs increases contractility of the pulmonary arteries90 and formation of
superoxide anions49 and reduces response to inhaled NO.47,48 Administration of
intratracheal recombinant human superoxide dismutase (SOD; an antioxidant that breaks
down superoxide anions) results in improved oxygenation in lambs with PPHN.91,92 Based
on these studies, it seems that avoiding hyperoxia is as important as avoiding hypoxia in the
management of PPHN.

The optimal PaO2 in the management of PPHN is not clear. Wung and colleagues93

suggested that gentle ventilation with avoidance of hyperoxia and hyperventilation results in
good outcomes in neonates with respiratory failure. Decreasing PaO2 to less than 45 to 50
mm Hg results in increased PVR in newborn calves94 and lambs.48 In contrast, maintaining
PaO2 at greater than 70 to 80 mm Hg does not result in additional decrease in PVR in both
control lambs and lambs with PPHN. Maintaining preductal oxygen saturations in the 90%
to 97% range seems to be associated with low PVR in the ductal ligation model of PPHN
(Fig. 5). In animal studies, hypoxemia results in pulmonary vasoconstriction; normoxemia
reduces PVR but hyperoxemia does not result in additional pulmonary vasodilation. To date,
randomized studies comparing different PaO2 targets have not been conducted in infants
with PPHN.

Acidosis/Alkalosis
Acidosis (both metabolic and respiratory) constricts the pulmonary vasculature and
increases PVR, whereas alkalosis selectively decreases PVR.94 Acidosis (pH<7.30) was
associated with an exaggerated constrictor response to hypoxia. In 1978, Peckham and
Fox95 published a study of 10 infants with significant PPHN who were treated with
hyperventilation and showed significant improvement. Despite the small number of infants
in this report, hyperventilation soon became a common therapy in the treatment of this
disease and was effectively used as a strategy to improve PaO2.96 In 1985, Wung and
colleagues93 challenged this practice. They managed 15 infants with severe PPHN using
gentle ventilation maintaining PaO2 between 50 and 70 mm Hg and allowing PaCO2 to
increase as high as 60 mm Hg. All infants survived, with only 1 developing chronic lung
disease, thus questioning the strategy of hyperventilation. Moreover, studies in asphyxiated
lambs showed that respiratory alkalosis reduced cerebral blood flow.97 Alkalosis achieved
via ventilator-induced hypocarbia was subsequently shown to be associated with poor
neurodevelopmental outcome and hearing loss.98,99 In a retrospective review of PPHN
management at National Institute of Child Health and Human Development (NICHD)
centers, Walsh-Sukys and colleagues100 reported that continuous alkali infusion was
associated with increased use of ECMO and increased use of oxygen at 28 days of age. With
the availability of selective pulmonary vasodilators, therapeutic alkalosis is no longer
recommended in the management of PPHN. Based on animal data, avoiding acidosis
(pH<7.30) may offer some protection against pulmonary vasoconstrictor response to
hypoxia.94 However, this effect has not been systematically evaluated in human infants with
PPHN.

Surfactant
Administration of intratracheal surfactant is a common practice in the presence of RDS,
pneumonia, or MAS. In surfactant-depleted piglet models, instillation of surfactant is
associated with a significant reduction in systemic and pulmonary arterial pressures.101,102

However, in human preterm infants, administration of surfactant is associated with selective
reduction in pulmonary arterial pressure without any change in systemic pressure.103

Surfactant therapy has been shown to reduce the need for ECMO in term neonates with
MAS.104–106 The effect of surfactant is probably a combination of its direct effect on
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compliance and recruitment and, when used in conjunction with iNO, an indirect effect
through enhancing iNO delivery and V/Q matching.

iNO
The introduction of iNO, following its approval by the US Food and Drug Administration
(FDA) in 1999 revolutionized the management of PPHN and HRF in the NICU. Large
multicenter trials, the Neonatal Inhaled Nitric Oxide Study Group (NINOS) trial,107 the
Clinical Inhaled Nitric Oxide Research Group (CINRGI) trial,108 and Roberts and
colleagues’109 trial, showed that iNO reduced the need for ECMO. Treatment with iNO
results in improved oxygenation and reduction in oxygenation index (OI; mean airway
pressure in cm H2O × forced inspiratory oxygen [Fio2] × 100/PaO2 in mm Hg) in 50% to
60% of patients over a wide range of severity of HRF.110

Approximately two-thirds of neonates with parenchymal lung disease, such as MAS and
RDS, and HRF respond well to iNO with improved oxygenation. The percentage of
responders can be further enhanced with the use of HFOV, emphasizing the importance of
lung recruitment during iNO therapy.89 A similar oxygenation response is observed in
infants with idiopathic PPHN, but implementation of HFOV does not enhance this response.
In contrast, HRF resulting from CDH responds poorly to both iNO and HFOV. Possible
causal factors resulting in inadequate or ill-sustained response to iNO are discussed later
(Fig. 6):

Poor alveolar recruitment—Inhaled NO has to reach its target organ, the resistance
pulmonary arteriole, to induce pulmonary vasodilation. If there is parenchymal lung disease
and/or atelectasis, iNO cannot reach alveoli and pulmonary vasculature. Appropriate
alveolar recruitment with increased PEEP, mean airway pressure, and use of surfactant
before initiation of iNO is likely to increase pulmonary vasodilation in response to iNO.
Once iNO enters the pulmonary vasculature and interacts with hemoglobin in the red blood
cells, methemoglobin (MHb) is formed. The increase in MHb following iNO therapy can be
considered to reflect that iNO has reached the pulmonary vasculature. We have observed
that MHb levels (corrected for NO dose) are significantly higher in neonates with a positive
oxygenation response to iNO compared with neonates that do not respond to iNO.83 Better
alveolar recruitment with HFV and surfactant is at least partly responsible for lower ECMO/
death rates following iNO therapy in recent studies (19.5%)111 compared with the NINOS
study (39%).107

Remodeled pulmonary vasculature—Chronic intrauterine pulmonary hypertension,
such as is seen in CDH, and antenatal closure of the ductus arteriosus can result in
thickening of the smooth muscle layer and adventitia with distal extension of musculature to
normally nonmuscular arterioles. Remodeled vasculature tends to be associated with a fixed
component of vasoconstriction and does not respond well to exogenous vasodilators.
Endothelial dysfunction results in poor response to endothelium-dependent vasodilators,
such as oxygen and acetylcholine. These abnormal vasodilator responses secondary to
impaired sGC activity are well described in animal models of neonatal pulmonary
hypertension55 and diaphragmatic hernia.70

Abnormalities of target enzymes—Nitric oxide stimulates sGC in the pulmonary
arterial smooth muscle cell (PASMC) to produce cGMP. sGC is a heme-containing enzyme
and can be inactivated by a variety of conditions. Animal models of PPHN have decreased
sGC activity reducing cGMP production and relaxation to NO donors.55 More recently,
specific activators of sGC have been shown to relax PASMC and may be potentially more
effectively than iNO.112,113 An increase in PDE5 activity results in catabolism of cGMP and
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limitation of NO-induced vasodilation. Ventilation with high concentrations of inspired
oxygen and exposure to ROS stimulates PDE5 activity114 and decreases cGMP levels.
Inhibition of PDE5 with the use of sildenafil has been an effective strategy in the treatment
of PPHN.115,116 Sildenafil, the first PDE5 inhibitor to be approved by the FDA for treatment
of pulmonary hypertension in adults, is currently available for both oral and intravenous
administration. Therapy with sildenafil has been studied in the acute phase of PPHN and in
patients with chronic pulmonary hypertension. Sildenafil is currently not approved for use in
neonates but has been used off label in the following circumstances: (1) management of
PPHN in the acute phase in situations in which iNO and ECMO are not available,115 as in
developing countries. In a recent pharmacokinetic study, intravenous sildenafil was shown
to be effective in improving oxygenation as a primary agent (without the use of iNO).116 (2)
To augment the effect of iNO in patients with partial or ill-sustained response to iNO. It may
be particularly effective in patients following prolonged hyperoxic ventilation because
ventilation with high oxygen concentrations and superoxide anions stimulates PDE5
activity.114 (3) To reduce the severity of, or to prevent rebound, pulmonary hypertension
observed after weaning iNO.117 (4) Chronic oral therapy in infants with prolonged
pulmonary hypertension, as in that associated with BPD118 or CDH. (5) Antenatal use of
sildenafil was recently shown to decrease pulmonary hypertension in nitrofen-induced CDH
in rat pups; there are no human studies to show the effect of antenatal sildenafil on fetal
PVR. The primary concern with the use of intravenous or oral vasodilators, such as
sildenafil, is the potential for a decrease in SVR with worsening of right-to-left shunt. The
dose of sildenafil should be carefully adjusted to achieve pulmonary vasodilation without
significant systemic vasodilation. The optimal dose of sildenafil in term neonates has been
evaluated in a recent pharmacokinetic study.119 A slow load of 0.4 mg/kg over 3 hours
results in early buildup of therapeutic plasma levels without significant reduction in
systemic blood pressure. The dose of continuous infusion is 1.6 mg/kg/d. This intravenous
dose (approximately 2 mg/kg/d) corresponds with the recommended oral dose of 4 to 8 mg/
kg/d, assuming that oral bioavailability of sildenafil in neonates is similar to that in adults
(40%).120–122 Hepatic immaturity or dysfunction and severe renal impairment can prolong
the half-life of sildenafil121 and potentially increase in the risk of systemic hypotension.

ROS—The primary determinant of the biologic half-life of endogenous NO is the local
concentration of superoxide anions. The reaction between NO and superoxide anion yields
toxic peroxynitrite with a second-order rate constant near the diffusion-controlled limit (K
constant = 6.7 ± 0.9 × 109 M−1 s−1). This reaction constitutes an important sink for
superoxide anions because it is about twice as fast as the maximum velocity of superoxide
dismutase.123 In addition to direct inactivation of NO, ROS can decrease eNOS activity and
sGC activity, and increase PDE5 activity, resulting in decreased cGMP levels. Increased
ROS can be secondary to (1) ventilation or exposure to high oxygen49; (2) poor antioxidant
defense mechanisms such as superoxide dismutase, catalase, and glutathione peroxidase
levels124; and (3) increased production of superoxide anions from increased activity of
enzymes such as nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase
(Nox).66 The effect of prior oxygen exposure (in the form of OI) on response to iNO has
been evaluated. Konduri and colleagues125 randomized near-term and term infants with
HRF into early initiation of iNO (when OI is ≥15 but <25) or standard initiation (OI ≥25).
There was no difference in the incidence of death (early iNO, 6.7% vs standard, 9.4%),
ECMO (10.7% vs 12.1%), or death and ECMO combined (16.7% vs 19.5%). However,
control infants receiving standard iNO deteriorated to OI greater than 40 more often than the
early iNO group (14% vs 7%, P = .056). Based on this study, starting iNO at an OI less than
25 does not reduce the need for ECMO but may prevent progression of HRF and decrease
exposure to high levels of oxygen in some neonates with HRF. Data from multiple trials of
iNO in HRF are shown in Fig. 7. Based on these results, it seems that OI at initiation of iNO
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roughly corresponds with the frequency of ECMO/death in that cohort. The case series of
gentle ventilation and iNO use from Columbia-Presbyterian hospital126 with lower target
PaO2 and permissive hypercapnia was associated with a lower frequency of ECMO/death
(28%) despite a high mean OI at initiation of iNO (46.8 ± 24.5). This association suggests
that targeting lower PaO2 and limiting FiO2 (and possibly ROS generation) and barotrauma
improves outcomes in PPHN.

Left ventricular dysfunction—Patients with HRF and PPHN typically have a right-to-
left shunt at the level of ductus arteriosus and foramen ovale. In the presence of left
ventricular dysfunction and/or hypoplasia, left atrial pressures are increased, resulting in a
left-to-right shunt at the foramen ovale (see Table 1). Increased left atrial pressure results in
pulmonary venous hypertension. Administration of iNO to a patient with pulmonary venous
hypertension can result in potential flooding of the pulmonary capillary bed and worsening
of pulmonary edema, resulting in clinical deterioration.59 Left ventricular hypoplasia
associated with CDH127,128 may contribute to pulmonary venous hypertension and could be
a potential explanation for impaired response to iNO in these patients.129 It has been
suggested that an inodilator such as milrinone may be more effective than iNO in improving
left ventricular function and reducing pulmonary venous hypertension.

Two case series report the effectiveness of milrinone in improving oxygenation in iNO-
resistant PPHN.130,131 Unlike iNO, which acts through cGMP, milrinone inhibits
phosphodiesterase 3A (PDE3A) enzyme in PASMCs and increases the level of a different
second messenger, cAMP, resulting in pulmonary vasodilation. Pulmonary vasodilation in
response to milrinone is proportional to PDE3A activity in PASMCs. Exposure to NO
donors increases PDE3A expression in rat PASMCs.132 Ventilation of newborn lambs with
oxygen and iNO increases PDE3A activity in resistance level pulmonary arteries compared
with ventilation with oxygen alone.133 Pulmonary arterial rings isolated from lambs
ventilated with iNO relax significantly better to milrinone compared with lambs ventilated
with oxygen only. These studies suggest that exposure to iNO increases PDE3A activity and
that milrinone may be uniquely effective in promoting pulmonary vasodilation and
improving oxygenation in iNO-resistant PPHN,130,131 in addition to its cardiac inotropic
effect.

Increased vasoconstrictor mediators—ET-1 is produced by the endothelium and
exerts its powerful vasoconstrictor effect by acting on ET-A receptors on vascular smooth
muscle cells.134 Increased levels of plasma immunoreactive ET-1 levels have been reported
in neonates with PPHN, and these levels correlate with the severity of disease.135,136

Bosentan, an ET receptor antagonist, has been used in PPHN.137,138 Mohamed and
colleagues137 recently reported a prospective randomized trial of bosentan versus placebo in
PPHN. Oral bosentan (1 mg/kg twice a day) resulted in a significant improvement in OI
compared with placebo. Close monitoring of liver function is important during bosentan
therapy.

Rare causes of PPHN/HRF in term neonates—In some patients with PPHN/HRF
resistant to all treatments including ECMO, lung biopsy may be required to confirm the
diagnosis.139 Patients with alveolar capillary dysplasia and misalignment of pulmonary
veins (ACD/MPV) typically present with HRF and PPHN shortly after birth. Lung histology
shows simplification of alveolar architecture, widened and poorly developed septa, with a
paucity of capillaries. Small pulmonary arteries are muscularized, accompanied by
pulmonary veins within the same connective tissue sheath (see Fig. 6). Patients with
surfactant protein-B (SPB) deficiency and ATP binding cassette A3 (ABCA3) transporter
deficiencies present with intractable HRF. Infants with prolonged, severe HRF/PPHN out of

Lakshminrusimha Page 12

Clin Perinatol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



proportion to their lung disease may require a lung biopsy or targeted genetic evaluation for
definitive diagnosis.

Inotropes
PPHN is a syndrome associated with an increased PVR/SVR ratio. Systemic hypotension is
a common feature of patients with PPHN and can be multifactorial. Common causes include
(1) direct effect of the primary underlying disease such as sepsis or pneumonia, (2)
myocardial dysfunction secondary to asphyxia or sepsis,60 (3) septal deviation to the left
impinging on left ventricular end-diastolic volume and outflow tract, (4) ventilator therapies
such as increased mean airway pressure reducing venous return,82 and (5) decreased
pulmonary venous return caused by increased PVR reduces left ventricular preload.

It is a common practice in the NICU to obtain an echocardiogram to estimate systolic
pulmonary arterial pressure and to increase systemic systolic pressure with an infusion of
inotropes such as dopamine. Dopamine is a nonselective vasoconstrictor and can increase
systemic arterial pressure as well as pulmonary arterial pressure in newborn goats140 and
preterm human infants with PDA. Initiation of norepinephrine infusion (0.5–1 μg/kg/min)
increased mean systemic arterial pressure from 39 ± 4 to 49 ± 4 mm Hg and increased mean
pulmonary arterial pressure from 33 ± 4 to 42 ± 5 mm Hg, decreased pulmonary/systemic
pressure ratio, and improved oxygenation in late preterm and term infants with PPHN.141

The investigators report echocardiographic findings that suggest increased pulmonary blood
flow and speculate that norepinephrine may mediate an α2 receptor–mediated pulmonary
vasodilation.

We recently evaluated the effect of dopamine on systemic arterial pressure and pulmonary
arterial pressure in newborn lambs with PPHN induced by antenatal ductal ligation64 and
their control twins. Control lambs without PPHN have significantly higher systemic blood
pressure compared with pulmonary arterial pressure (Fig. 8). Administration of dopamine
selectively increases systemic arterial pressure at a lower dose without significantly
increasing pulmonary arterial pressure, and increases pulmonary blood flow in control lambs
with normal pulmonary vasculature. In PPHN lambs with remodeled pulmonary arteries,
pulmonary arterial pressure is at systemic levels and is more sensitive to vasoconstrictor
effects of dopamine. Dopamine did not increase pulmonary blood flow in lambs with PPHN.
These findings emphasize the need for frequent echocardiograms to evaluate pulmonary
arterial pressure in patients with PPHN on high doses of dopamine and norepinephrine.

Partial Liquid Ventilation
Partial liquid ventilation (PLV) with perfluorocarbons has been studied in HRF in animal
models142,143 and human infants.144 PLV has been shown to improve gas exchange and
improve spatial distribution of pulmonary blood flow in models of lung injury.145 However,
PLV does not prevent hypoxic pulmonary vasoconstriction in the absence of parenchymal
lung injury.146 A combination of iNO and PLV improved oxygenation in a lamb model of
CDH147 but did not decrease PVR in a piglet model of MAS142 with conventional
ventilation. The use of high-frequency PLV results in a significant decrease in PVR and an
improvement in pulmonary blood flow in a preterm lamb model of RDS.148 It is likely that
PLV improves alveolar recruitment, compliance, and gas exchange, and its effect on
pulmonary hemodynamics is secondary to these changes.

ECMO
ECMO refers to a life support technique designed to enhance gas exchange and provide
pulmonary and/or cardiac support in severe HRF. ECMO requires diversion of blood from a
major systemic vessel through a gas exchange device (membrane oxygenator) and back to a

Lakshminrusimha Page 13

Clin Perinatol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



major vessel. The venoarterial approach (VA) has served as the primary mode of
cannulation for both cardiac and respiratory failure in neonates and uses a central vein
(usually jugular) for drainage and an artery (usually carotid) for return. As blood is diverted
from the pulmonary circuit, immediate decompression of the right ventricle occurs in VA-
ECMO. Venovenous (VV) cannulation is appropriate for patients with severe respiratory
failure who do not require cardiac support and uses a major vein for blood drainage and a
vein for return of oxygenated blood to the right heart.149,150 Pulmonary and right ventricular
hemodynamics are not altered, although the blood entering the pulmonary artery has
substantially higher PO2. The impact of such increased oxygen tension in the pulmonary
circulation on PVR is not known. The presence of pulsatile flow in VV ECMO is associated
with better cerebral hemodynamics but this could be a reflection of patient selection bias.151

Overall, no major differences have been reported in respiratory outcome between VA and
VV ECMO.152,153

SUMMARY
Increased understanding of the pathophysiologic changes in the pulmonary circulation in
neonatal HRF and PPHN in the last 2 decades has led to a substantial decrease in the number
of neonatal respiratory patients requiring ECMO. Further clinical research into pulmonary
vasodilator therapy has become more challenging because of a decreased number of patients
and widespread availability of iNO, resulting in difficult study recruitment. Two unmet
challenges remain in pulmonary circulatory disorders: CDH and premature infants with BPD
and pulmonary hypertension.154 Multicenter trials to evaluate and develop appropriate
strategies to ameliorate pulmonary vascular disease in these conditions are warranted.
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KEY POINTS

• Pulmonary vascular resistance increases during late gestation and decreases at
birth.

• Pulmonary vascular transition at birth can be influenced by mode of delivery,
asphyxia, body temperature, and oxygen concentration of the resuscitation gas.

• Neonatal hypoxemic respiratory failure (HRF) is often secondary to
parenchymal lung disease, ventilation-perfusion mismatch, or extrapulmonary
right-to-left shunt.

• Hypoxia causes pulmonary vasoconstriction, normoxia results in pulmonary
vasodilation, but hyperoxia does not lead to additional vasodilation.

• Inhaled nitric oxide (iNO) is a specific pulmonary vasodilator and is effective in
60% to 70% of late preterm and term neonates with HRF.

• Inadequate or ill-sustained response to iNO may be secondary to poor alveolar
recruitment, remodeled pulmonary vasculature, abnormalities of target enzymes,
presence of reactive oxygen species, left ventricular dysfunction, or increased
vasoconstrictive mediators.

• Pulmonary hypertension associated with bronchopulmonary dysplasia and
congenital diaphragmatic hernia is associated with high morbidity and mortality
and its management is challenging.
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Fig. 1.
Changes in PVR and systemic vascular resistance (SVR) during the last half of gestation and
the postnatal period. During the canalicular phase of lung development, high PVR is caused
by low density of the vasculature. In the saccular stage, broad intersaccular septae contain
the double capillary network and, with increasing vascular density, PVR decreases. In the
alveolar phase, despite the rapid increase in the number of small pulmonary arteries, high
PVR is maintained by active vasoconstriction. Fetal pulmonary vasodilator response to
endothelium-independent (direct smooth muscle relaxant) vasodilators such as NO precedes
the maturation of the vasodilator response to oxygen and acetylcholine (Ach), endothelium-
dependent vasodilators. After birth, lung liquid is absorbed and an air-liquid interphase is
established with juxtaposition of capillaries and alveolar epithelium to promote effective gas
exchange. The dashed line represents the delay in decrease of PVR observed following
elective cesarean section. SVR markedly increases after occlusion of the umbilical cord and
removal of the low-resistance placental circuit from the systemic circulation. (Copyright ©
Satyan Lakshminrusimha.)
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Fig. 2.
Pathologic changes in pulmonary circulation in neonatal HRF follows 4 patterns.
Intravascular obstruction caused by increased viscosity as seen in polycythemia in the
presence of normal pulmonary vasculature can cause PPHN. Asphyxia or parenchymal lung
disease can lead to alveolar hypoxia and acute pulmonary vasoconstriction. Chronic
pulmonary vascular remodeling can result from chronic intrauterine hypoxia, antenatal
ductal closure, or CDH. Lung hypoplasia with paucity of pulmonary vasculature
accompanies CDH; intrathoracic space occupying lesions, such as adenomatoid
malformations; or chronic oligohydramnios syndromes, which could be secondary to
chronic leakage of amniotic fluid or fetal oliguria from renal dysfunction. (Copyright ©
Satyan Lakshminrusimha.)
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Fig. 3.
Pulmonary arterial remodeling in HRF. (A) Preterm infant with respiratory distress
syndrome and PPHN; (B) Term infant with asphyxia and PPHN; note the smooth muscle
cell layer thickening around pulmonary arteries.
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Fig. 4.
Hemodynamic changes in PPHN/HRF. Surfactant deficiency (RDS) or inactivation (MAS or
pneumonia) results in parenchymal lung disease and ventilation-perfusion (V/Q) mismatch.
Increased PVR results in reduced pulmonary blood flow and right-to-left shunt through the
PDA and/or PFO. Pulmonary hypertension, often associated with systemic hypotension,
results in septal deviation to the left. Cardiac dysfunction secondary to asphyxia, sepsis, or
CDH may contribute to pulmonary venous hypertension and complicate HRF. LA, left
atrium; LV, left ventricle; PA, pulmonary artery; PDA, patent ductus arteriosus; PFO, patent
foramen ovale; RA, right atrium; RV, right ventricle; TR, tricuspid regurgitation. (Copyright
© Satyan Lakshminrusimha.)
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Fig. 5.
The effect of oxygen saturation on PVR in lambs with PPHN induced by antenatal ductal
ligation: Median (solid line) and 25th and 75th percentile lines (dashed lines) are shown in
the figure. Saturation range of 90% to 97% is associated with low PVR. (From
Lakshminrusimha S, Swartz DD, Gugino SF, et al. Oxygen concentration and pulmonary
hemodynamics in newborn lambs with pulmonary hypertension. Pediatr Res 2009;66(5):
542; with permission.)
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Fig. 6.
Common causes of failure to respond to iNO in neonatal HRF. (1) Failure to recruit alveoli
before iNO administration prevents delivery of NO to its target organ, the resistance level
pulmonary artery. (2) Remodeled pulmonary artery may have a fixed component of
pulmonary vasoconstriction and not respond to vasodilators. (3) Enzyme abnormalities such
as decreased sGC activity or increased PDE5 activity can decrease cGMP formation. (4)
Increased formation of ROS such as superoxide anions can inactivate NO and stimulate
PDE5. (5) Left ventricular failure results in pulmonary venous hypertension, and use of NO
in this situation may worsen pulmonary edema and oxygenation. (6) High concentrations of
vasoconstrictors, such as ET, may counteract the vasodilation induced by iNO. (7) Rare
abnormalities such as alveolar capillary dysplasia with misaligned pulmonary veins (ACD/
MPV) and surfactant protein-B deficiency or ATP binding cassette A3 (ABCA3) deficiency.
AC, adenylate cyclase; BNP, B-type natriuretic peptide; COX, cyclooxygenase; NO, nitric
oxide; NOS, nitric oxide synthase; PDE, phosphodiesterase; pGC, particulate guanylate
cyclase; PGI, prostacyclin; ROS, reactive oxygen species; sGC, soluble guanylate cyclase.
(Copyright © Satyan Lakshminrusimha.)
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Fig. 7.
The effect of OI at initiation of iNO on the incidence of ECMO and death in various trials:
the size of the bubble is based on the number of infants enrolled in the iNO arm in that trial.
The OI at initiation corresponds approximately with the incidence of ECMO or death. A
case series from Columbia-Presbyterian Hospital using gentle ventilation is associated with
lower incidence of ECMO/death despite high OI at initiation of iNO,126 suggesting that
prior exposure to oxygen is a more important factor than precise OI at initiation of iNO.
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Fig. 8.
Effect of dopamine infusion on mean systemic arterial and mean pulmonary arterial pressure
in normal newborn lambs and lambs with PPHN induced by antenatal ductal ligation. In
newborn lambs with normal pulmonary vasculature, systemic blood pressure is significantly
higher than pulmonary arterial pressure and increases relatively selectively in response to
low doses of dopamine. In PPHN, systemic and pulmonary blood pressures are similar and
increase in parallel in response to dopamine.
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Table 1

Differential diagnosis of hypoxemia in neonates based on the direction of shunt at atrial and ductal levels on
echocardiography

Diagnosis Ductal Shunt Atrial Shunt Management

Parenchymal lung disease and V/Q mismatch
and intrapulmonary shunt

L →R L →R Lung recruitment, specific therapy
(antibiotics for pneumonia)
NO may be beneficial

PPHN R →L R →L Oxygenation, correction of acidosis and
inhaled NO

Left ventricular dysfunction (common in
diaphragmatic hernia, asphyxia, and sepsis)59,60

R →L L →R Inotropes and vasodilators (Milrinone)

Tricuspid atresia/stenosis or pulmonic atresia/
stenosis

L →R R →L Prostaglandin E1 + surgery

Total anomalous pulmonary venous return155 R →L (large PA) R →L (small LA and no
tricuspid regurgitation)

Surgery

From Lakshminrusimha S, Kumar VH. Diseases of pulmonary circulation. In: Fuhrman PP, Zimmerman JJ, editors. Pediatric critical care. Mosby;
2011. p. 641; with permission.
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