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Abstract

Background: MicroRNAs (miRNAs) are important regulators of gene expression encoded by a variety of organisms,
including viruses. Although the function of most of the viral miRNAs is currently unknown, there is evidence that both
viral and host miRNAs contribute to the interactions between viruses and their hosts. miRNAs constitute a complex
combinatorial network, where one miRNA may target many genes and one gene may be targeted by multiple miRNAs.
In particular, viral and host miRNAs may also have mutual target genes. Based on published evidence linking viral and
host miRNAs there are three modes of mutual regulation: competing, cooperating, and compensating modes.

Results: In this paper we explore the compensating mode of mutual regulation upon Human Cytomegalovirus
(HCMV) infection, when host miRNAs are down regulated and viral miRNAs compensate by mimicking their function.
To achieve this, we develop a new algorithm which finds groups, called quasi-modules, of viral and host miRNAs and

their mutual target genes, and use a new host miRNA expression data for HCMV-infected and uninfected cells. For
two of the reported quasi-modules, supporting evidence from biological and medical literature is provided.

Conclusions: The modules found by our method may advance the understanding of the role of miRNAs in host-viral
interactions, and the genes in these modules may serve as candidates for further experimental validation.

Background

MicroRNAs (miRNAs) are an abundant class of small
noncoding RNAs (20-24 nts) that regulate gene expres-
sion by usually binding 3" UTRs of mRNA target tran-
scripts. They serve as major regulators of many biological
processes such as development, differentiation, growth
and apoptosis. The human genome encodes over 1400
miRNAs [1], and miRNAs are also encoded by viruses,
mainly herpes-viruses [2].

The targets for the majority of viral miRNAs are cur-
rently unknown, however, recent reports show various
roles for them in blocking apoptosis, in immune evasion
and in regulation of viral replication through targeting
both host and viral genes [3-5]. In addition to express-
ing their own miRNAs, infections with some viruses can
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result in changes in the expression of host miRNAs. These
changes can be the outcome of host response to the infec-
tion, and/or changes induced by the virus, to its own
benefit [6,7].

The participation of miRNAs in host-viral interactions
makes them attractive targets for antiviral therapy. Thus,
there is a motivation to identify the target genes of both
host and viral miRNAs. Over the years, several computa-
tional algorithms and tools for target prediction have been
developed (for a review see [8-10]). However, these tools
are noisy and predict an excess of targets for each miRNA,
with a very high false-positive rate, which stands in the
way of experimental wet-lab validation. This limitation is
due to the fact that miRNAs are very short and their inter-
action with target genes is not very specific. To overcome
this limitation, we predict combinatorial miRNA-target
interactions rather than single interactions. Additional
context is added to the prediction by considering differ-
ent modes of mutual regulation by host and viral miRNAs.
We seek groups of viral and human miRNAs and their
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common target genes (modules). To achieve this, we com-
bine target prediction results with additional information
sources (e.g., GO/KEGG categories and miRNA expres-
sion data). This approach may narrow the list of target
genes to more reliable candidates.

Previous studies show that one miRNA may have sev-
eral target genes and that one mRNA can be targeted
by multiple miRNAs [11-13], in particular viral and host
miRNAs may also have mutual targets. Based on the lit-
erature, there are three modes of mutual regulation by
host and viral miRNAs: a competing mode, a cooperating
mode and a compensating mode. First, human and viral
miRNAs may compete for target sites (if the target sites are
overlapping). Second, they could cooperate to enhance the
down regulation of their mutual targets. Third, through
alternation of viral/host miRNA expressions, viral and
host miRNAs could compensate each other’s action in the
target regulation task. Below we supply evidence from
literature for these modes and bioinformatically analyze
mode 3.

As evidence to the first mode, Nachmani et al. [14]
report that hcmv-miR-UL112-1 and hsa-miR-373, which
have overlapping sites on the MICB mRNA, showed com-
petitive mutual gene regulation. The authors note that the
strategy in which the viral miRNAs target a binding site
that is already in use by host miRNAs, makes it extremely
difficult for the host to escape viral regulation by mutating
the relevant binding site.

The second mode of cooperativity between viral and
host miRNAs in host gene regulation, was proposed and
bioinformatically explored in our previous work [15]. In
that previous study, the hypothesis was that viral miR-
NAs that share targets with human miRNAs contribute
to increasing the translational repression and tightening
the regulation which already existed at a modest level
in the cell (by the host regulation machinery). Our sys-
tem predicted groups of human and EBV miRNAs that
may mutually regulate human mRNAs enriched in sev-
eral biological processes related to EBV. Biological support
to this mode was given by Nachmani et al. [14] showing
that hcmv-miR-UL112-1 and hsa-miR-376, which have
distinct target sites on MICB mRNA, cooperate within
infected cells to down-regulate MICB. Furthermore, a
recent study which used the HITS-CLIP method on EBV-
infected cells, reported that about 1500 human genes are
targeted by both EBV and human miRNAs during latency,
via distinct binding sites [16].

As for mode 3, Skalsky et al. [17,18] reported that
Kaposi’s sarcoma-associated herpesvirus (KSHV) miR-
K12-11 is an ortholog of cellular miR-155. These two miR-
NAs are identical along their 5’ terminal 8 nts, including
the entire seed region, and it was determined experimen-
tally that both miRNAs share several target genes [17].
Furthermore, O’Hara et al. [19] reported that miR-155
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was down-regulated in Kaposi-sarcoma cancer, thus the
authors suggested that its viral ortholog could compensate
for some of its functions. Given that there are only a few
sequence mimicry examples in the literature (reviewed in
[20]), we decided to investigate deeper the compensation
mode of regulation, where viral miRNAs mimic the func-
tion of host miRNAs. We seek bioinformatically modules
of host and viral miRNAs and their common target genes,
where the host miRNAs are down regulated upon viral
infection, and viral miRNAs compensate for this.

Previous studies have developed methods for finding
modules consisting of miRNAs and genes of the same
species. We refer to some of them [21-23], in our paper
[15]. Recently, Xu et al., [24] identified miRNA pairs,
in order to analyze their functions, based on GO and
protein—protein interactions. Kim et al. [25] used a layered
hypernetwork (LHNs) model to find functional miRNA-
mRNA regulatory modules from expression profiles. Peng
et al. [26] presented a method which combines the inverse
expression relationship between miRNAs and mRNAs
with target prediction to find miRNA-mRNA modules,
and used it to infer human miRNA-mRNA modules asso-
ciated with HCV infection.

The common way to find the desired modules in the
methods above is by first representing the multiple rela-
tions between miRNAs and target genes by a bipartite
graph, where an edge indicates that the miRNA targets
the gene. Next, by finding bi-cliques in the graph, which
represent the miRNA-mRNA modules. In general, find-
ing bi-cliques in bi-partite graphs can be formulated as a
bi-clustering problem (reviewed in [27]), which is known
to be NP-complete. Therefore, most of the methods that
address bi-clustering are based on heuristic approaches,
which may miss good solutions. Instead, we developed
in our previous work [15] an enumeration method which
does not miss any of the possible modules. Furthermore,
to enforce modules to consist of both viral and host miR-
NAs each set of miRNAs (host, viral) has to be clustered
separately (bi-targeting method).

In that work we built a two sided miRNA-mRNA-
miRNA input graph (for example see Figure 1) using the
target prediction information, and found in the graph
maximal two-sided complete bi-cliques that followed quo-
rum (minimal number) constraints on the number of
human and viral miRNAs in the module. The algorithm
was applied for searching for EBV-human modules. The
disadvantage of this method was that the strong require-
ment that the sought modules be complete bi-cliques
(i.e. modules in which all miRNAs target all genes) con-
strained the results and yielded very few, small modules.
Furthermore, we expect that in some modules not all
miRNAs would target all genes. Some miRNA-target rela-
tionships could be missing due to either false negatives in
the target prediction or because the natural co-regulation
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Figure 1 The two-sided bipartite graph. There is an edge between
an miRNA and a gene if the gene is targeted by that miRNA. The
quorum and error thresholds are listed below the graph. A
quasi-module in this graph consists e.g. of the shaded circles (the sets
T,Hand V and the module edges are the thick lines). The full set of
quasi-modules for this graph is found in Figure 2.

process does not necessarily require that all miRNAs in
the module target all the genes.

We add flexibility to the modules, by devising a new
quasi bi-targeting algorithm which computes quasi bi-
cliques of human and viral miRNAs and their target
genes. Mining of quasi bi-cliques has been previously suc-
cessfully applied in fields like the stock market and protein
networks [28]. Our algorithm combines and extends
approaches from [15] and [28] to yield a new method to
compute the quasi-modules. A quasi-module is repre-
sented by a subgraph of the input graph consisting of three
disjoint sets of vertices (see Figure 1): human miRNAs H,
viral miRNAs V and target genes 7, and their correspond-
ing edges. Given the error tolerances ey, &y, £gn and &gy,
the module must comply with the following criteria: every
miRNA in H and V has to connect with all but €,,, and €,
genes in T, respectively. Every gene in T has to connect

Page 30f 18

with all but &, and &5, miRNAs in H and V, respectively.
In Figure 1, the shaded circles form a quasi-module,
where T = {b,c,d},H = {3,4,5,6},V = {B,C,D}, and
&nm = Eym = &g = 1 and gg; = 2. In this quasi-module,
every human and viral miRNA can be disconnected with
up to one gene (&, &vm), and every gene can be discon-
nected with up to two human miRNAs (gg,) and up to
one viral miRNA (gg,). In total, three quasi-modules that
comply with the above criteria are found in the graph (see
Figure 2).

In addition, we supply new expression data of human
miRNAs in Human cytomegalovirus (HCMYV) infected vs
un-infected cells. We extract from this data human miR-
NAs that are significantly down-regulated upon infection,
and use our new relaxed bi-targeting algorithm to study
the compensating regulation of miRNAs in HCMYV infec-
tion. We perform the search for modules on all KEGG
pathways and the significant modules are picked by a sam-
pling procedure. We validate two of the modules, found in
pathways that are related to HCMYV biology, by surveying
information from the biological and biomedical litera-
ture. The rest of the significant modules identified in our
study can be found at http://www.cs.bgu.ac.il/~vaksler/
QuasiBiTargeting.html.

Genes that are included in our modules, may serve
as better candidates for experimental target validation,
since they are predicted to be targeted by multiple viral
and human miRNAs, whose expression in uninfected vs.
infected cells is in accordance with mode 3. We believe
that our results may contribute to a wider understanding
of viral-induced diseases and the role that miRNAs plays
in them.

Methods

Datasets

The human and viral mature miRNA sequences, were
downloaded from the miRNA registry [1]. Additional
sequences of HCMV miRNAs that were reported recently
by Stark et al. [29] and Meshesha et al. [30], were also
taken into account. The full set of HCMV miRNAs
appears in Table 1.

and the thick lines.

(a) (b)

Figure 2 The resulting quasi-modules found in the data in Figure 1. The three modules, denoted as (a), (b) and (), consist of the shaded circles

(c)
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Table 1 Viral miRNAs in the study, divided into two groups

hcmv-miR- No. of targets
US25-1-3p 49
US5-2-3p 70
UL36-5p 92
US5-1-3p 97
UL22A-5p 176
UL112-3p 186
A US25-1-5p 212
US33-3p 278
US25-2-3p 310
UL22A-3p 310
US33-5p 320
US25-2-5p 352
UL36-3p 861

US5-2-5p 71

US22-3p 102
US4-3p 271
UL112-5p 295
B US4-5p-shift5* 297
US29-3p 314
US29-5p** 339
US22-5p 482

A) miRNAs from miRBase, Release 18 [1]; (B) additional miRNAs recently found
by Deep Sequencing [29,30]. Each group is sorted by the number of targets.
*The sequence of miR-US4-5p that was detected by deep sequencing in [29,30]
was shifted by 5 bp at the 5’ end from the miRBase sequence, we included the
shifted sequence in the datasets. **Denoted as US33a in [29]. In addition, mature
miRNAs from miR-UL70 were not detected by the deep-sequencing, thus they
were not included in the analysis.

In the human miRNA dataset we included miRNAs
whose expression was down-regulated upon HCMV
infection according to at least one of the following
sources: our new expression data, data from [31] and
data from [32](see below). The full set of human miRNAs
appears in Table 2.

The set of human 3'UTR sequences was extracted from
the Ensembl’s Biomart database (Ensembl 53) [33]. The
KEGG pathway lists of human genes were downloaded
from [34]. The set of 3UTRs was filtered to contain 3’
UTRs that belong to at least one pathway in the KEGG
database. This resulted in 10925 sequences (different tran-
scripts) from 5351 genes. In our study we used 207 KEGG
pathways which contained 10-300 genes.

Human miRNAs expression data

Cell cultures and RNA extraction

Human foreskin fibroblast (HFF) cells were grown in
DMEM medium supplemented with 10% fetal calf serum
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(FCS), 1% L-glutamine and 1% penicillin/streptomycin
(all reagents were supplied by Biological Industries, Beit
Haemmek, Israel). Viral infection of HFF by HCMV (an
isolate from clinical sample) was done at multiplicity of
infection (MOI) 2. Three days after infection infected and
mock infected HFF cells were harvested, and total RNA
was isolated using EZ-RNA II kit (Biological Industries,
Beit Haemmek, Israel) according to the manufacturer
instruction. This procedure was carried out twice, result-
ing in two sets of miRNA expression measurements in
infected vs un-infected cells. This data is available in a
Additional file 1.

Table 2 Human miRNAs used in the study

hsa- No. of targets
miR-99a 71
miR-181a* 85
miR-125b-1* 137
miR-424* 151
miR-155 153
miR-21% 177
miR-181a 245
miR-29b 273
miR-221 302
miR-181b 308
miR-222* 314
miR-886-3p 334
miR-221% 378
miR-199a-3p 408
miR-484 408
miR-708 446
miR-214* 463
miR-503 478
miR-320a 493
miR-214 624
miR-29b-1* 633
miR-34a 840
miR-100 68
miR-21 109
B miR-223 118
miR-101 196
miR-199a-5p 256
miR-222 340

Human miRNAs used in the study, that were shown to be down-regulated upon
HCMV infection in at least one of the three expression data sources (data
supplied in this study, by Wang et al. [31] and by Santhakumar et al. [32]). A)
miRNAs that were classified as down regulated in the miRNA expression data
supplied in this study (see Methods). B) Additional miRNAs that were classified
as down regulated in the studies of Wang et al [31] and Santhakumar at el [32].
Each group is sorted by the number of targets.
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miRNAs Microarray analysis

The RNA was reverse transcribe and cRNA labeled with
either cyanine 3-CTP (Cy3-CTP) or cyanine 5-CTP (Cy5-
CTP) were generated from each cDNA source using the
Low-Input Linear Amplification Kit (Agilent technolo-
gies, Santa Clara, USA) according to the manufacturer’s
protocol, except that synthesis was initiated at the in vitro
transcription step using 1 ug of cDNA as starting mate-
rial. Hybridization to the chip, (MIRCHIPTM, custom
made, Agilent Technologies, Santa Clara CA, USA) dis-
playing 45-mer oligonucleotide probes complementary to
all human miRNAs and HCMYV that were printed in trip-
licate spots, was carried out in solutions that contained
the indicated amount of each of labeled cRNA from either
the control or the test samples prepared using the In situ
Hybridization Reagent Kit (Agilent). Hybridized microar-
rays were scanned using the Agilent LP2 DNA Microarray
Scanner at 10 um resolution. Microarray images were
visually inspected for defects. To each sample external
spotted controls were added for normalization between
samples. The initial data analysis was carried out by
Rosetta Genomics.

Extracting down-regulated human miRNAs

For each of the two sets of expression measurements we
calculated the ratio of the expression of infected to un-
infected cells, and chose those miRNAs where at least one
of the ratios, as well as the average of the two ratios were
below 0.6. We filtered out miRNAs whose expression in
un-infected cell was below 500. The chosen miRNAs are
listed in Table 2(A).

Two additional studies measured the effect of HCMV
on host miRNAs [31,32]. Wang et al. [31] used miRNA
microarrays to measure host miRNA expression in
HCMYV infected cells (MRC-5 cells with CMV Towne
BAC) in different time points (6, 24, 48, and 96, or 120 h
post infection). From this report we chose miRNAs that
had significant down-regulation in their expression lev-
els in at least one time point. In a recent report by
Santhakumar et al. [32] it was shown that miR-
199a/214 cluster (miR-199a-5p, miR-199a-3p, and miR-
214) was down-regulated in HCMV-infected cells, thus
we included these miRNAs in our dataset. The additional
miRNAs are listed in Table 2(B).

The target prediction method

We ran all-against-all target prediction between the
miRNA and 3'UTR sets described above. The target pre-
diction was carried out with our previously developed tool
described in [15] with the following constraints for each
duplex: seed location is 2-8; maximum GU pairs in the
seed is 1 ; maximum GU pairs in the duplex is 4; maximal
number of mismatches/gaps in the duplex is 8; maximal
size of a bulge is 6; the duplex free energy should be less
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than -17 kcal/mol or the normalized free energy score
(normalized by the energy score of the miRNA bound to
its perfect complement) should be greater than 0.4.

Quasi-Bi-Targeting (QBT) enumeration algorithm

In this section we describe our approach to module
composition. We start by constructing a two-sided bipar-
tite graph with three sets of vertices. These sets are
human miRNAs, viral miRNAs and human genes (see,
for example, Figure 1), where the miRNAs are chosen
by changes in expression levels (expression data) and the
genes are restricted to belong to certain biological pro-
cesses (GO/KEGG). An edge in the graph between an
miRNA and a gene, indicates that this miRNA is predicted
to target this gene (information on target prediction is
supplied by applying our software [15], see details above).
Once the graph is built, we use an enumeration algorithm
to find in it quasi-modules that are statistically enriched in
the explored biological process.

The enumeration algorithm described here extends our
previous approach [15] for finding modules of miRNAs
and their target genes. In addition to supporting quorum
constraints on the number of genes and human and viral
miRNAs in a sought module, we now support also an error
tolerance threshold on the connectivity of the module.

The QBT algorithm relies on some Lemmas provided
in [28]. The algorithm supplied there deals with bipartite
graphs and supports equal quorum and error constraints
for both sides of the graph. We extend these lemmas to
fit two-sided bipartite graphs and different quorum and
error constraints for each side of the graph (see example
in Figure 1). In what follows we provide a formal defi-
nition of the problem and a high-level overview of the
algorithm. In the Appendix we supply formal details along
with observations and proofs which assert the correct-
ness of the algorithm, an example which demonstrates the
application of the algorithm and the pseudo-code for the
algorithm.

Formal definition of the problem
Let G be a set of genes, coming from a given GO/KEGG
category C. Let My be a set of human miRNAs, and My a
set of viral miRNAs. We denote by g5, and g, the minimal
number (quorum) of human and viral miRNAs, respec-
tively, and by g, the minimal number (quorum) of target
genes. Let &y, &ym, Egn and &g, denote error tolerance
thresholds, and p denote a p-value threshold.

Our goal is to compute quasi-modules defined as
follows.

Definition 1. A legitimate quasi-module < H,V, T >
consists of human miRNAs H C My, viral miRNAs
V C My and their target genes T € G and fulfills: (1)
Vmir € H, |T(mir)| > |T|—epm, (2) Ymir € V,|T (mir)| >
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IT| — &ym, and (3) Vgene € T, |H(gene)| > |H| — &g, and
|V (gene)| > |V| — &g, where T (mir) C T are genes tar-
geted by miRNA mir, H(gene) C H and V(gene) C V are
the human and viral miRNAs that target gene, respectively.

Among the quasi-modules computed, we focus on find-
ing those that comply with the quorum criteria, such that
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|[H| > qn, V] = qy and |T| > g, and whose target-set T
yields an enrichment p-value smaller than p in C.

The enumeration tree
Our enumeration algorithm dynamically constructs an
enumeration tree of all possible modules (Figure 3). The
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Figure 3 The process of building the enumeration tree for the input graph in Figure 1. The rhombus represents the root of the tree. The circles
represent the genes inserted into the tree. The squares represent the leaves which store two sets of miRNAs — human and viral (H(T) and V(T)). These
miRNAs target at least |T| — epm and |T| — evm genes in T respectively, where T is the set of genes in the path from the leaf to the root. Viral miRNAs
are labeled with uppercase letters and the human miRNAs are labeled with numbers. The rectangles (see legend) indicate paths that are pruned from
the tree for one of two reasons: (1) paths where the miRNAs in the leaf break the quorum are in solid rectangles (in this example the required quorum
is 3 for viral MiRNAs and 4 for human miRNAs); (2) paths where at least one gene or a pair of genes do not satisfy the error constraint with respect to
the miRNAs in the leaf are in dotted rectangles. Paths which reach the minimal number of genes, (in this example the number is 3), are forwarded to
the next step of generating modules. The three sub-figures (a), (b) and (c) show the insertion of genes g, e, b, d and ¢, into the tree, in this order.
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enumeration tree consists of a root which is a dummy
node, inner nodes which correspond to genes, and leaf
nodes which contain a list of human and viral miRNAs.
A path from the root to a leaf corresponds to a sub-
graph in the two-sided bipartite graph, consisting of all
the genes appearing in internal nodes on this path and
the miRNAs listed in the leaf. This subgraph contains
one or more modules that comply with the quorum con-
straints and the error tolerant thresholds (according to
Definition 1). Each such legitimate module consists of all
the genes in the subgraph and a subset of the miRNAs
(Figures 2 and 3).

High-level overview of the algorithm

The algorithm consists of two stages, where the first stage
constructs the enumeration tree and the second stage
extracts, for each path in the enumeration tree, the legiti-
mate modules encoded by the corresponding subgraphs.

Stage 1: Constructing the enumeration tree. The tree
is initialized to consist of a root node and one dummy leaf
node, such that the leaf’s miRNA sets consist of all human
and viral miRNAs in the dataset. Then genes are inserted
to the tree one by one. Each inserted gene, g, is con-
nected by an edge to the root and becomes a root of newly
generated copies of all its preceding siblings in the tree
including their corresponding subtrees. The miRNA sets
in the leaves are computed for the new paths by updat-
ing the copied sets to comply with the addition of the new
node. A path in the tree is pruned if one of the following
conditions is violated, (i) the miRNAs in the leaf do not
satisfy the quorum constraints, (ii) the error constraints
for the genes on the path are not satisfied by the miRNAs
in the leaf. (The fact that such pruning is safe and does not
throw out any of the optimal solution is formally explained
in the Appendix).

Stage 2: Traversing the enumeration tree for mod-
ule extraction. After the tree is fully developed, its leaves
are traversed for identifying paths (ending in these leaves)
that meet the quorum criteria on the number of genes
(g¢)- Then the subgraph induced by the genes and the
miRNAs associated with each leaf are further processed
to identify legitimate modules (maximal with respect to
containment) within this subgraph (Figure 4).

Upon completion, the algorithm outputs a list of the
maximal quasi-modules that satisfy the quorums and
error constraints (Figure 2). Next, the p-values of these
modules are computed as described below. The mod-
ules are then filtered and reported according to ascending
p-value.

Note that in order to apply strong pruning in early stages
of the enumeration, the insertion into the tree is sorted
by increasing order of the number of human miRNAs
targeting each gene.
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Input:
T={a,b,c}
H(T)={1,2,3,6}
V(T)={A-D}

Computed sets:
?_;Jr:”,fr:{a}
H={1,2,3,6}, H={}
V={A,C}, V,er=(B,D}

q,~3 g;=3 qy=4
Em—>1 1€€, Ep22 1686,

Figure 4 Example of generating maximal quasi-modules for the
path T1 = {c, b, a} from Figure 3(c). The algorithm first identifies
the genes that are not satisfied with the miRNA sets T, = {} and

T, = {a} (ais the only gene which is connected by an edge to just 2
out of 4 viral miRNAs). Next the miRNAs which are connected to all
the genes in sets Ty, and T, are identified as H = {1,2,3,6} and

V = {A, C} (shaded circles). Then these sets are extended by
enumerating the remaining miRNAs (white circles). This enumeration
yields two quasi-modules which appear in Figure 2 (a) and (b).

Statistical significance of modules - assigning a p-value to a
module

Since we search for modules in specific categories of inter-
est, we assess the statistical significance of each quasi-
module < H,V,T > in a category C, by a sampling
procedure as follows. We sample from the full set of genes
a subset of |C| genes with the distribution of the gene
lengths (in our case, the genes’3’ UTRs) as in C. From the
sampled set of genes we find the maximal set of target
genes T’ that can form a quasi-module with the miRNA
sets H and V under the quorum and error constraints. We
perform this sampling procedure 10,000 times, and store
the distribution of the sizes of T’. We report for each mod-
ule the probability that the size of 7" is at least as the size
of T. This probability is our p-value.

The parameters for the quasi bi-targeting algorithm

We used 207 KEGG pathways that contain 10-300 genes
from our dataset. For each pathway, we built a bi-partite
graph as described in the methods section, where the
human and viral miRNAs are listed in Tables 1 and 2.
The gene set consisted only of genes that belong to the
explored pathway. The edges of the graph were deter-
mined by the target prediction results. We tested five sets
of parameters on the 207 KEGG pathways. The param-
eter sets are summarized in Table 3. In the first set we
started with minimal quorum constraints for the num-
ber of genes, and human and viral miRNAs, and no
errors were allowed, similarly to the strategy we employed
in [15].
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Table 3 Different sets of parameters for the module search
algorithm

Parameters

Set No.

qh qv dg Ehm Evm €gh Egv
1 2 2 3 0 0 0 0
2 2 2 3 0.1 0.1 0.1 0.1
3 3 2 4 0.1 0.1 0.1 0.1
4 3 2 4 0.2 0.2 0.1 0.1
5 3 2 5 0.2 0.2 0.1 0.1

The table displays quorum parameters for human and viral miRNAs and human
genes (columns 2-4) and ranges of error thresholds (columns 5-8). For error
threshold a.b we executed the enumeration process with error threshold a and
if no modules were found, we increased the thresholds one by one, and ran the
process again. We stopped raising the error thresholds if the enumeration
process resulted with at least one significant module (p-value<0.0001) or when
the errors reached the maximal value b.

In order to compare our new flexible method with the
previous version of bi-targeting [15], we raised the error
thresholds from zero to one (denoted as 0..1 in Table 3)
- in the second set. In our choice of error parameters,
we aimed to allow the minimal error which still yields
significant modules. Therefore, when running the enu-
meration algorithm with this set of parameters, we started
by setting the allowed error thresholds to zero, and if no
modules were found, we ran the process again by increas-
ing each of the error thresholds alternately. We stopped
raising the errors if the enumeration process resulted with
at least one significant module (p-value<0.0001) or when
the error thresholds reached the maximal value (one in
this case).

In the third set (Table 3) we raised the quorum on the
number of human miRNAs and genes, and allowed all
errors to reach a threshold of one, while in the fourth set
the thresholds ¢y, and ¢,,, were raised to two. Finally in
set 5, we raised the quorum threshold on the number of
genes to be five.
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Results

Human cytomegalovirus (HCMV or HHV5) belongs to
the beta subfamily of herpesviridae. Following primary
infection, the virus establishes life-long latent infection
with episodes of reactivation, mainly in the immune
compromised host. HCMV employs diverse mechanisms
for the regulation of the host system in ways that are
advantageous to the virus [35]. HCMYV, as other mem-
bers of the herpes family, encodes for miRNAs, which
were shown to participate in the complex regulation of
host cell metabolism and to assist in establishing latency
and immune evasion [36]. Several viral and host genes
were shown to be targeted by HCMV miRNAs, for a
review see [36]. We applied our system to the discov-
ery of quasi-modules of HCMV and human miRNAs and
their target human genes, where the human miRNAs are
down-regulated upon infection.

The target prediction results

We supply in Tables 1 and 2 the number of predicted tar-
get genes for each miRNA in the dataset. In these results a
gene is considered to be a target of a miRNA if the miRNA
is predicted to target at least one of the mRNA transcripts
of the gene (for some genes in our dataset there are several
3’ UTR transcripts).

Results of the bi-targeting algorithm

In Table 4 we present, for each set of parameters, informa-
tion on the number of pathways for which modules were
found, and the total and average number of found mod-
ules. For each pathway, we counted how many modules
were found by the enumeration algorithm and how many
of them were statistically significant (p-value<0.0001). We
noticed in our results, that the introduction of error flex-
ibility into the module search, results in modules with
high overlap in genes or miRNAs. Therefore, we denoted a
module as a redundant module if there was another mod-
ule in the same pathway which was identical to it in its

Table 4 Results of the module search algorithm on the parameter sets found in Table 3

Set No. No. of KEGG No. of modules Average No.
pathways with Allb Significant¢ Non-redundant? of modules

modules 7 per pathway®

1 3 5 5 5 1.66

2 72 957 375 278 3.86

3 25 290 162 122 4.88

4 69 934 434 306 443

5 45 514 202 143 3.17

The parameter sets 1-5 are listed in Table 3 and described in the Methods section.  The number of pathways for which significant modules (p-value<0.0001) were
found; ® The number of modules found by the enumeration algorithm in the pathways counted in 2 ; € The number of modules with p-value<0.0001 among the
modules in © ; ¢ The number of non-redundant modules among the modules in c. A module is considered to be redundant, if there is another module in the same
pathways which is identical to it in gene and miRNA content, except for a variation of up to one gene or one miRNA; ¢ The average number of non-redundant modules
for the pathways in ?. Note that set number 1 corresponds to the results of running the algorithm of [15] on the datasets in this paper.
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gene and miRNA content, except for a variation of up
to one gene or miRNA. We counted how many modules
among the significant ones were non-redundant. In our
results, a pathway is considered to have modules, only if
the enumeration process yielded at least one significant
module. In the second column of Table 4, we show how
many pathways had modules in each of the five parameter
sets. For this number of pathways, we show the total num-
ber of modules found by the enumeration algorithm, the
number of significant modules, and the number of non-
redundant modules (see columns 3-5). In column 6, the
average number of non-redundant modules among these
pathways is shown.

Comparing the results of different parameter sets

In the first set we started with quorum thresholds of g, =
qv = 2 and g, = 3 and all the errors were set to 0,
which yielded only 5 significant modules among 3 path-
ways. Note that this setting corresponds to running our
previous algorithm [15], which computes full cliques and
no errors are allowed. When we increased the allowed
errors to 1, the number of modules and the number of
pathways dramatically increased (set 2). This reflects the
importance of error flexibility which we have added in
the quasi bi-targeting algorithm. The transition from set
3 to set 4, in which we increased two of the allowed error
thresholds from 1 to 2, also resulted in more modules and
additional pathways with modules. The transitions from
the second set to the third, and from the fourth set to
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the fifth, where only the quorum threshold were increased
without changing the error thresholds, decreased the
number of modules and the number of pathways
as expected.

The distribution of the pathways with modules among KEGG

categories

We divided the KEGG pathways in our study into six cate-
gories according to the KEGG database [34]: metabolism,
genetic information processing, environmental informa-
tion processing, cellular processes, organismal systems
and human diseases. In Figure 5 we show the distribu-
tion of the pathways with modules from Table 4 in these
KEGG categories. The two categories of metabolism and
genetic information processing, contain only few path-
ways with modules on which we do not elaborate here.
Among the 16 pathways belonging to the environmen-
tal information processing category, 13,8,12 and 10 of
them contain significant modules in sets 2-5, respectively.
This category includes sub-categories like signal transduc-
tion. In the cellular processes category, which contains
14 pathways, 8 (set 2) and 9 (set 4) pathways contain
modules, mainly in cell communication and cell growth
and death sub categories. The organismal systems cate-
gory which consists of 45 pathways, contains modules in
22 (set 2), 20 (set 4) and 14 (set 5) pathways, where 7,
7 and 6 of them respectively, belong to the immune sys-
tem sub-category (consisting of 15 pathways). As for the
45 pathways in the human diseases category, 16 (set 2)

80
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Figure 5 The distribution of KEGG pathways with modules among the main KEGG categories for parameter sets 1-5. The leftmost column
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and 17 (set 4) of them contained modules, where most of
the pathways belong to the sub-categories of cancers and
infectious diseases.

We observe that the categories and the sub-categories
that had many pathways with modules are known to be
affected by viral miRNAs. For example, EBV miR-BART
targets the host pro-apoptotic gene PUMA [37]. HCMV
miR-UL112 modulates host immune responses by target-
ing the host gene MICB [5]. Some recent high-throughput
studies showed that viral miRNAs target mRNAs with
roles in the innate immunity, stress response, cell signal-
ing, transcription and apoptosis [16,38].

The predicted modules and supporting evidence

To establish an infection, viruses need to suppress the
innate and the acquired host immune responses. The gate
keepers include antiviral activity induced by IFNs, the
chemotaxis of immune cells induced by chemokines and
cytokines and activation of NK cells. Thus, we chose to
analyze in more detail two modules that were found by the
enumeration process from two different pathways from
the immune system sub-category. The first module was
found in the results of the fourth parameter set and the
second one in the results of the fifth parameter set.

The full set of potential modules, including the infor-
mation on miRNA-mRNA interactions in each mod-
ule, can be obtained at (http://www.cs.bgu.ac.il/~vaksler/
QuasiBiTargeting.html). To validate these modules we
supply a comprehensive overview, based on literature, of
the miRNAs and the genes participating in the module.
We concentrate on the antiviral activity of the genes and
on the mechanisms that viruses apply to suppress these
genes. Finding evidence for the above activities may sup-
port our predictions and suggests that miRNAs are an
additional route in the viral strategy to manipulate the
process carried out by the host.

Module 1 consists of four genes from the “natural
killer cell mediated cytotoxicity” pathway, three human
miRNAs and two viral miRNAs (see Figure 6 and
Figure 7). Natural killer (NK) cells are cytotoxic cells of
the innate immune response that play an important role
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in eliminating virus-infected cells in early stages of the
infection. NK cells are important for controlling CMV
infections both in mice and in humans [39]. Furthermore,
CMV encodes numerous proteins that interfere with NK
cell activity [40]. All genes found in this module, are can-
didates to be down-regulated by HCMYV, supported by the
following information.

The gene ITGAL (CD11a) mediates adhesive cell-cell-
interactions, by binding to its ligand ICAM-1. Both
ITGAL and ICAM-1 were shown to have important roles
in NK cell-mediated cytolysis [41]. In addition, Ito et al.
[42] showed that these genes are involved in NK-cell medi-
ated DNA-fragmentation of CMV-infected cells. PAK1
was not yet reported in the context of CMYV infection,
but it was shown that PAK1 plays an important role in
activating antiviral signaling pathways in HCV infection
[43,44]. Both genes have proven antiviral activity, which
makes them candidates for down-regulation by CMV. Two
additional genes in this module are PIK3R3 and BRAF.
A study by Challacombe et al. [45], which measured
the human mRNA expressions after HCMYV infection at
different time points, reported that both PIK3R3 and
BRAF expressions were increased in the first hour after
HCMYV infection, and their expression started to decrease
24 hours post infection. This pattern of expression may
match the explored mode of regulation in the following
manner:(i) the genes were initially up-regulated probably
as a response of the host to the infection; (ii) 24 hours
post infection, the HCMV miRNAs which are already
expressed [46], could target these genes, and thus cause
their down-regulation.

As for the human miRNAs found in this module, some
of their functions have been studied before. miR-221
and miR-222 are encoded in tandem on chromosome
X [1], and their targets were extensively studied [47].
For example, they were discovered to induce cell growth
and cell cycle progression via direct targeting of p27
and p57 in various human malignancies [48,49]. Interest-
ingly, these miRNAs were shown to target also ICAM-1
[50,51], which is the ligand of ITGAL gene, found in our
module.

p_val = 1E-4

miR-221
miR-U525-2-5p

miR-222

miR-155

PAK1

Pathway: NK cell mediated cytotoxicity

[p_vai=1€4 | IRF3

miR-221%
miR-US4-5p-
shifts

miR-34a
miR-US4-3p

miR-199a-3p

MYD88

Pathway: Toll-like receptor signaling pathway

Figure 6 Two predicted modules. Two of the modules that are found by our method.
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Figure 7 Natural killer cell mediated cytotoxicity pathway figure supplied by KEGG [34]. The genes of module 1 reported in this study (see

miR-155 is located within the B-cell integration clus-
ter (BIC) on chromosome 21, and is involved in can-
cer and other biological processes such as inflammation,
immunity and haematopoiesis (see review by Faraoni et
al. [52]). Interestingly, both KSHV and Marek’s disease
virus (MDV-1) (both oncogenic viruses) encode miR-155
orthologs [17,53]. In addition EBV up-regulates miR-155
production in infected B cells [54]. It therefore seems that
down-regulation of specific host genes by either miR-155
itself, or by viral orthologues of miR-155, might facili-
tate the replication of a range of different herpesviruses
[55]. None of the known HCMV miRNAs shows homol-
ogy to miR-155. Thus, our results suggest that following
the down-regulation of miR-155 by the host, the virus
compensates for part of its functions by its own miR-
NAs, which are found in this module, miR-US25-2-5p
and miR-UL36-3p. miR-US25-2-5p was recently shown
to reduce viral replication and DNA synthesis of HCMV

and other DNA viruses (such as HSV-1 and adenovirus)
[56], suggesting that this miRNA targets host genes that
are essential for viral growth. In our module this miRNA
has a different role by targeting genes that lead to antivi-
ral response. No viral and host targets were reported for
miR-UL36-3p yet.

Module 2 consists of five genes that participate in
the “Toll-like receptor signaling pathway’, three human
miRNAs and two HCMV miRNAs (Figure 6 and Figure 8).
Toll-like receptors (TLRs) play a critical role in host
defense by sensing invading pathogens and initiating
innate and adaptive immune responses. TLR signaling
proceeds via two downstream pathways: the MyD88-
mediated pathway, and the TRIF-mediated pathway [57]
(see Figure 8). The former causes activation of the tran-
scription factor NF-kB, which activates various genes con-
tributing inflammatory reactions. The latter causes induc-
tion of IFNs, whose stimulation leads cells to antiviral
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state. In what follows we describe the known facts that link
the genes in the module to viral infections.

The gene IRF3 regulates the expression of Type I
IFNs (cytokines with antiviral activity), and thus controlls
viral infection and virus replication. Several viruses have
evolved mechanisms through which they can circumvent
the activation of IRF3 and block innate responses, includ-
ing BHV1 [58], HHV6 [59], KSHV [60] and EBV [61]. In
addition, HCMV encodes a protein pp65, that subverts
the activation of IRF3 by inhibiting its nuclear accumula-
tion [62]. RIPK1 (RIP1) is a cellular kinase which has a
central role in several biological pathways [63], a fact that
makes it an ideal target for inhibition by a virus. It was
shown that Mouse cytomegalovirus (MCMV) encodes a
protein M45, which binds to RIP1 and functions as a viral
inhibitor of RIP1-mediated signaling. The UL45 protein
of HCMYV shares sequence homology with M45; deletion
of UL45 results in only minor defects in viral replication
in vitro [64]. Thus, it is reasonable to assume that miRNAs
can be the regulators of RIP1.

The gene IFNAR1 encodes a membrane protein that
forms one of the two chains of a receptor for interfer-
ons alpha and beta that play a major role in host defenses
against the viruses. Several viruses were shown to lead to
a decrease in IFNAR1 expression levels, including West
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Nile virus (WNV) [65], vesicular stomatitis virus (VSV)
and hepatitis C virus (HCV) [66].

In addition, the MyD88 gene has been shown to be
important in host defense to a number of viruses includ-
ing Lymphocytic choriomeningitis virus (LCMV) [67],
MCMYV [68], and HSV [69]. As for the CXCL9 (MIG),
Salazar-Mather and colleagues have demonstrated that
this gene is important in viral clearance in mice infected
with MCMYV [70,71].

The results of our algorithm yield combinations of viral
and human miRNAs that target the genes above. Members
of the miR-34 family, including miR-34a, have verified tar-
get genes with functions in the cell-cycle control and the
DNA damage response [72]. miR-199a-3p was shown to
down-regulate components of the PI3K/Akt/mTOR path-
way, as well as other pathways relevant to HCMV biology
[32]. No validated targets are reported for miR-221*. Both
viral miRNAs found in this module were recently identi-
fied using Deep Sequencing [29,30], and their functions
were not yet investigated.

The two modules presented above contain genes that
have a strong antiviral activity and a tight connection to
the function of HCMV. Thus, upon infection, the host is
motivated to up regulate them while the virus has much to
gain by achieving the opposite effect. Our results suggest
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that this interplay may be achieved by the combined
action of human and viral miRNAs, where the human
miRNAs are down-regulated and the viral miRNAs are
expressed to replace their activity.

Discussion

miRNAs are key regulators of many biological processes
produced by both viruses and their hosts. Although the
functions of the majority of viral miRNAs are currently
unknown, it is suggested that miRNAs greatly contribute
to host-viral interactions [73]. Identification and valida-
tion of miRNA targets remains a hard problem, because
there is large number of potential targets for each miRNA.
In addition, mRNAs can be targeted by multiple miRNAs.
These potential interactions create a complex network of
miRNAs and mRNAs. Focusing on small sets of miRNAs
and their effects on particular biological pathways may
give a significant advantage in target identification.

In this work we focus on finding modules of viral and
human miRNAs and their common target genes in spe-
cific biological processes. In our modules, the viral miR-
NAs follow the compensating mode of regulation with the
human miRNAs. In this mode of regulation, human miR-
NAs are down-regulated upon infection, probably by the
host’s machinery, in order to up-regulate antiviral genes.
To compensate for this down-regulation, viral miRNAs
are expressed to target the antiviral genes. Finding mod-
ules is achieved by applying our bi-targeting algorithm
and integrating three sources of information: target pre-
diction, a new expression data (supplied in this study) of
human miRNAs in infected vs. uninfected cells, and anno-
tation of the biological pathways (KEGG). We treat all
the down-regulated host miRNAs as if they were down-
regulated by the infected host, regardless of the factors
that cause it. This is an assumption we make, even though
it can not be inferred solely from expression data [20].
Among the modules found by our method, we report
those that were statistically significant, as computed by
the sampling procedure that we describe in the Methods
Section.

Our bi-targeting algorithm is related to bi-clustering
methods applied on bipartite graphs [27]. In our model
the graph is a two-sided bi-partite graph, and the goal is
to find two sided bi-cliques. In our previous work [15],
the output of the bi-targeting algorithm was complete bi-
cliques. This resulted in very few modules that were very
small (consisting of 2-3 genes, and 1-2 miRNAs).

To add flexibility to the modules, we relax in this
paper the bi-targeting algorithm to compute coherent
sub-graphs which are not necessarily complete bi-cliques.
This relaxation yields quasi-modules, where many more
interactions are captured and reported. Our results indi-
cate that such quasi-modules more significantly capture
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miRNA-target interaction signals. The disadvantage of
the method, is that additional parameters (error thresh-
olds) have to be introduced to the search algorithm.

We applied our method to study the miRNA compen-
sating effects in HCMYV infection. The complex lytic and
latent phases of HCMV are dependent on its ability to
regulate many aspects of host immune responses and cell
biology. Learning the biological roles of miRNAs during
HCMYV infection may pave the way to finding a novel class
of therapeutic targets for this virus.

We describe in detail two of the found quasi-modules,
and supply supporting evidence from the literature. Genes
in these modules, were previously shown to have an
antiviral activity (see references in the Results section).
Thus the host is motivated to up-regulate these genes,
by e.g., down-regulating its miRNAs that target them,
and the virus is motivated to express its own miRNAs to
achieve the opposite effect.

We would like to note that although in this study we
used our quasi bi-targeting algorithm to find modules in
the compensating mode, it could be used to find mod-
ules in other modes of mutual regulation by host and viral
miRNAs.

Appendix

Quasi-Bi-Targeting (QBT) enumeration algorithm

Formal details of the algorithm

Denote by T the set of genes in a path from the root of the
tree to a leaf, and by H(T) and V(T), the lists of human
and viral miRNAs stored in the leaf. Denote by T (mir), the
genes that belong to T and are targeted by miRNA muir.
We denote by H(gene) and V(gene), the human and viral
miRNAs that belong to H(T) and V(T) respectively, and
target gene. Let &p, €vm, £gn and &gy denote error tolerance
thresholds.

In stage 1, for each newly generated path in the tree,
the sets H(T) and V(T) are computed, such that these
miRNAs target at least |T'| — &, and |T| — &y, genes in
T, respectively. The following observation asserts that the
size of the miRNA sets H(T') and V(T) is monotonically
non increasing with the extension of the gene set along a
developing path.

Observation 1. The anti-monotonicity property of
H(T) and V(T). For every superset T' of T, H(T'") € H(T)
and V(T') € V(T), thus |H(T")| < |H(T)| and |V(T")| <
V(D!

Proof. By definition of H(T), Vmir € H(T') it holds
that |T7| — | T (mir)| < &jy,. In addition, |T| — | T (mir)| <
|T'| — | T (mir)|. Thus | T| — | T (mir)| < &py,, which means
that mir € H(T), and H(T") € H(T). The same holds for
V(T). 0
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Definition 1 (in Methods) leads to the following claims
regarding the sought modules.

Claim 1:. For every gene € T, |H(gene)| > |H| — g >
qn — ggn and |V (gene)| > |V| — &gy > qy — &gy O

Claim 2:. For every pair of genes genel,gene2 € T,
|H (genel) N H(gene2)| > qn — 2 x &g, and |V (genel) N
V(gene2)| > q, — 2 * &gy O

Proof. [H(gene)| = |H| — &g and |V(gene)| >
|V| — gv. Therefore, |H (genel) N H(gene2)|=|H (genel)| +
|H (gene2)| — |H(genel) U H(gene2)| > |H(genel)| +
|H(gene2)| — |H| = 2(|H| — egn) — |H| = |H| — 2 % £g, >
qn — 2 * £g,. The same holds for viral miRNAs (V). O

The following conclusions apply Observation 1 and
Claims 1 and 2 to prune the enumeration tree.

Conclusion 1:. If H(T) < gy, then for every superset 7’
of T, H(T") < gy. The same holds for V(7). During the
construction of the tree, if for a certain path 7, H(T) < gy
or V(T) < q, there is no need to extend this set further,
and the path T is pruned from the tree. O

Conclusion 2:. If there exist a gene € T, for which
H(gene) < g — &g or V(gene) < qy — &g; or a pair of
genes genel, gene2 € T for which |H (genel) NH (gene2)| <
qn — 2% &g or |V (genel) N V(gene2)| < gy — 2 * &gy, there
is no need to extend T further, and this set can be pruned
from the tree. O

A path in the tree which survives a pruning based on
Conclusions 1 and 2 can be defined as follows:

Definition 2. A surviving path is a path T in the tree,
such that the miRNA sets, H(T) and V(T), in its leaf ful-
fill the following conditions: (1) Vmir € H(T), |T (mir)| >
|T| — ehm» (2) Ymir € V(T),|T (mir)| > |T| — &ym, and (3)
Vgene € T, |H(gene)| > gy — &g, and |V (gene)| > qy — &gy

After the tree is fully developed (in stage 1), the sur-
viving paths are traversed to identify paths which contain
at least g, genes (stage 2). Note that Definition 1 (quasi-
module) deviates from Definition 2 (surviving path). In
the latter, the error allowed for each gene is in respect to
the miRNA quorum, while in the former the error is in
respect to the size of the final module.

Therefore, it is possible that some of the genes in a
surviving path 7' do not satisfy the error constraint with
respect to the full sets H(T) or V(T), i.e., there exists
a gene € T such that |H(gene)] < |H(T)| — &g or
|V (gene)| < |V(T)| — &gy. In this case, we search for
maximal subsets of H(T) and V(T that can form quasi-
modules with 7.
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Generating maximal quasi-modules. The generation of
these maximal subsets is done by first identifying the
genes in T that do not satisfy the constraints with H(T)
and V(T), denoted as T and T, respectively. If the sets
are empty, a quasi-module < H(T), V(T), T > is added to
the output.

Otherwise, we identify two subsets of human and viral
miRNAs H and V (core sets), that are connected to all the
genes in T, and T, respectively. These core sets will be
included in all the maximal quasi-modules such that T is
their target set.

Next, we enumerate the remaining sets of miRNAs
Hyepp = (H(T) \ H} and Vyep, = {V(T) \ V} to find maxi-
mal subsets of them, that can form, together with the core
sets, quasi-modules with the genes in 7. The output of this
step is all the legal (in terms of quorum and error thresh-
olds) quasi-modules of the form < H,V,T > such that
H C H(T)and V C V(T).

Example

We illustrate the algorithm in the following example
accompanied by Figures 1, 2, 3, 4. Figure 1 depicts the
input graph and the quorum and error constraints. The
order of gene insertion is 4, e, b, d, ¢, due to sorting by the
number of their human targeting miRNAs. In Figure 3(a)
we show the enumeration tree after inserting the genes
a,e. When we inserted the gene e it became the root of
a copy of all its preceding siblings: the dummy leaf node
and node a. Next, the sets of miRNAs in the leaves of the
new subtree are updated by eliminating from the copied
set, miRNAs that no longer comply with the gene set after
its extension with the new gene e. For example, in the
path T = {e, a} there are two genes and each human/viral
miRNA should target at least one gene on this path. It
follows that the miRNA sets in the leaf of this path are
H(T) = {1,2,5,6} and V(T) = {A,B,C,D}. Note that
human miRNAs 3 and 4 were removed, since both of them
are disconnected with more than one gene on the new
path (e, a). Next, the sizes of the miRNA sets are checked
for quorum restrictions (|H(T)| > 4 and |V(T)| > 3),
which are fulfilled in this case. The genes in the path are
checked for error satisfaction by the miRNAs in the leaves.
For the pair of genes (e, a), |V (e) N V(a)| = 0 which is less
than g, — 2 * g5, = 3 — 2 = 1, and therefore this path is
pruned from the tree (dotted rectangle).

In Figure 3(b), after the insertion of gene d, three paths
are pruned due to violation of quorum constraints on
either human or viral miRNAs (solid rectangles in the
figure). Figure 3(c) illustrates the insertion of gene ¢, and
the consequent prunings.

After the full tree is developed, two surviving paths that
contain at least g, > 3 genes, T1 = {c,b,a} and T, = {c,d, b},
are transfered as input to the procedure that generates
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maximal quasi-modules with the miRNAs in their
leaves.

We demonstrate the application of building maximal
quasi modules for the path 77 = {c, b, a} in Figure 4. The
set of genes T cannot form a quasi-module with the full
set of viral miRNAs V(T) = {A, B, C, D}, because gene
a is connected just to two out of four of these miRNAs,
while the allowed error is one. We therefore search for
the maximal subsets of V(T) that form quasi-modules
with T. The algorithm first identifies the “problematic”
genes with respect to the human and viral miRNA sets:
Ty = {}, and T, = {a} respectively. Then miRNAs which
target all the “problematic” genes, H = {1,2,3,6},V =
{A, C}, are calculated. Next the procedure extends the
module < H,V,T > by adding miRNAs from H,., =
{(}, Ve = {B, D}. This results in two quasi-modules found
in Figure 2(a),(b).

The second path which is passed to this procedure is
Ty = {c,d, b}. Its genes satisfy the error constraint with
respect to the full sets of human and viral miRNAs in its
leaf (i.e. | T = 0,|T,| = 0), thus a quasi-module consist-
ing, of all the genes and all the miRNAs is added to the
output (Figure 2(c)).

Pseudocode of the enumeration algorithm
Algorithm 1: constructTree

input: G — list of genes from a certain GO/KEGG
category. Every gene x in this list has a set of human
and viral miRNAs targeting it, denoted as x./z_miRs and
x.v_miRs, respectively. My, My — full list of human and
viral miRNAs.

output: Enumeration tree and a set of quasi-modules
Qum

/* Generating the enumeration tree ¥
1 root<— new Node();
2 dummy <« new Node();
3 dummy.k_miRs < Mp;
4 dummy.v_miRs < My;
5 root.children.add(dummy);
6 foreach gene € G do
7 node<«— appendSiblings(gene);
8 root.children.add(node);

/* Traversing the enumeration tree */
9 foreach leaf € root.leaves do
10 T <« leaf .genes
11 H(T) <« leaf .h_-miRs
12 V(T) < leaf.v_miRs
13 if | T| > g, then
14 generateModules(7, H(T), V(T));

Algorithm 2: appendSiblings
input: gene — a new gene to be inserted into the tree.
root — the root node of the enumeration tree. qg,q5,9v
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— quorum restriction on human genes and human and
viral miRNAs in a sought module. &p,,,6,n — the error
allowed for each human and viral miRNA respectively,
with respect to the target genes. &g,65 — the error
allowed for each gene with respect to the human and viral
miRNAs, respectively.
output: Creates a new node and appends to it (as its
children) all its siblings
1 node < new Node(gene);
2 foreach child € root.children do
3 sibling < copy(child);
4  foreachleaf € sibling.leaves do
5 T < leaf .genes.add(gene);
6 H(T) < leaf h-miRs < {mir|mir € leaf .h_-miRsN
targets at least | T'| — ey, genes };
7 V(T) < leaf .v-miRs < {mir|mir € leaf .v_miRsA
targets at least | T'| — &y, genes };
8 if H(T)| < qn Vv |V(T)| < gy then
/* Prune due to quorum restrictions
on miRNA sets ¥/
9 Delete the path from the leaf to the first bran-
ching node in sibling subtree;
10 if ! checkConditions(T, H(T), qn, egn, V(T), qv, €gv)
then
/* Prune due to un-satisfaction of
the genes on the path by the
miRNAs in the leaf */
11 Delete the path from the leaf to the first
branching node in sibling subtree;
12 return node;

Algorithm 3: checkConditions
input: T — a list of genes.
H,V — lists of human and viral
miRNAs.
qn» gy — quorum restriction on human and viral
miRNAs.
£gnsEgv — the error allowed for each gene with
respect to the human and viral miRNAs,
respectively.
output: True if the conditions are satisfied, False
otherwise.
/* Check condition 1 - Lemma 2 */
1 foreach gene € T do
2 if (|[H (gene)| < g — &g,) or (|V(gene)| < qv — &g,)
then
3 return False;
/*Check condition 2 - Lemma 3 */
4 foreach pair (gene,, genep) € (T x T) do
5 if (|H (gene,) N H(genep)| < q — 2 * &g,)
or (|V(gene,) N V(geney)| < q, — 2 * &4,) then
6 return False;
7 return True;
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Algorithm 4: generateModules
input 7,H,V - lists of genes and human and viral
miRNAs.
outputQ — a set of quasi-modules < H', V', T > such

that H CHand V' C V.
1T, < 0, T, < B
2 foreach gene € T do
3 if (|[H (gene)| < |H| — &gy) then
4 Th.add(gene);
5 if (|V(gene)| < |V| — &g4) then
6 Tv.add(gene);
7if |Ty| = 0 and | T;| = O then
8 Qadd(< H,V, T >);
9 return;
10 H < {mir|mir € H A mir targets all genes in T}}
11 Hyepy < H\H
12V <« {mir|mir € V A mir targets all genes in T}
13 Vigy < VAV
14 S < empty stack
15 S.push(T, H, Hyeps, V, Viyen)
16 while (S is not empty) do
17 clique < S.pop();
18 T <« clique.T;
19  H <« clique.H, Hyeyy < clique.Hyep;
20 V< cligueV, Vyey < clique.Vyey;
21  extended < false;

/*we add null to allow extending

only human or viral mirs ¥
22 foreach mirH € (Hyey, U null) do
23 foreachmirV € (Ve U null) do
24 if Legal(T,H U mirH, V' U mirV) then
25 H,eyy.remove(mirH) , H.add(mirH);
26 Vyem.remove(mirV) , V.add(mirV);
27 S.push(T,H, Hyens, V, Viem);
28 extended < true;
29 ifl extended N |H| > gy N |V| > g, then
30 Quadd(< H,V,T >);
Algorithm 5: Legal

input: T — a list of genes in the module.
H — alist of human miRNAs.
V — alist of viral miRNAs.
output: True if all the genes in T are satisfied with the
miRNA sets H and T, False otherwise.
1 foreach gene € T do
2 if |H(gene)| < |H|—egg, or|V(gene)| < |V|—gg then
3 return False;
4 return True;

Conclusion

Since not much is known about the function of viral
miRNAs, finding modules that link the viral miRNAs and
the human miRNAs, under the mode of action proposed
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by this study, might help in understanding the role of viral
miRNAs in the viral combat to survive, on the one hand,
and the role of host miRNAs in antiviral responses, on the
other hand. Thus the method developed in this work may
shed light on these phenomena.

Additional file

Additional file 1: Human miRNAs expression data. An excel file which
provides expression of human miRNAs in HFF cells before and after the
infection with HCMV.
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