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Purpose: To quantify the concentration of soft-tissue components of water, fat, and calcium through
the decomposition of the x-ray spectral signatures in multi-energy CT images.
Methods: Decomposition of dual-energy and multi-energy x-ray data into basis materials can be per-
formed in the projection domain, image domain, or during image reconstruction. In this work, the
authors present methodology for the decomposition of multi-energy x-ray data in the image domain
for the application of soft-tissue characterization. To demonstrate proof-of-principle, the authors ap-
ply several previously proposed methods and a novel content-aware method to multi-energy images
acquired with a prototype photon counting CT system. Data from phantom and ex vivo specimens are
evaluated.
Results: The number and type of materials in a region can be limited based on a priori knowledge or
classification strategies. The proposed difference classifier successfully classified the image into air
only, water+fat, water+fat+iodine, and water+calcium regions. Then, the content-aware material
decomposition based on weighted least-square optimization generated quantitative maps of concen-
tration. Bias in the estimation of the concentration of water and oil components in a phantom study
was <0.10 ± 0.15 g/cc on average. Decomposition of ex vivo carotid endarterectomy specimens
suggests the presence of water, lipid, and calcium deposits in the plaque walls.
Conclusions: Initial application of the proposed methodology suggests that it can decompose multi-
energy CT images into quantitative maps of water, adipose, iodine, and calcium concentrations.
© 2013 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4790692]
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I. INTRODUCTION

Several multi-energy CT systems have been proposed and
constructed for use in small animal imaging,1 whole-body
clinical systems,2 and breast CT.3 These systems are based
on CdTe or CdZnTe detectors, which offer high energy reso-
lution and the potential to discriminate multiple energy bands
during a single acquisition.

Our current work is motivated by the need to assess the
tissue composition of atherosclerotic plaque. The detection
and quantification of vulnerable plaque is widely accepted
as one of the leading challenges in diagnostics. Clinical
in vivo imaging of atherosclerosis primarily focuses on as-
sessment of lumen diameter, which is a poor measure of risk
and plaque vulnerability.4 As such, the conventional imaging
modalities of CT, angiography, and ultrasound have a lim-
ited role in detailed plaque characterization. An ideal plaque
imaging device would (a) have high spatial resolution to mea-
sure plaque morphology, (b) offer multiple tissue classifica-
tion (lipid, loose fibrous matrix, calcium, dense fibrous tissue)
to investigate plaque composition,5 and (c) be safe for serial
studies. While conventional dual-energy CT can provide high
resolution, it is not able to provide soft tissue classification6

and requires relatively high dose levels limiting its use for se-
rial evaluation.

Multi-energy CT offers the potential to decompose spec-
tral information for tissue classification and quantification.
Multi-energy CT has been applied to plaque imaging in the
context of quantifying the concentration of contrast agents.7

In particular, gadolinium and gold contrast agents have been
quantified in phantom and mouse studies.8, 9 Little effort to
date has been applied to quantifying soft tissue components
in plaques in the absence of contrast agents, based on the pre-
vailing assumption that soft-tissue components, such as lipid
versus water, do not have sufficient differences in their mass
attenuation coefficients to enable discrimination. This work
presents methodology for the classification and quantification
of the soft tissue components of water, lipid, and calcium.

II. METHODS

II.A. Separation of materials

We evaluated the theoretical and measured ability to sepa-
rate two solutions. Using a method proposed by Wang et al.,10

we determined the angle of separation of two materials. With
the vector of linear attenuation coefficients defined as �μm

= (μe=1, μe=2, . . . , μe=E)m for each energy bin, e, of a to-
tal of E bins, the angle of separation between material, m,
1 and 2 is

θ1,2 = arccos( �μm=1 · �μm=2/| �μm=1|| �μm=2|)
Vectors were theoretically determined from known mate-

rial properties11 and concentrations in the oil phantom dis-
cussed below. These vectors were based on an estimate of the
spectra in each energy window using a simulated spectrum for
a 120 kVp, fixed tungsten anode source with 0.5 mm Be in-
herent filtration.12 The vectors from the measured data were
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FIG. 1. Proposed simple difference classifier shown with measured linear at-
tenuation coefficients from oil phantom. The mean of the relative difference
in μ between all energy bins is plotted versus the mean of the μ. Materials
lie within bands with negative slopes. The values from the 12 regions of the
measured oil phantom are plotted in small markers. The values from theo-
retical μ for materials with same average concentration of components are
plotted in large markers.

determined from reconstructed images of linear attenuation
at each energy bin using the prototype multi-energy system
discussed below. This method provides a measure of the sep-
arability of two materials, not a method for performing the
separation; The section below describes methods for perform-
ing the actual separation and quantification of materials.

II.B. Image decomposition

The linear attenuation at each location in the image, �x, can
be represented as a linear combination of the mass attenua-
tion coefficients of each component material, fm(e), as μ(e, �x)
= ∑M

m=1 ρm(�x)fm(e). The goal of decomposition is to esti-
mate the concentration of materials at each location, ρm(�x).

TABLE I. Total density of each region in oil phantom.

Region Density (g/cc)

Water 1.000
Omnipaque: 1/80, 1/40, 1/20 1.005, 1.010, 1.020
Oil 0.925
Lipiodol: 1/80, 1/40, 1/20 0.929, 0.934, 0.943
CaCl2 1.117, 1.234

For the purposes of comparison, we evaluated the per-
formance of four image-based decomposition methods. For
the first method, it has been demonstrated that the linear
attenuation of biologic materials can be represented as a
linear combination of photo-electric and Compton cross-
sections.13 When a sample also contains a K-edge discontinu-
ity, the representation needs to be extended to include a third
component.14 Therefore, the linear attenuation at each loca-
tion in the image, �x, for each energy, e, can be represented as

μ(e, �x) = αph(�x)fph(e) + αC(�x)fC(e) + αK (�x)fK (e)

with contributions, α, from basis functions defined as the en-
ergy dependent photo-electric, fph, Compton, fC, and K-edge,
fk, component (from materials such as iodine or gadolinium)
attenuation. Multi-energy data can be decomposed directly
into these basis images by finding the optimal α’s. In this
work, we performed weighted least-squares estimation of the
basis materials contributions as

�̂α(�x) = arg min
�α

E∑
e=1

⎡
⎣(

μ̂(e, �x) −
B∑

b=1

αb(�x)fb(e)

)2

We

⎤
⎦ ,

where μ̂(e, �x) is an estimate of the linear attenuation coef-
ficient at energy bin e from the reconstructed multi-energy
images. In this work, we employ B = 3 physical basis func-
tions and have E = 5 energy bands. The weights, We, account
for variable confidence in information from each energy bin,

FIG. 2. Diagram and photograph of prototype carotid CT system.
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FIG. 3. Transaxial reconstructed images of linear attenuation (1/cm) of the
iodine phantom at four of the five energy windows.

based on the number of photons in each energy band. These
coefficients can be used to estimate μ̌(e, �x) at any energy,
which can then be decomposed into concentrations of mate-
rials of interest as discussed below. This basis decomposition
is denoted as “Method A: Basis.”

Alternatively, the multi-energy data could be decomposed
directly into the materials of interest, bypassing the need to
form basis images first. This offers the potential benefit of
avoiding any information loss from the non-orthogonality of
the basis functions. The multi-energy images can be directly
decomposed into material images according to

�̂ρ(�x) = arg min
�ρ≥0

E∑
e=1

⎡
⎣(

μ̂(e, �x) −
M∑

m=1

ρm(�x)fm(e)

)2

We

⎤
⎦ .

This approach, without a weighting component, was proposed
previously.15 It is essentially the same as the basis material de-
composition, except mass attenuation coefficients of materials
of interest are used instead of physical basis functions. This

TABLE II. Average percent bias in measurements of linear attenuation com-
pared to theoretical linear attenuation in iodine phantom.

Window 1/80 Average
(keV) Contrast 1/40 1/20 absolute bias

30–45 −16 ± 0.88 −22 ± 0.77 −30 ± 0.73 23 ± 5.8
45–60 −4.7 ± 0.8 −5.2 ± 0.7 −4.5 ± 0.81 4.8 ± 2.4
60–80 −3 ± 1.3 −0.26 ± 1.1 −1.8 ± 1 3.9 ± 5
80–100 −0.51 ± 1.8 3.1 ± 1.3 5.1 ± 1.6 6.6 ± 8.3
>100 2.8 ± 2.5 14 ± 2.4 14 ± 2.4 14 ± 14

method allows for the selection of materials that are known to
fully constitute our objects of interest. Therefore, with appro-
priate selection of materials, this method offers the favorable
property of being able to enforce non-negativity of the con-
centration estimates (negative contributions from constituent
materials is not physically meaningful). This method is de-
noted as “Method B: Material.”

Prior work by Le and Molloi, and our initial application of
these basis and material methods, found that direct decompo-
sition of multiple, closely related materials from multi-energy
data is generally not successful.15 They proposed a decoupled
strategy where the images are first segmented into regions
containing a single material and then least-squares estimation
is used to determine the material concentration. In their work,
each location in the image can only be a single material. We
propose a variant of this in which the images are first seg-
mented into classes, which can contain a few materials (for
example 1–3 materials). Then the weighted least-squares es-
timation can determine the concentration in this limited set
of possible materials. This approach benefits from content-
aware, dimensionality reduction in which each estimated con-
centration is derived from a limited set of possible bases. For
example, instead of estimating 4–5 unknown concentrations
from 4 to 5 energy bands, this approach can estimate two un-
known concentrations from 4 to 5 energy bands at each loca-
tion and the particular materials vary by location in the image
based on a priori knowledge or an initial automatic classifi-
cation.

Specifically, we propose two modifications of Method
A and B, both based on reducing the number of

H2O H2O Omni 1/80 Omni 1/40 Omni 1/20 Oil Oil Lip 1/80 Lip 1/40 Lip 1/20 CaCl 1 CaCl 2
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FIG. 4. Separation angle between water basis material and each solution in the iodine phantom. The measured separation angle is plotted in blue and the
theoretical separation angle, based on theoretical mass attenuation coefficients for approximate spectra, is plotted in red. The solutions include water+Omnipaque
(IV contrast) and oil+Lipiodol (oil-based contrast) in different dilutions. Two concentrations of CaCl2 are included.
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FIG. 5. Separation angle between water basis material and four materials
versus the number of energy bins. As the number of energy bins decreases,
the separability between the materials decreases. The measured separation is
plotted in solid lines, the theoretical separation is plotted in dashed lines.

estimated materials. The image is first segmented into classes,
in which each location contains only a limited set of materials.
“Method C: Class+Basis” performs basis material decom-
position (identical to Method A:Basis), followed by content-
aware material estimation from the basis maps. That is, each
location in the image contains only a limited set of materials.
The second modification “Method D: Class+Material” per-
forms material decomposition directly from the multi-energy
images, identical to Method B, except that the materials are
limited at each location to only those present in its class.
These four methods are applied and evaluated on measured
data from a prototype multi-energy CT system.

Several methods could be used to perform the initial clas-
sification of each region in the images. In this work, we pro-
pose a simple automatic classifier based on the differences in
measured linear attenuation coefficients at each energy band
as presented in Fig. 1. For each voxel, the mean difference in
attenuation between all energy bands, as defined by

mean difference =
E∑

e1=1

E∑
e2=e+1

[(μ̂(e1, �x) − μ̂(e2, �x))]

/

[
1

2
E(E − 1)

]

is plotted versus the weighted mean of the linear atten-
uation defined by

∑E
e=1 Weμ̂(e, �x)/E. This is a simple

method to reduce multidimensional data, in our case 5D
data, into a two-dimensional space. This new 2D space at-
tempts to delineate materials based on unique change in
μ and the absolute value of μ at different energies. In
this space, as Fig. 1 demonstrates, materials are unique
in both dimensions and can be easily categorized into
bands with negative slopes. Based on this classification
scheme, each voxel in the image was segmented into one
of four classes: air, adipose+water, adipose+water+iodine,
or calcium+water. Specifically, voxels which mapped to the
oil or water region were classified as “Adipose+Water”, io-
dine region as “Adipose+Water+Iodine”, and bone region
as “Calcium+Water.” These material classes were chosen
based on our desired application to carotid plaques; Alternate
classes could be used for other applications.

II.C. Description of CT system

We built a prototype photon-counting CT system for the
interrogation of single carotid arteries. The geometry of the
system and prototype device are presented in Fig. 2. The pro-
totype system uses a CdTe detector (C10413, Hamamatsu
Photonics, Hamamatsu City, Japan) with a 64 mm linear array
of 64 pixels of 0.8 mm width (0.5 mm depth, 1 mm height)
with pitch of 1 mm.16 The detector electronics support simul-
taneous acquisition of five energy thresholds. The microfocus
x-ray source (L8121-03, Hamamatsu Photonics) was operated
at 120 kVp with a 20 μm focal spot. The central platform ro-
tates and translates (1 mm steps) to support step-and-shoot
acquisition of multiple slices.

II.D. Acquisitions

All objects in this study were scanned with 120 kVp and
7 μA in a tomographic mode with 64 radial bins and 160 az-
imuthal angles per 360◦. The low tube current was selected
to minimize the effects of pulse-pileup, deadtime, and energy
response distortion.2 The ability to scan with low current and
thus reduced radiation dose is one of the potential benefits
of carotid-specific imaging. Counts of x-rays above five en-
ergy thresholds were subtracted to acquire the energy win-
dows: 30–45, 45–60, 60–80, 80–100, and >100 keV. All im-
ages were reconstructed with a fan-beam FBP method with
the ramp filter.

FIG. 6. Transaxial slices of oil phantom study at each energy level showing quantitative maps of linear attenuation coefficients in units of 1/cm.
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FIG. 7. Method A: Basis decomposition of oil phantom. Material images are
quantitative estimates of material concentration in units of g/ml. This method
fails for all materials especially water and adipose.

II.D.1. Iodine phantom

A phantom with four vials (12 mm diameter each) con-
taining water, 1/80, 1/40, 1/20 dilutions of intravenous
iodine contrast agent (Omnipaque R©, GE Healthcare) was
scanned to assess the quantitative accuracy of each energy
window.

II.D.2. Oil phantom

For the evaluation of quantitative estimates of material
composition, we imaged a phantom containing 12 cylindrical
plastic vials (3.3 mm outer, 2.1 mm inner diameter each) with
10 different solutions. The solutions were: three increasing di-
lutions of iodine based contrast in saline [(1/80, 1/40, 1/20) of
Omnipaque contrast agent, leading to iodine concentrations
of (0.018, 0.035, 0.070) g/cc]; three dilutions of iodine based
contrast in poppyseed oil [(1/80, 1/40, 1/20) of Lipiodol R©,
Guerbet leading to iodine concentrations of (0.016, 0.032,
0.064) g/cc]; two water vials ; two poppyseed oil-only vials;
and two different CaCl2 (with Calcium concentrations of

0.26 and 0.51 g/cc) solutions. The phantom is summarized in
Table I.

II.D.3. Carotid plaque specimens

Two plaque specimens obtained from carotid endarterec-
tomy surgery were scanned to determine the ability to provide
tissue discrimination. Each slice was acquired for 35 s; multi-
ple slices were acquired with 1 mm spacing (total acquisition
time was 27 min).

III. RESULTS

III.A. Iodine phantom

The theoretical linear attenuation coefficient for the differ-
ent energy bands for each dilution was calculated and com-
pared with the measured linear attenuation coefficient from
the prototype system (sample images shown in Fig. 3). The
bias (100%*(measured-theoretical)/theoretical) is presented
in Table II. On average, the absolute bias is less than 10%,
suggesting that the energy response is fairly accurate, partic-
ularly for the middle energy windows.

III.B. Separation of materials

The angle of separation between water and each region in
the iodine phantom are presented in Fig. 4. This plot contains
the theoretical and measured separation angle based on the
five energy bands used during acquisition and the assumption
of a non-overlapping energy response. Of particular impor-
tance, is that water and oil can be separated both in theory
and with the measurements. As anticipated, the iodine based
regions of Omnipaque and Lipiodol result in theoretical at-
tenuation vectors that are very unique from water (angle of
separation >0.1 rad). However, the separation using linear at-
tenuation coefficients derived from the measured images was
not as large as anticipated. For the Lipiodol region, this is
can be explained partially by the fact that these vials are at
the edge of the imaging field of view and contain erroneous
values from truncation errors. The dependence of separabil-
ity on the number of energy bins is presented in Fig. 5. This
plot demonstrates that as information from the higher energy
bands is removed from the vectors the separability decreases
slightly. Analysis such as this could be used for the selection
of optimal energy bands for the discrimination of particular
materials.

TABLE III. Average absolute error in concentration measurements in each region of oil phantom.

Region

Method Water (g/cc) Oil (g/cc) Iodine (g/cc) CaCl (g/cc) Total (g/cc)

A: Basis 0.46 ± 0.50 0.04 ± 0.09 0.26 ± 0.41 0.33 ± 0.35 0.27 ± 0.48
B: Material 0.28 ± 0.31 0.02 ± 0.05 0.31 ± 0.44 0.26 ± 0.29 0.25 ± 0.44
C: Basis+Class 0.03 ± 0.05 0.09 ± 0.17 0.20 ± 0.26 0.32 ± 0.36 0.17 ± 0.31
D: Material+Class 0.06 ± 0.09 0.08 ± 0.14 0.18 ± 0.25 0.32 ± 0.35 0.17 ± 0.30

Medical Physics, Vol. 40, No. 3, March 2013
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FIG. 8. Method D: Class+Material decomposition of oil phantom. Classification image on left derived from proposed difference classifier. Material images are
quantitative estimates of material concentration in units of g/cc.

III.C. Decomposition

The measured multi-energy images of the oil phantom are
presented in Fig. 6. These images are quantitative maps of
linear attenuation coefficients at each energy level and the
mean bias compared to theoretical across all materials and
energies is 3% ± 4%. Table III presents a summary of the
absolute error in material concentration estimation for each
decomposition method measured with 1 mm2 circular regions
of interest centered on each feature. Representative material
images from Method A: Basis are shown in Fig. 7; This
method (and Method B, not shown) fails to recover estimates
of material concentration particularly for the adipose and wa-
ter materials providing motivation for the development of the
classification-type methods C and D. The quantitation in the
class-based material maps outperformed the non-class meth-
ods, as listed in Table III.

Images from Method D: Class+Material are presented in
Fig. 8. As demonstrated in Table III, Method C: Class+Basis
performed equally well as Method D. To save space, images
from only one of these are presented. The class image in
this figure demonstrates that the simple difference classifier
(Fig. 1) was able to classify the materials accurately for all re-
gions inside the vials, except for one vial containing Lipiodol
(at 2 o’clock in the phantom). This failure for the Lipiodol
region could be due to the truncation artifacts in the image
since this vial is close to the edge of the field of view. There
are also classification and quantitation errors at the boundary
of the vials partially due to: (a) the plastic wall of the vials
(vial wall was 0.6 mm thick, representing 60% of the area
of each feature) and (b) partial volume errors due to the lim-
ited resolution of the system. The water material was correctly

FIG. 9. Multiple views of volumetric reconstruction of carotid plaque spec-
imen A from the 30 to 45keV energy window. Photograph (right) presented
in same orientation as sagittal view.

FIG. 10. Transaxial view of plaque specimen B at five energy levels ac-
quired simultaneously on prototype system.
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FIG. 11. Method D:Class+Material decomposition of plaque specimen A.
Classification image on left derived from proposed difference classifier. Ma-
terial images are quantitative estimates of material concentration in units
of g/ml.
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FIG. 12. Method D:Class+Material decomposition of plaque specimen B.
Classification image on left derived from proposed difference classifier. Ma-
terial images are quantitative estimates of material concentration in units of
g/ml.

represented in all vials except the Lipiodol vials. Of partic-
ular note is that the oil-only vials were accurately discrimi-
nated and quantified (within the limits of the system resolu-
tion) compared with the water-only vials.

Images from the plaque specimens are presented in Figs. 9
and 10. Considering Class+Basis and Class+Material meth-
ods provided basically identical results, we applied one of
these methods (Method D: Class+Material) to the multi-
energy images of the specimens to generate the classified and
decomposed image in Figs. 11 and 12. We did not have a
concentration reference standard for the plaque specimens.
We can see that calcium-rich regions (as seen in the hyper-
attenuated attenuation maps) were classified as calcium and
assigned material concentrations with reasonable values (0.8–
1.2 g/cc). The method quantified some adipose components
in the vessel wall. Further evaluation with complete specimen
histology is required to quantify the accuracy of this approach.
At present, the results demonstrate some discrimination of
adipose, water, and calcium.

IV. DISCUSSION AND CONCLUSION

We presented methodology for image-based decomposi-
tion of multi-energy CT data into maps of material concen-
trations. We proposed a decomposition method based on first
classifying each voxel into a limited set of material functions
and then concentration estimation based on weighted least-
squares optimization. We compared these class-based meth-
ods to direct multibasis and material decomposition. These
methods were applied to preliminary data measured on a
prototype multi-energy CT system to demonstrate proof-of-

principle and compare with previously proposed methods. We
demonstrated with measured data that oil and water can be
separated with our five energy band system.

In the initial application of these methods to material
phantoms, the proposed quantification methods were par-
tially successful. Compared to direct decomposition, the
class-based methods provided superior performance leading
to quantitative estimates of concentration with absolute er-
rors less than 17%. The oil-only regions (in the absence of
iodine) were separated from water and quantified. The re-
gions of the phantom containing both iodine + oil (Lipi-
odol) were not distinguished from iodine + water regions.
However, the Lipiodol solutions were at the edge of the
imaging FOV where data truncation caused artifacts, thus
restricting our ability to fully evaluate this material com-
ponent with the acquired data. The phantom experiments
were limited in that they did not evaluate an object that
contains both oil and water to determine if these two com-
ponents can be accurately quantified in the presence of
the other. The separation angle analysis, as presented in
Fig. 4, suggests that oil and water have unique information,
but further work is required to demonstrate efficacy of the
proposed quantification methods for these objects. We imaged
two carotid endarterectomy specimens and showed the ability
to resolve regions of adipose tissue (oil/fat), water, and cal-
cium, although further work is needed to compare these im-
ages with histology.

As discussed in the methods, the proposed approach is
similar to prior work from Le and Molloi.15 They proposed
first segmenting the object into single materials and then per-
forming quantification. Their work forces each location in the
image to be only one material. For our application of imag-
ing small features in plaques, each location in the object is
usually a combination of constituent materials. Our method,
which allows for 2–3 materials at each location, allows for
a better representation and quantitation of these constituent
components.

There are several potential improvements to our work.
This method would benefit from extension to a more desir-
able application in the projection domain or during image
reconstruction.17, 18 Image-based decomposition is less desir-
able because accurate linear attenuation coefficient maps are
difficult to generate with polyenergetic beams due to beam
hardening. In our case, we used fairly narrow spectral bands
and small phantoms, so beam-hardening was arguably less of
a detriment. It should be stressed that narrow energy win-
dows often come at the expense of decreased count statis-
tics per window leading to increased noise and decreased
precision. Future extensions to the projection domain (pre-
reconstruction) could perform an initial classification in the
image-domain and these classes could be forward projected
into the projection domain for limited material decomposi-
tion, although this may be challenging considering the over-
lapping information content. In addition, we used coarse en-
ergy bands with a relatively high kVp. Soft-tissue discrim-
ination would benefit from increased sampling of the low-
energy response of the object where there is more distinc-
tion between materials. Finally, this work would benefit from
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employing distortion correction methods to reduce artifacts19

and noise-reduction strategies20 specifically designed for
photon-counting systems.
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