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Purpose: Iterative image reconstruction (IIR) algorithms in computed tomography (CT) are based
on algorithms for solving a particular optimization problem. Design of the IIR algorithm, therefore,
is aided by knowledge of the solution to the optimization problem on which it is based. Often times,
however, it is impractical to achieve accurate solution to the optimization of interest, which compli-
cates design of IIR algorithms. This issue is particularly acute for CT with a limited angular-range
scan, which leads to poorly conditioned system matrices and difficult to solve optimization problems.
In this paper, we develop IIR algorithms which solve a certain type of optimization called convex
feasibility. The convex feasibility approach can provide alternatives to unconstrained optimization
approaches and at the same time allow for rapidly convergent algorithms for their solution—thereby
facilitating the IIR algorithm design process.
Methods: An accelerated version of the Chambolle−Pock (CP) algorithm is adapted to various con-
vex feasibility problems of potential interest to IIR in CT. One of the proposed problems is seen to be
equivalent to least-squares minimization, and two other problems provide alternatives to penalized,
least-squares minimization.
Results: The accelerated CP algorithms are demonstrated on a simulation of circular fan-beam CT
with a limited scanning arc of 144◦. The CP algorithms are seen in the empirical results to converge
to the solution of their respective convex feasibility problems.
Conclusions: Formulation of convex feasibility problems can provide a useful alternative to uncon-
strained optimization when designing IIR algorithms for CT. The approach is amenable to recent
methods for accelerating first-order algorithms which may be particularly useful for CT with limited
angular-range scanning. The present paper demonstrates the methodology, and future work will il-
lustrate its utility in actual CT application. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4790698]
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I. INTRODUCTION

Iterative image reconstruction (IIR) algorithms in computed
tomography (CT) are designed based on some form of opti-
mization. When designing IIR algorithms to account for var-
ious factors in the CT model, the actual designing occurs
usually at the optimization problem and not the individual
processing steps of the IIR algorithm. Once the optimization
problem is established, algorithms are developed to solve it.
Achieving convergent algorithms is important, because they
yield access to the designed solution of the optimization prob-
lem and allow for direct assessment of what factors to include
in a particular optimization. Convergent algorithms can also
aid in determining at what iteration number to truncate an IIR
algorithm. With access to the designed solution, the difference
between it and previous iterates can be quantitatively evalu-
ated to see whether this difference is significant with respect
to a given CT imaging task.

It can be challenging to develop convergent algorithms
for some optimization problems of interest. This issue is
particularly acute for CT, which involves large-scale opti-
mization. In using the term “large-scale,” we are specifically
referring to optimization problems based on a linear data
model, and the dimension of the linear system is so large that
the system matrix cannot be explicitly computed and stored
in memory. Such systems only allow for algorithms which
employ operations of a similar computational expense to
matrix-vector products. Large-scale optimization algorithms
are generally restricted to first-order methods, where only
gradient information on the objective is used, or row-action
algorithms such as the algebraic reconstruction technique
(ART).1, 2 Recently, there has been renewed interest in
developing convergent algorithms for optimization problems
involving �1-based image norms, and only in the last couple
of years have practical, convergent algorithms been devel-
oped to solve these optimization problems for IIR in CT.3–6
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Despite the progress in algorithms, there are still CT config-
urations of practical interest, which can lead to optimization
problems that can be quite challenging to solve accurately.
Of particular interest in this work is CT with a limited
angular-range scanning arc. Such a configuration is relevant
to many C-arm CT and tomosynthesis applications. Modeling
limited angular-range scanning leads to system matrices with
unfavorable singular value spectra and optimization problems
for which many algorithms converge slowly.

In this paper, we consider application of convex
feasibility7, 8 to IIR for CT. In convex feasibility, various con-
straints on properties of the image are formulated so that each
of these constraints specifies a convex set. Taking the inter-
section of all of the convex sets yields a single convex set,
and the idea is to simply choose one of these images in the
intersection set. We have found convex feasibility to be useful
for CT IIR algorithm design,9 and it is of particular interest
here for limited angular-range CT, because convex feasibility
is amenable to recent accelerated first-order algorithms pro-
posed by Chambolle and Pock (CP).10 In Sec. II, we specify
the limited angular-range CT system, discuss unconstrained
optimization approaches, and then list three useful convex
feasibility problems along with a corresponding accelerated
CP algorithm. In Sec. III, the accelerated convex feasibility
CP algorithms are demonstrated with simulated CT projec-
tion data.

II. METHODS: CHAMBOLLE−POCK ALGORITHMS
FOR CONVEX FEASIBILITY

For this paper, we focus on modeling circular, fan-beam
CT with a limited scanning angular range. As with most work
on IIR, the data model is discrete-to-discrete (DD) and can be
written as a linear equation

g = X f, (1)

where f is the image vector composed of pixel coefficients, X
is the system matrix generated by computing the ray-integrals
with the line-intersection method, and g is the data vector con-
taining the estimated projection samples. For the present in-
vestigation on IIR algorithms, we consider a single configu-
ration for limited angular range scanning where the system
matrix X has a left-inverse (X T X is invertible) but is nu-
merically unstable in the sense that it has a large condition
number. The vector f consists of the pixels within a circle in-
scribed in a 256 × 256 pixel array; the total number of pixels
is 51 468. The sinogram contains 128 views spanning a 144◦

scanning arc, and the projections are taken on a 512-bin linear
detector array. The modeled source-to-isocenter and source-
to-detector distances are 40 and 80 cm, respectively. The to-
tal number of transmission measurements is 65 536, and as a
result the system matrix X has about 25% more rows than
columns. The condition of X, however, is poor, which can
be understood by considering the corresponding continuous-
to-continuous (CC) fan-beam transform. A sufficient angular
range for stable inversion of the CC fan-beam transform re-
quires a 208◦ scanning arc (180◦ plus the fan-angle, see, for
example, Sec. 3.5 of Ref. 11). By using the inverse power

method, as described in Ref. 12, the condition number, the ra-
tio of the largest to smallest singular value, for X is determined
to be 2.55 × 104. One effect of the large condition number is
to amplify noise present in the data, but it can also cause slow
convergence for optimization-based IIR.

II.A. Unconstrained optimization for IIR in CT

Image reconstruction using this DD data model is usually
performed with some form of optimization, because physical
factors and inaccuracy of the model render Eq. (1) inconsis-
tent, namely, no f exists satisfying this equation. Typically in
using this model, quadratic optimization problems are formu-
lated, the simplest of which is the least-squares problem

f◦ = arg min
f

{
1

2
‖g − X f‖2

2

}
, (2)

where f◦ is the image which minimizes the Euclidean distance
between the available data g and the estimated data X f. In the
remainder of the paper, we use the superscript “◦” to indicate
a solution to an optimization problem. Taking the gradient of
this objective, and setting it to zero componentwise, leads to
the following consistent linear equation

X T X f = X T g, (3)

where the superscript T denotes the matrix transpose. This
linear equation is particularly useful for setting up the linear
conjugate gradients (CG) algorithm, see for example Ref. 13,
which has been used as the gold standard algorithm for large-
scale quadratic optimization in IIR. The reader is also re-
ferred to conjugate gradients least-squares (CGLS) and LSQR
(an algorithm for sparse linear equations and sparse least
squares), which solve Eq. (2) for nonsymmetric X.14

The solution to Eq. (2) or (3) can be undesirable because of
inconsistency in the data. Particularly for the present case, the
poor conditioning of X can yield tremendously amplified ar-
tifacts in the reconstructed image. As is well-known, artifacts
due to data inconsistency can be controlled in optimization-
based IIR by adding a penalty term to discourage large varia-
tions between neighboring pixels

f◦ = arg min
f

{
1

2
‖g − X f‖2

2 + αR(f)
}

, (4)

where R(f) is a generic roughness term which usually is a
convex function of the difference between neighboring pix-
els in the image. The parameter α controls the strength of the
penalty with larger values leading to smoother images. When
R(f) is chosen to be quadratic in the pixel values, the opti-
mization problem can be solved by a host of standard algo-
rithms including CG. Of recent interest have been convex reg-
ularizers based on the �1-norm, which is more difficult to treat
and, accordingly, for which many new, convergent algorithms
have been proposed and applied to image reconstruction in
CT.3–6

II.B. Convex feasibility

In this paper, we consider convex feasibility prob-
lems which provide alternatives to the above-mentioned
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optimization problems. For convex feasibility problems, con-
vex sets resulting from constraints on various properties of the
image are formulated, and a single image which satisfies all
the imposed constraints is sought. Most algorithms for such
problems are based on projection onto convex sets (POCS),8

where the image estimate is sequentially projected onto each
constraint set. Convex feasibility problems can be: inconsis-
tent, no image satisfies all the constraints; or consistent, at
least one image satisfies all the constraints. In either case,
POCS algorithms can yield a useful solution. In the inconsis-
tent case, POCS algorithms can be designed to yield an image
“close” to satisfying all the constraints. In the consistent case,
a POCS algorithm can be designed to find an image obeying
all the constraints. In either case, the issue of uniqueness is
secondary, as an image “in the middle” of many inconsistent
constraints or in the intersection set of consistent constraints
is considered to be equally valid. Accordingly, the POCS re-
sult often depends on starting image, relaxation schemes, and
projection order.

For our purposes, we write a general convex feasibility as
the following optimization

f◦ = arg min
f

{ ∑
i

δSi
(Ki(f))

}
, (5)

Ki(·) is the ith affine transform of the image f; Si is the ith
convex set to which Ki(f) belongs; and the indicator function
δ is defined

δS(x) =
{

0 x ∈ S

∞ x �∈ S
. (6)

The use of indicator functions in convex analysis provides a
means to turn convex sets into convex functions,15 and in this
case, they allow convex feasibility problems to be written as
a minimization of a single objective function. The objective
function in Eq. (5) is zero for any image f satisfying all the
constraints, i.e., Ki(f) ∈ Si for all i, and it is infinity if any of
the constraints are violated. For a consistent convex feasibil-
ity problem, the objective minimum is zero, and for an incon-
sistent convex feasibility problem, the objective minimum is
infinity.

II.C. Modified convex feasibility optimization
and the Chambolle−Pock primal−dual algorithm

To solve the generic convex feasibility problem in Eq. (5),
we modify this optimization by adding a quadratic term

f◦ = arg min
f

{
1

2
‖f − fprior‖2

2 +
∑

i

δSi
(Ki(f))

}
, (7)

where fprior is a prior image estimate that can be set to zero
if no prior image is available. With this optimization prob-
lem, we actually specify a unique solution to our generic con-
vex feasibility problem in the consistent case, namely, the
image satisfying all constraints and closest to fprior. As we
will demonstrate the algorithm we propose to use for solving
Eq. (7) appears to yield useful solutions for the inconsistent
case. This latter property can be important for IIR in CT be-

cause the data model in Eq. (1) is often inconsistent with the
available projection data.

The reason for recasting the optimization in the form
shown in Eq. (7) is that this optimization can be solved by
an accelerated algorithm described in Ref. 10. Recently, we
have been interested in a convex optimization framework and
algorithms derived by Chambolle and Pock (CP).10, 16 This
framework centers on the generic convex optimization

p◦ = min
x

{G(x) + F (H x)} , (8)

where G( · ) and F( · ) are convex functions, and H is a linear
transform. The objective function

p = G(x) + F (H x)

is referred to as the primal objective. This generic problem
encompasses many optimizations of interest to IIR in CT, be-
cause nonsmooth convex functions such as the indicator and
�1-norm can be incorporated into F or G. Also, the linear
transform H can model projection, for a data fidelity term, or
a finite-difference-based gradient, for an image total variation
(TV) term. The CP framework, as presented in Ref. 10, comes
with four algorithms that have different worst-case conver-
gence rates depending on convexity properties of F and G.
Let N be the number of iterations, the algorithm summaries
are:

CP Algorithm 1: This basic CP algorithm forms the ba-
sis of the subsequent algorithms and it only requires F
and G to be convex. The worst-case convergence rate is
O(1/N).

CP Algorithm 2: Can be used if either F or G are uni-
formly convex. Modifies CP Algorithm 1 using a step-
size formula developed by Nesterov.17, 18 The worst-
case convergence rate is O(1/N2). Because the conver-
gence rate is faster than the previous case, this algorithm
is an accelerated version of CP Algorithm 1.

CP Algorithm 3: Can be used if both F and G are uni-
formly convex. This algorithm is the same as CP Algo-
rithm 1, except that there is a specific choice of algo-
rithm parameters, depending on constants related to the
uniform convexity of F and G. The worst-case conver-
gence is linear, i.e., O(1/cN), where c > 1 is a constant.

CP Algorithm 4: A simpler version of CP Algorithm 2,
which also requires F or G to be uniformly convex. The
convergence rate is slightly worse than O(1/N2).

In a previous publication,6 we illustrated how to use CP
Algorithm 1 from Ref. 10 to prototype many optimization
problems of potential interest to image reconstruction in CT.
We were restricted to CP Algorithm 1, because we consid-
ered mainly problem where G was 0, and F contained indi-
cator functions, the �1-norm, or TV terms and accordingly F
was not uniformly convex. In the present work, we narrow the
class of optimization problems to those which can be written
in the form of Eq. (7), where the sets Si are simple enough
that direct Euclidean projections to the sets Si are analytically
available. In matching up Eq. (7) to the generic optimization
in Eq. (8), the function G is assigned the uniformly convex
quadratic term and F gets the sum of indicator functions. As
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such, Eq. (7) fills the requirements of CP Algorithms 2 and
4. In the particular case of Eq. (7) the uniformly convex term,
0.5‖f − fprior‖2

2, is simple enough that CP Algorithm 2 can be
derived without any difficulty. Because this algorithm is an
accelerated version of CP Algorithm 1, we refer to it, here,
as the accelerated CP algorithm. This algorithm acceleration
is particularly important for IIR involving an ill-conditioned
data model such as Eq. (1) in the case of limited angular range
scanning.

II.D. The primal-dual gap and convergence criteria

The CP algorithms are primal-dual in that they solve the
primal minimization Eq. (8) together with a dual maximiza-
tion

d◦ = max
y

{−F ∗(y) − G∗(−H T y)}, (9)

and,

d = −F ∗(y) − G∗(−H T y)

is the dual objective, and the superscript * represents convex
conjugation through the Legendre transform

P ∗(z) = max
z′

{zT z′ − P (z′)}. (10)

That the CP algorithms obtain the dual solution, also, is useful
for obtaining a robust convergence criterion that applies for
nonsmooth convex optimization. As long as the primal ob-
jective p is convex, we have p◦ = d◦. While a solution for
a smooth optimization can be checked by observing that the
gradient of the primal objective in Eq. (8) is zero, this test
may not be applicable to nonsmooth optimization, where the
primal objective may not be differentiable at its minimum.
Instead, we can use the primal-dual gap p − d, because the
primal objective for any x is larger than the dual objective in
Eq. (9) for any y except when x and y are at their respec-
tive extrema, where these objectives are equal. Checking the
primal-dual gap is complicated slightly when indicator func-
tions are included in one of the objectives, because indicators
take on infinite values when their corresponding constraint
is not satisfied. As a result, we have found it convenient in
Ref. 6 to define a conditional primal-dual gap which is the
primal-dual gap with indicator functions removed from both
objectives. This convergence check then involves observing
that the conditional primal-dual gap is tending to zero and
that the iterates are tending toward satisfying each of the con-
straints corresponding to the indicator functions. By divid-
ing up the convergence check in this way, we give up non-
negativity of the gap. The conditional primal-dual gap can be
negative, but it will approach zero as the iterates approach
the solution to their respective optimizations. Use of this con-
vergence check will become more clear in the results section
where it is applied to various convex feasibility problems re-
lated to IIR in CT.

With respect to numerical convergence, it is certainly use-
ful to have mathematical convergence criteria such as the gra-
dient of the objective or the primal-dual gap, but it is also im-
portant to consider metrics of interest. By a metric, we mean

some function of the image pixel values pertaining to a par-
ticular purpose or imaging task. For numerical convergence,
we need to check, both, that the convergence metrics are ap-
proaching zero and that other metrics of interest are leveling
off so that they do not change with further iterations. Rarely
are IIR algorithms run to the point where the convergence cri-
terion are met exactly, in the numerical sense. This means,
that the image estimates are still evolving up until the last
computed iteration, and one cannot say a priori whether the
small changes in the image estimates are important to the met-
rics of interest or not. For the present theoretical work, where
we have access to the true underlying image, we employ the
image root mean square error (RMSE) as an image quality
metric. But we point out that other metrics may be more sen-
sitive and potentially alter the iteration number where the spe-
cific problem can be considered as converged.19

II.E. Convex feasibility instances

In the following, we write various imaging problems in the
form of Eq. (7). We consider the following three convex fea-
sibility problems: EC, one set specifying a data equality con-
straint; IC, one set specifying a data inequality constraint; and
ICTV, two sets specifying data and TV inequality constraints.
The derived accelerated CP algorithms for each problem are
labeled CP2-EC, CP2-IC, and CP2-ICTV, respectively. Us-
ing simulated fan-beam CT data with a limited angular-range
scanning arc, Sec. III presents results for all three problems in
the consistent case and problems EC and ICTV in the incon-
sistent case. Of particular importance, CP2-EC applied to the
inconsistent case appears to solve the ubiquitous least-squares
optimization with a convergence rate competitive with CG.

II.E.1. CP2-EC: An accelerated CP algorithm instance
for a data equality constraint

The data model in Eq. (1) cannot be used directly as an im-
plicit imaging model for real CT data, because inconsistencies
inherent in the data prevent a solution. But treating this equa-
tion as an implicit imaging model for ideal simulation can be
useful for algorithm comparison and testing implementations
of the system matrix X; we use it for the former purpose. We
write this ideal imaging problem into an instance of Eq. (7),

f◦ = arg min
f

{
1

2
‖f − fprior‖2

2 + δ0(X f − g)

}
, (11)

where the indicator δ0( · ) is zero only when all components
of the argument vector are zero, and otherwise it is infinity.
The corresponding dual maximization needed for computing
the conditional primal-dual gap is

y◦ = arg max
y

{
−1

2
‖XT y‖2

2 − gT y + fTprior(X
T y)

}
. (12)

In matching Eq. (11) with Eq. (7), there is only one convex
constraint where K1(f) = X f − g and S1 is the 0-vector with
size, size(g). In considering ideal data and a left-invertible
system matrix X, there is only one image for which the in-
dicator is not infinite. In this situation, the first quadratic has
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1: L X 2; τ ← 1; σ ← 1/L2; n ← 0

2: initialize f0 and y0 to zero vectors

3: f̄0 ← f0

4: repeat

5: yn+1 ← yn + σ(X f̄n − g)

6: fn+1 ← fn − τ(X Tyn+1 − fprior) /(1 + τ)

7: θ ← 1/
√

1 + 2τ ; τ ← τθ; σ ← σ/θ

8: f̄n+1 ← fn+1 + θ(fn+1 − fn)

9: n ← n + 1

10: until n ≥ N

FIG. 1. Pseudocode for N steps of the accelerated CP algorithm instance for
solving Eq. (11). Variables are defined in the text.

no effect on the solution and accordingly the solution is inde-
pendent of the prior image estimate fprior. If the system matrix
is not left-invertible, the solution to Eq. (11) is the image sat-
isfying Eq. (1) closest to fprior.

Following the formalism of Ref. 10, we write an acceler-
ated CP algorithm instance for solving Eq. (11) and its dual
Eq. (12) in Fig. 1. We define the pseudocode variables and
operations starting from the first line. The variable L is as-
signed the matrix �2-norm of X, which is its largest singular
value. This quantity can be computed by the standard power
method, see Ref. 6 for its application in the present context.
The parameters τ and σ control the step sizes in the primal
and dual problems, respectively, and they are initialized so
that their product yields 1/L2. Other choices on how to bal-
ance the starting values of τ and σ can be made, but we have
found that the convergence of our examples does not depend
strongly on the choice of these parameters. Line 5 shows the
update of the dual variable yn+1; this variable has the same
dimension as the data vector g. Line 6 updates the image, and
Line 7 adjusts the step-sizes in a way that accelerates the CP
algorithm.10

II.E.2. CP2-IC: An accelerated CP algorithm instance
for inequality constrained data-error

Performing IIR with projection data containing inconsis-
tency requires some form of image regularization. One com-
mon strategy is to employ Tikhonov regularization, see for
example, Chap. 2 of Ref. 20. Tikhonov regularization fits into
the form of Eq. (4) by writing R(f) = (1/2)‖f‖2

2. One small in-
convenience with this approach, however, is that the physical
units of the two terms in the objective of Eq. (4) are different,
and therefore it can be difficult to physically interpret the reg-
ularization parameter α. An equivalent optimization can be
formulated as a special case of Eq. (7),

f◦ = arg min
f

{
1

2
‖f − fprior‖2

2 + δBall(ε′)(X f − g)

}
, (13)

which differs from Eq. (11) only in that the set S1 is widened
from a 0-vector to Ball(ε′), where we use the term Ball(ε′)
to denote a multidimensional solid sphere of radius ε′ and

1: L X 2; τ ← 1; σ ← 1/L2; n ← 0

2: initialize f0 and y0 to zero vectors

3: f̄0 ← f0

4: repeat

5: yn ← yn + σ(X f̄n − g); yn+1 ← max( yn 2 − , 0) yn
yn 2

6: fn+1 ← fn − τ(X Tyn+1 − fprior) /(1 + τ)

7: θ ← 1/
√

1 + 2τ ; τ ← τθ; σ ← σ/θ

8: f̄n+1 ← fn+1 + θ(fn+1 − fn)

9: n ← n + 1

10: until n ≥ N

FIG. 2. Pseudocode for N steps of the accelerated CP algorithm instance for
solving Eq. (13) with parameter ε′. Variables are defined in Sec. II.E.1.

the dimension of the solid sphere is taken to be the same as
size(g). We also define the parameter ε, which is a constraint
on the data RMSE,

ε = ε′/
√

size(g).

The corresponding dual maximization is

y◦ = arg max
y

{
−1

2
‖XT y‖2

2 − ε′‖y‖2 − gT y + fTprior(X
T y)

}
.

(14)

The indicator δBall(ε′)(X f − g) in Eq. (13) is zero when
‖X f − g‖2 ≤ ε′ and infinity otherwise. This optimization is
equivalent to Tikhonov regularization when fprior is zero and
ε′ > 0 in the sense that there exists a corresponding α (not
known ahead of time) where the two optimizations yield the
same solution. The advantage of Eq. (13) is that the parameter
ε′ has a meaningful physical interpretation as a tolerance on
the data-error. Larger ε′ yields greater regularization. Gener-
ally, the Tikhonov form is preferred due to algorithm avail-
ability. Tikhonov regularization can be solved, for example,
by linear CG. With the application of CP2-IC, however, an ac-
celerated solver is now available that directly solves the con-
strained minimization in Eq. (13).

The pseudocode for CP2-IC is given in Fig. 2. This pseu-
docode differs from the previous at the update of the dual vari-
able yn+1 in Line 5. The derivation of this dual update is cov-
ered in detail in our previous work on the application of the
CP algorithm to CT image reconstruction.6 For the limited
angular-range CT problem considered here, Eq. (13) is par-
ticularly challenging because the constraint shape is highly
eccentric due to the spread in singular values of X.

II.E.3. CP2-ICTV: An accelerated CP algorithm
instance for total variation and data-error constraints

Recently, regularization based on the �1-norm has received
much attention. In particular, the TV seminorm has found ex-
tensive application in medical imaging due to the fact that
tomographic images are approximately piecewise constant.
The TV seminorm of f is written as ‖(|∇f|)‖1, where ∇ is a
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matrix encoding a finite-difference approximation to the gra-
dient operator; it acts on an image and yields a spatial-vector
image. The absolute value operation acts pixelwise, taking
the length of the spatial-vector at each pixel of this image;
accordingly, |∇f| is the gradient-magnitude image of f. The
TV seminorm can be used as a penalty with the generic op-
timization of Eq. (4), by setting R(f) = ‖(|∇f|)‖1. Conver-
gent large-scale solvers for this optimization problem have
only recently been developed with some algorithms relying on
smoothing the TV term.3–5 As with Tikhonov regularization,
there is still the inconvenience of having no physical mean-
ing of the regularization parameter α. We continue along the
path of recasting optimization problems as a convex feasibil-
ity problem and consider

f◦ = arg min
f

{
1

2
‖f − fprior‖2

2 + δBall(ε′)(X f − g)

+ δDiamond(γ )(|∇f|)
}
, (15)

where the additional indicator places a constraint on
the TV of f; and we have K1(f) = X f + g, K2(f) =
∇f, S1 = {g such that g ∈ Ball(ε′)}, and S2 = {z such that |z|
∈ Diamond(γ )}, where z is a spatial-vector image. The term
Diamond(γ ) describes the �1-ball of scale γ ; the indicator
δDiamond(γ )(|∇f|) is zero when ‖(|∇f|)‖1 ≤ γ . This convex fea-
sibility problem asks for the image that is closest to fprior and
satisfies the ε′-data-error and γ -TV-constraints. The corre-
sponding dual maximization is

y◦ = arg max
y,z

{
− 1

2
‖XT y+∇T z‖2

2−ε′‖y‖2−γ ‖(|z|)‖∞

− gT y + fTprior(X
T y + ∇T z)

}
, (16)

where z is a spatial-vector image; |z| is the scalar image pro-
duced by taking the vector magnitude of z at each pixel; the
�∞-norm yields the largest component of the vector argu-
ment; and ∇T is the matrix transpose of ∇. We demonstrate in
Sec. III application of CP2-ICTV to both inconsistent and
consistent constraint sets. Due to the length of the pseu-
docode, we present it in the Appendix A, and point out that
it can be derived following Ref. 6, using the Moreau identity
described in Ref. 10 and an algorithm for projection onto the
�1-ball.21

II.F. Summary of proposed convex
feasibility methodology

Our previous work in Ref. 6 promoted use of CP
Algorithm 1 to prototype convex optimization problems for
IIR in CT. Here, we restrict the convex optimization to the
form of Eq. (7), allowing the use of the accelerated CP
Algorithm 2 with a steeper worst-case convergence rate.
Because the proposed optimization Eq. (7) has a generic con-
vex feasibility term, the framework can be regarded as con-
vex feasibility prototyping. The advantage of this approach
is twofold: (1) an accelerated CP algorithm is available with
an O(1/N2) convergence rate, and (2) the design of convex

feasibility connects better with physical metrics related to the
image estimate. To appreciate the latter point, consider the
unconstrained counterpart to ICTV. In setting up an objective
which is the sum of image TV, data fidelity, and distance from
fprior, two parameters are needed to balance the strength of the
three terms. We arrive at

f◦ = arg min
f

{
1

2
‖f − fprior‖2

2 + α1
1

2
‖g −X f‖2

2 + α2‖f‖TV

}
.

As the terms reflect different physical properties of the image,
it is not clear at all what values should be selected nor is it
clear what the impact of the parameters are on the solution of
the unconstrained minimization.

Section III demonstrates use of CP2-EC, CP2-IC, and
CP2-ICTV on a breast CT simulation with a limited scanning
angular range. The main goals of the numerical examples are
to demonstrate use of the proposed convex feasibility frame-
work and convergence properties of the derived algorithms.
Even though the algorithms are known to converge within a
known worst-case convergence rate, it is still important to ob-
serve the convergence of particular image metrics in simula-
tions similar to an actual application.

III. RESULTS: DEMONSTRATION OF THE CONVEX
FEASIBILITY ACCELERATED CP ALGORITHMS

We demonstrate the application of the various accelerated
CP algorithm instances on simulated CT data generated from
the breast phantom shown in Fig. 3. The phantom, described
in Refs. 22 and 23, is digitized on a 256 × 256 pixel array.
Four tissue types are modeled: the background fat tissue is
taken as the reference material and assigned a value of 1.0,
the modeled fibro-glandular tissue takes a value of 1.1, the
outer skin layer is set to 1.15, and the microcalcifications are
assigned values in the range [1.8,2.3]. The simulated CT con-
figuration is described at the beginning of Sec. II.

In the following, the IIR algorithms are demonstrated with
ideal data generated by applying the system matrix X to the
phantom and with inconsistent data obtained by adding Pois-
son distributed noise to the ideal data set. We emphasize that
the goal of the paper is to address convergence of difficult
optimization problems related to IIR in limited angular-range

FIG. 3. Breast phantom for the CT limited angular-range scanning simula-
tion. (Left) the phantom in the gray scale window [0.95,1.15]. (Right) the
same phantom with a blow-up on the micro-calcification ROI displayed in
the gray scale window [0.9,1.8]. The right panel is the reference for all image
reconstruction algorithm results.
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CT. Thus, we are more interested in establishing that the CP
algorithm instances achieve accurate solution to their corre-
sponding optimization problems, and we are less concerned
about the image quality of the reconstructed images. In check-
ing convergence in the consistent case, we monitor the condi-
tional primal-dual gap.

For the inconsistent case, we do not have a general crite-
rion for convergence. The conditional primal-dual gap tends
to infinity because the dual objective is forced to tend to infin-
ity in order to meet the primal objective, which is necessarily
infinity for inconsistent constraints. We hypothesize, however,
that CP2-EC minimizes the least-squares problem, Eq. (2),
and we can use the gradient magnitude of the least-squares
objective to check this hypothesis and test convergence. For
CP2-IC, we also hypothesize that it solves the same prob-
lem in the inconsistent case, but it is not interesting because
we can instead use the parameter-less EC problem. Finally,
for CP2-ICTV we do not have a convergence check in the
inconsistent case, but we also note that it is difficult to say
whether or not a specific instance of ICTV is consistent or
not because there are two constraints on quite different image
metrics. For this problem, the conditional primal-dual gap is
useful for making this determination. If we observe a diver-
gent trend in the conditional primal-dual gap, we can say that
the particular choice of TV and data-error constraints are not
compatible.

Additionally, we monitor two other metrics as a function
of iteration number, the image RMSE is

‖f − fphantom‖2√
size(f)

,

and the data RMSE is
‖g − X f‖2√

size(g)
.

We take the former as a surrogate for image quality, keeping
in mind the pitfalls in using this metric, see Sec. 14.1.2 of Ref.
24. The latter along with image TV are used to verify that the
constraints are being satisfied.

III.A. Ideal data and equality-constrained optimization

We generate ideal data from the breast phantom and apply
CP2-EC, with fprior = 0, to investigate its convergence behav-
ior for limited angular-range CT. As the simulations are set
up so that X is left-invertible and the data are generated from
applying this system matrix to the test phantom, the indicator
δ0(X f − g) in Eq. (11) is zero only when f is the phantom.
Observing convergence to the breast phantom as well as the
rate of convergence is of main interest here.

In order to have a reference to standard algorithms, we ap-
ply linear CG (Ref. 13) and ART to the same problem. Linear
CG solves the minimization in Eq. (2), which corresponds to
solving the linear system in Eq. (3). The matrix, X T X , in
this equation is symmetric with non-negative singular values.
The ART algorithm, which is a form of POCS, solves Eq. (1)
directly by cycling through orthogonal projections onto the
hyperplanes specified by each row of the linear system.

The results of each algorithm are shown in Fig. 4. As the
data are ideal, each algorithm drives the data-error to zero.
The linear CG algorithm shows the smallest data RMSE, but
we note similar slopes on the log-log plot of CG and CP2-EC
during most of the computed iterations except near the end,
where the slope of the CG curve steepens. The ART algorithm
reveals a convergence slightly faster than CP2-EC, initially,
but it is overtaken by CP2-EC near iteration 1000. We also
note the impact of the algorithm acceleration afforded by the
proposed convex feasibility framework in the comparison of
CP2-EC and CP1-EC.

Because X is designed to be left-invertible, we also know
that the image estimates must converge to the breast phantom
for each of the four algorithms. A similar ordering of the con-
vergence rates is observed in the image RMSE plot, but we
note that the values of the image RMSE are all much larger
than corresponding values in the data RMSE plots. This stems
from the poor conditioning of X, and this point is emphasized
in examining the shown image estimates at iteration 10 000
for each algorithm.

While the image RMSE gives a summary metric on the
accuracy of the image reconstruction, the displayed images
yield more detailed information on the image error incurred
by truncating the algorithm iteration. The CP2-EC, CP1-EC,
and ART images show wavy artifacts on the left side; the
limited-angle scanning arc is over the right-side of the object.
But the CG image shows visually accurate image reconstruc-
tion at the given gray scale window setting.

This initial result shows promising convergence rates for
CP2-EC and that it may be competitive with existing algo-
rithms for solving large, consistent linear systems. But we
cannot draw any general conclusions on algorithm conver-
gence, because different simulation conditions may yield dif-
ferent ordering of the convergence rates. Moreover, we have
implemented only the basic forms of CG and ART; no attempt
at preconditioning CG was made and the relaxation parameter
of ART was fixed at 1.

We discuss convergence in detail as it is a major focus of
this paper. In Fig. 5, we display the conditional primal-dual
gap for the accelerated CP2-EC algorithm compared with use
of CP1-EC. First, it is clear that convergence of this gap is
slow for this problem due to the ill-conditionedness of X, and
we note this slow convergence is in line with the image RMSE
curves in Fig. 4. The image RMSE has reached only 10−3 af-
ter 105 iterations. Second, the gap for CP1-EC appears to be
lower than that of CP2-EC at the final iteration, but the curve
corresponding to CP2-EC went through a similar dip and is
returning to a slow downward trend. Third, for a complete
convergence check, we must examine the constraints sepa-
rately from the conditional primal-dual gap, The only con-
straint in EC is formulated in the indicator δ0(X f − g). In
words, this constraint is that the given data and data estimate
must be equal or, equivalently, the data RMSE must be zero.
We observe in Fig. 4 that the data RMSE is indeed tending
to zero. Now that we have a specific example, we reiterate
the need for dividing up the convergence check into the con-
ditional primal-dual gap and separate constraint checks. Even
though the data RMSE is tending to zero, it is not numerically
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FIG. 4. Results of CP2-EC with ideal, simulated data. Convergence is also compared with CP1-EC, linear CG, and ART. (Top row) (Left) convergence of the
four algorithms in terms of data RMSE, and (Right) convergence of the four algorithms in terms of image RMSE. (Bottom row) the image at iteration 10 000 for
CG, ART, CP Algorithm 1, and CP2-EC shown in the same gray scale as Fig. 3. The artifacts seen at the right of the images and relatively large image RMSE
are indications of the poor conditioning of X. The comparison between CP2-EC and CP1-EC shows quantitatively the impact of the acceleration afforded by CP
Algorithm 2.

zero at any iteration and consequently the value of δ0(X f − g)
is ∞ at all iterations. Because this indicator is part of the pri-
mal objective in Eq. (11), this objective also takes on the value
of ∞ at all iterations. As a result, direct computation of the
primal-dual gap does not provide a useful convergence check
and we need to use the conditional primal-dual gap.

III.B. Noisy, inconsistent data, and
equality-constrained optimization

In this section, we repeat the previous simulation with all
four algorithms except that the data now contain inconsis-
tency modeling Poisson distributed noise. The level of the
noise is selected to simulate what could be seen in a low-dose
CT scan. The use of this data model contradicts the appli-
cation of equality-constrained optimization and EC becomes
inconsistent. But nothing prevents us from executing the CP2-

EC operations, and accordingly we do so in this subsection.
The linear CG algorithm can still be applied in this case, be-
cause the optimization in Eq. (2) is well-defined even though
there is no f such that g = X f. Likewise, the linear system
in Eq. (3) does have a solution even when g is inconsistent.
The basic ART algorithm, as with CP2-EC, is not suited to
this data model, because it is a solver for Eq. (1), which we
know ahead of time has no solution. Again, as with CP2-EC,
the steps of ART can still be executed even with inconsistent
data, and we show the results here.

In Fig. 6, we show evolution plots of quantities derived
from the image estimates from each of the four algorithms.
Because the data are inconsistent, the data- and image-error
plots have a different behavior than the previous consistent
example. In this case, we know that the data RMSE can-
not be driven to zero. The algorithms CP2-EC and CG con-
verge on a value greater than zero, while CP1-EC and ART
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FIG. 5. The conditional primal-dual gap for EC shown for
CP2-EC and CP1-EC. This gap is computed by taking the differ-
ence between the primal and dual objectives in Eqs. (11) and (12),
respectively, after removing the indicator in the primal objective:
cPD = | 1

2 ‖f − fprior‖2
2 + 1

2 ‖XT y‖2
2 + gT y − fTprior(X

T y)|/size(f). The
absolute value is used because the argument can be negative, and we
normalize by the number of pixels size(f) so that the primal objective takes
the form of a mean square error. The prior image fprior for this computation
is zero. The comparison between CP2-EC and CP1-EC shows quantitatively
the impact of the acceleration afforded by CP Algorithm 2.

appear to need more iterations to reach the same data RMSE
value.

The image RMSE shows an initial decrease to some mini-
mum value followed by an upward trend. For CG the upward
trend begins to level off at 20 000 iterations, while for CP2-EC
it appears that this happens near the final 100 000th iteration.
For both plots, the results of CP1-EC lag those of the acceler-
ated CP2-EC algorithm.

Turning to convergence checks, we plot the conditional
primal-dual gap for EC and the magnitude of the gradient
of the least-squares objective from Eq. (2) in Fig. 7. As ex-
plained at the beginning of Sec. III, the conditional primal-
dual gap tends to infinity for inconsistent convex feasibility
problems because the dual objective increases without bound.
We observe, in fact, that the conditional primal-dual gap for
EC is diverging—a consequence of the inconsistent data used
in this simulation. In examining the objective gradient mag-
nitude, the curve for the CG results shows an overall conver-
gence by this metric, because this algorithm is designed to
solve the normal equations of the unregularized, least-squares
problem in Eq. (2). The ART algorithm shows an initial de-
cay followed by a slow increase. This result is not surprising,

because ART is designed to solve Eq. (1) directly and not the
least-squares minimization in Eq. (2). As an aside, we point
out that in applying ART to inconsistent data it is important to
allow the relaxation parameter to decay to zero. Interestingly,
CP2-EC and CP1-EC show a monotonic decrease of this
gradient.

The resulting gradient magnitude curves indicate con-
vergence of the least-squares minimization, obtained by
the CP algorithms. This is surprising, because the con-
ditional primal-dual gap diverges to infinity. Indeed, the
magnitude of the dual variable yn from the algorithm
listed in Fig. 1 increases steadily with iteration number.
Even though the dual problem diverges, this simulation
indicates convergence of the primal least-squares minimiza-
tion in that the gradient of this objective is observed to mono-
tonically decrease. There is no proof that we are aware of,
which covers this situation, thus we cannot claim that CP2-EC
will always converge the least-squares problem. Therefore, in
applying CP2-EC in this way it is crucial to evaluate the con-
vergence criterion and to verify that the magnitude of the ob-
jective’s gradient decays to zero. The conditional primal-dual
gap cannot be used as a check for CP2-EC applied to incon-
sistent data.

The dependence of the gradient magnitude of the unregu-
larized, least-squares objective for the CP2-EC and CG algo-
rithms is quite interesting. Between 10 and 20 000 iterations,
CP2-EC shows a steeper decline in this convergence met-
ric. But greater than 20 000 iterations the CG algorithm takes
over and this metric drops precipitously. The CG behavior can
be understood in realizing that the image has approximately
50 000 unknown pixel values and if there is no numerical er-
ror in the calculations, the CG algorithm terminates when the
number of iterations equals the number of unknowns. Because
numerical error is present, we do not observe exact conver-
gence when the iteration number reaches 50 000, but instead
the steep decline in the gradient of the least-squares objec-
tive is observed. This comparison between CP2-EC and CG
has potential implications for larger systems where the steep
drop-off for CG would occur at higher iteration number.

The conditions of this particular simulation are not relevant
to practical application because it is already well-known that
minimizing unregularized, data-fidelity objectives with noisy
data converges to an extremely noisy image particularly for
an ill-conditioned system matrix; noting the large values of

FIG. 6. Metrics of CP2-EC image estimates with noisy and inconsistent, simulated data. Results are compared with CP1-EC, linear CG, and ART. Left,
evolution of the four algorithms in terms of data RMSE, and right, evolution of the four algorithms in terms of image RMSE.
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FIG. 7. Convergence plots: the conditional primal-dual gap for EC (left) and the gradient magnitude of the quadratic least-squares objective of Eq. (2) (right).
The conditional primal-dual gap is only available for CP2-EC and CP1-EC, while all algorithms can be compared with the objective gradient. The quantity
cPD for this problem is explained in the caption of Fig. 5. The convex feasibility problem EC is inconsistent for the simulated noisy data, and as a result cPD
diverges to ∞. We hypothesize that CP2-EC converges the least squares minimization Eq. (2), and indeed we note in the gradient plot that CP2-EC yields a
decaying objective gradient-magnitude competitive with linear CG and ART. The comparison between CP2-EC and CP1-EC shows quantitatively the impact of
the acceleration afforded by CP Algorithm 2.

the image RMSE, we know this to be the case without dis-
playing the image. But this example is interesting in inves-
tigating convergence properties. While it is true that moni-
toring the gradient magnitude of the least-squares objective
yields a sense about convergence, we do not know a priori
what threshold this metric needs to cross before we can say
the IIR is converged, see Ref. 19 for further discussion on
this point related to IIR in CT. This example in particular
highlights the point that an image metric of interest, such as
image and data RMSE, needs to be observed to level off in
combination with a steady decrease of a convergence metric.
For this example, convergence of the image RMSE occurs
when the gradient-magnitude of the least-squares objective
drops below 10−5, while the data RMSE convergence occurs
earlier.

III.C. Noisy, inconsistent data with
inequality-constrained optimization

In performing IIR with inconsistent projection data, some
form of regularization is generally needed. In using the con-
vex feasibility approach, we apply CP2-IC after deciding on
the parameter ε′. The parameter ε′ has a minimum value, be-
low which no images satisfy the data-error constraint, and
larger ε′ leads to greater image regularity. The choice of ε′

may be guided by properties of the available data or a prior
reconstruction. In this case, we have results from Sec. III.B
and we note that the data RMSE achieve values below 0.002.
Accordingly, for the present simulation we select a tight data-
error constraint ε′ = 0.512, which is equivalent to allowing a
data RMSE of ε = 0.002. The CP2-IC algorithm selects the
image obeying the data-error constraint closest to fprior, and to
illustrate the dependence on fprior we present results for two
choices: an image of zero values, and an image set to 1 over
the support of the phantom. Note that the second choice as-
sumes prior knowledge of the object support and background
value of 1. To our knowledge, there is no direct, existing al-
gorithm for solving Eq. (13), and thus we display results for
CP2-IC only. One can use a standard algorithm such as linear

CG to solve the Lagrangian form of Eq. (13), but this method
is indirect because it is not known ahead of time what La-
grange multiplier leads to the desired value of ε′.

The results of CP2-IC and CP1-IC are shown in Fig. 8.
The data RMSE is seen to converge to the value established
by the choice of ε′. In the displayed images, there is a clear
difference due to the choice of prior image. The image result-
ing from the zero prior shows a substantial drift of the gray
level on the left side of the image. Application of a prior im-
age consisting of constant background values over the object’s
true support removes this artifact almost completely. These
results indicate that use of prior knowledge, when available,
can have a large impact on image quality particularly for an
ill-conditioned system matrix such as what arises in limited
angular-range CT.

Because IC in this case presents a consistent problem, con-
vergence of the CP2-IC algorithm can be checked by the con-
ditional primal-dual gap. This convergence criterion is plot-
ted for CP2-IC and CP1-IC in Fig. 9. The separate constraint
check is seen in the data RMSE plot of Fig. 9. We see that the
accelerated version of the CP algorithm used in CP2-IC yields
much more rapid convergence than CP1-IC. For example, the
data RMSE constraint is reached to within 10−6 at iteration
1000 for CP2-IC, while this point is not reached for CP1-IC
by even iteration 10 000. A similar observation can also be
made for the conditional primal-dual gap.

III.D. Noisy, inconsistent data with two-set
convex feasibility

For the last demonstration of the convex feasibility ap-
proach to IIR for limited-angular range CT, we apply CP2-
ICTV, which seeks the image closest to a prior image and
respects constraints on image TV and data-error. We are un-
aware of other algorithms, which address this problem, and
only results for CP2-ICTV and CP1-ICTV are shown. In ap-
plying CP2-ICTV, we need two constants, ε′ and γ , and ac-
cordingly use of this algorithm is meant to be preceded by
an initial image reconstruction in order to have a sense of
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FIG. 8. Results of CP2-IC and CP1-IC with noisy and inconsistent, simulated data. The curves labeled “prior 0” correspond to a zero prior image. The curves
labeled “prior 1” correspond to a prior image of 1.0 on the object support. (Top) (left) convergence of the data RMSE to the preset value of ε = 0.002 and (right)
image RMSE. (Bottom) (Left) “prior 0” final image, and (Right) “prior 1” final image. Gray scales are the same as Fig. 3. The comparison between CP2-EC and
CP1-EC shows quantitatively the impact of the acceleration afforded by CP Algorithm 2.

interesting values for the data-error and image TV constraints.
From the previous results, we already have information about
data-error, and because we have the image estimates, we can
also compute image TV values. The image TV values corre-
sponding to the two prior image estimates differ significantly,
reflecting the quite different appearance of the resulting im-
ages shown in Fig. 8. We follow the use of the support prior

FIG. 9. The conditional primal-dual gap for IC shown for CP2-
IC and CP1-IC. This gap is computed by taking the difference
between the primal and dual objectives in Eqs. (13) and (14), re-
spectively, after removing the indicator in the primal objective:
cPD = | 1

2 ‖f − fprior‖2
2 + 1

2 ‖XT y‖2
2 + ε′‖y‖2 + gT y − fTprior (XT y)|/size(f).

The absolute value is used because the argument can be negative, and we
normalize by the number of pixels size(f) so that the primal objective takes
the form of a mean square error. The prior image fprior for this computation
is explained in the text. The comparison between CP2-IC and CP1-IC shows
quantitatively the impact of the acceleration afforded by CP Algorithm 2.

image, and take the corresponding value of the image TV of
4400.

In our first example with this two-set convex feasibil-
ity problem, we maintain the tight data-error constraint
ε′ = 0.512 (a data RMSE of 0.002) but attempt to find an
image with lower TV by selecting γ = 4000. The results
for these constraint set settings, labeled “set 1,” are shown
in Fig. 10. Interestingly, this set of constraints appears to be
just barely infeasible; the CP2-ICTV result converges to an
image TV of 4000.012 and a data RMSE of 0.00202. Fur-
thermore, the dual variable magnitude increases steadily, an
indication of an infeasible problem. The curves for image TV
and data RMSE indicate convergence to the above-mentioned
values, but we do not make theoretical claims for convergence
of the CP algorithms with inconsistent convex feasibility
problems.

In the second example, we loosen the data-error constraint
to ε′ = 0.768 (a data RMSE of 0.0025) and seek an image
with lower TV, γ = 3100, and the results are also shown in
Fig. 10. In this case, the constraint values are met by CP2-
ICTV, and the resulting image has noticeably less noise than
the images with no TV constraint imposed shown in Fig. 8
particularly in the ROI containing the model microcalcifica-
tions. The image RMSE for this constraint set in ICTV is
0.029, while the comparable image RMSE from the previ-
ous convex feasibility problem, IC, with no TV constraint
shown in Fig. 8 is 0.037. Thus we note a drop in image RMSE
in adding the image TV constraint, but a true image quality
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FIG. 10. Results of CP2-ICTV and CP1-ICTV with noisy and inconsistent, simulated data for two different constraint set values: “set 1” refers to choosing
ε′ = 0.512 (a data RMSE of ε = 0.002) and γ = 4000; “set 2” refers to choosing ε′ = 0.768 (a data RMSE of ε = 0.0025) and γ = 3100. (Top row) (Left)
evolution of data RMSE, and (Right) evolution of image TV. (Middle row) evolution of image RMSE. The comparison between CP2-ICTV and CP1-ICTV
shows quantitatively the impact of the acceleration afforded by CP Algorithm 2. (Bottom row) (Left) resulting image of “set 1,” and (Right) resulting image
of “set 2.” Gray scales are the same as Fig. 3. Note that the calculation for “set 1” is extended to 105 iterations due to slower convergence than the results for
“set 2.”

comparison would require parameter sweeps in ε for IC, and
ε and γ for ICTV.

Because this constraint set contains feasible solutions, the
conditional primal-dual gap can be used as a convergence
check for CP2-ICTV. This gap is shown for both sets of con-
straints in Fig. 11. For CP2-ICTV, there is a stark contrast
in behavior between the two constraint sets. The feasible set
shows rapid convergence, while the infeasible set shows no
decay in the conditional primal-dual gap below 1000 itera-
tions and a steady increase from 1000 to 10 000 iterations.
Again, the accelerated CP algorithm used in CP2-ICTV yields
a substantially faster convergence rate than CP1-ICTV for this
example.

III.E. Comparison of algorithms

With the previous simulations, we have illustrated use of
the convex feasibility framework on EC, IC, and ICTV for
IIR in CT. The example for EC serves the purpose of demon-
strating convergence properties of CP2-EC on the ubiquitous
least-squares minimization and establishing that this al-
gorithm has competitive convergence rates with standard
algorithms, linear CG, and ART. We do note that CG, on the
shown example, does have the fastest convergence rate, but
the difference in convergence rate between CP2-EC, CG, and
ART is substantially less than their gap with the basic CP1-
EC. For convex feasibility problems IC and ICTV, we have
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FIG. 11. The conditional primal-dual gap for ICTV shown for CP2-ICTV
and CP Algorithm 1. This gap is computed by taking the differ-
ence between the primal and dual objectives in Eqs. (15) and (16),
respectively, after removing the indicator in the primal objective: cPD
= | 1

2 ‖f − fprior‖2
2 + 1

2 ‖XT y‖2
2 + ε′‖y‖2 + γ ‖(|z|)‖∞ + gT y − fTprior(X

T y

+ ∇T z)|/size(f). The absolute value is used because the argument can be
negative, and we normalize by the number of pixels size(f) so that the primal
objective takes the form of a mean square error. The prior image fprior for this
computation is explained in the text. The comparison between CP2-ICTV
and CP1-ICTV shows quantitatively the impact of the acceleration afforded
by CP Algorithm 2. Note that the calculation for “set 1” is extended to 105

iterations due to slower convergence than the results for “set 2.”

optimization problems where the current methodology can
be easily adapted to solve, but the standard algorithms linear
CG and ART cannot easily be applied. Because we have the
comparisons of the CP algorithms on the EC simulations and
because we have seen convergence competitive with linear
CG and ART, we speculate that CP2-IC and CP2-ICTV have
competitive convergence rates with any modification of CG
or ART that could be applied to IC and ICTV. In short, the
convex feasibility framework using CP Algorithm 2 provides
a means for prototyping a general class of optimization
problems for IIR in CT, while having convergence rates
competitive with standard, but more narrowly applicable,

1: L (X ,∇) 2; τ ← 1; σ ← 1/L2; n ← 0

2: initialize f0, y0, and z0 to zero vectors

3: f̄0 ← f0

4: repeat

5: yn ← yn + σ(X f̄n − g); yn+1 ← max( yn 2 − , 0) yn
yn 2

6: t ← zn + σ∇fn

7: zn+1 ← t |t| − σ projDiamond(γ)(|t|/σ) /|t|
8: fn+1 ← fn − τ(X Tyn+1 − fprior + ∇Tzn+1) /(1 + τ)

9: θ ← 1/
√

1 + 2τ ; τ ← τθ; σ ← σ/θ

10: f̄n+1 ← fn+1 + θ(fn+1 − fn)

11: n ← n + 1

12: until n ≥ N

FIG. 12. Pseudocode for N steps of the accelerated CP algorithm instance
for solving Eq. (15) with parameters ε′ and γ . Variables are explained in the
text, and pseudocode for the function projDiamond(γ )(x) is given in Fig. 13.

1: function projDiamond(γ)(x)

2: if x 1 ≤ γ then

3: return x

4: end if

5: m = |x|
6: Sort m in descending order: m1 ≥ m2 ≥ . . . mN

7: ρ ← max j such that mj − 1
j

j
k=1 mk − γ > 0, for j ∈ [1, N ]

8: θ ← (1/ρ) ρ
k=1 mk − γ

9: w = max(|x| − θ, 0)

10: return w sign(x)

11: end function

FIG. 13. Pseudocode for the function projDiamond(γ )(x), which projects x
onto the �1-ball of scale γ . This function appears at Line 7 of algorithm
in Fig. 12. The vector x is taken to be one-dimensional with length N, and
the individual components are labeled xi with index i being an integer in the
interval [1, N].

large-scale solvers. Furthermore, concern over algorithm con-
vergence is particularly important for ill-conditioned system
models such as those that arise in limited angular-range CT
scanning.

Convex feasibility presents a different design framework
than unconstrained minimization or mixed optimizations,
combining, e.g., data-fidelity objectives with constraints. For
example, the field of compressed sensing (CS) (Ref. 25)
has centered on devising sparsity exploiting optimization for
reduced sampling requirements in a host of imaging appli-
cations. For CT, in particular, exploiting gradient magnitude
sparsity for IIR has garnered much attention, requiring the so-
lution to constrained, TV-minimization6, 26 or TV-penalized,
least-squares.3–6 The convex feasibility, ICTV, involves the
same quantities but can be used only indirectly for a CS-
style optimization; the data-error can be fixed and multiple
runs with CP2-ICTV for different γ can be performed with
the goal of finding the minimum γ given the data and fixed
ε. On the other hand, due to the fast convergence of CP2-
ICTV it may be possible to perform the necessary search over
γ faster than use of an algorithm solving constrained, TV-
minimization or a combined unconstrained objective. Also,
use of ICTV provides direct control over the physical quanti-
ties in the optimization, image TV and data-error, contrasting
with the use of TV-penalized, least-squares, where there is no
clear connection between the smoothing parameter α and the
final image TV or data-error. In summary, ICTV provides an
alternative design for TV-regularized IIR.

IV. CONCLUSION

We have illustrated three examples of convex feasibility
problems for IIR applied to limited angular-range CT, which
provide alternative designs to unconstrained or mixed opti-
mization problems formulated for IIR in CT.
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One of the motivations of the alternative design is that
these convex feasibility problems are amenable to the accel-
erated CP algorithm, and the resulting CP2-EC, CP2-IC, and
CP2-ICTV algorithms solve their respective convex feasibil-
ity problems with a favorable convergence rate—an important
feature for the ill-conditioned data model corresponding the
limited angular-range scan. The competitive convergence rate
is demonstrated by comparing convergence of CP2-EC with
known algorithms for large-scale optimization. We then note
that CP2-IC and CP2-ICTV, for which there is no alternative
algorithm that we know of, appears to have similar conver-
gence rates to CP2-EC.

Aside from the issue of convergence rate, algorithm de-
sign can benefit from the different point of view offered by
convex feasibility. For imaging applications this design ap-
proach extends naturally to considering nonconvex feasibility
sets,9, 27 which can have some advantage particularly for very
sparse data problems. Future work will consider extension of
the presented methods to the nonconvex case and application
of the present methods to actual data for CT acquired over a
limited angular-range scan.
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APPENDIX: PSEUDOCODE FOR CP2-ICTV

The pseudocode for CP2-ICTV appears in Fig. 12, and we
explain variables not appearing in Secs. II.E.1 and II.E.2. At
Line 6 the symbol ∇ represents a numerical gradient com-
putation, and it is a matrix which applies to an image vector
and yields a spatial-vector image, where the vector at each
pixel/voxel is either two or three dimensional depending on
whether the image reconstruction is being performed in two or
three dimensions. Similarly, the variables t and zn are spatial-
vector images. At Line 7 the operation “| · |” computes the
magnitude at each pixel of a spatial-vector image, accepting a
spatial-vector image and yielding an scalar image. This oper-
ation is used, for example, to compute a gradient-magnitude
image from an image gradient. The ratio appearing inside the
square brackets of Line 7 is to be understood as a pixelwise
division yielding an image vector. It is possible that at some
pixels, the numerator and denominator are both zero in which
case we define 0/0 = 1. The quantity in the square brackets
evaluates to an image vector, which then multiplies a spatial-
vector image; this operation is carried out, again, in pixelwise
fashion where the spatial-vector at each pixel of t is scaled by

the corresponding pixel-value. At Line 8, ∇T is the transpose
of the matrix ∇, see Ref. 6 for one possible implementation
of ∇ and ∇T for two dimensions.

The pseudocode for the function projDiamond(γ )(x) appears
in Fig. 13. This function is essentially the same as what is
listed in Fig. 1 of Ref. 21; we include it here for complete-
ness. The “if” statement at Line 2, checks if the input vec-
tor x is already in Diamond(γ ). Also, because the function
projDiamond(γ )(x) is used with a non-negative vector argument
in Line 7 of Fig. 12, the multiplication by sign(x) at the end
of the algorithm in Fig. 13 is unnecessary for the present ap-
plication. But we include this sign factor so that the function
applies to any N-dimensional vector.
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