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Abstract

Improved crop yield forecasts could enable more effective adaptation to climate variability and change. Here, we

explore how to combine historical observations of crop yields and weather with climate model simulations to pro-

duce crop yield projections for decision relevant timescales. Firstly, the effects on historical crop yields of improved

technology, precipitation and daily maximum temperatures are modelled empirically, accounting for a nonlinear

technology trend and interactions between temperature and precipitation, and applied specifically for a case study of

maize in France. The relative importance of precipitation variability for maize yields in France has decreased signifi-

cantly since the 1960s, likely due to increased irrigation. In addition, heat stress is found to be as important for yield

as precipitation since around 2000. A significant reduction in maize yield is found for each day with a maximum tem-

perature above 32 °C, in broad agreement with previous estimates. The recent increase in such hot days has likely

contributed to the observed yield stagnation. Furthermore, a general method for producing near-term crop yield pro-

jections, based on climate model simulations, is developed and utilized. We use projections of future daily maximum

temperatures to assess the likely change in yields due to variations in climate. Importantly, we calibrate the climate

model projections using observed data to ensure both reliable temperature mean and daily variability characteristics,

and demonstrate that these methods work using retrospective predictions. We conclude that, to offset the projected

increased daily maximum temperatures over France, improved technology will need to increase base level yields

by 12% to be confident about maintaining current levels of yield for the period 2016–2035; the current rate of yield

technology increase is not sufficient to meet this target.
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Introduction

The yield of most crops has increased over the past

several decades. However, in the most recent decade,

yields have stagnated for many crops in several regions,

whereas temperatures have generally increased. The

reasons for this stagnation are debated, and could include

agricultural policy (Finger, 2010), fundamental genetic

limits (Calderini & Slafer, 1998), climate (Lobell & Asner,

2003; Brisson et al., 2010), agronomic practice and crop

management (Brisson et al., 2010). Here, we explore the

relative importance of different climatic factors.

Crops are known to be sensitive to various aspects of

climate. Persistently elevated temperatures have long

been known to accelerate progress towards maturity,

and more recently have been shown to have a signifi-

cant impact on leaf ageing (or senescence; Asseng et al.,

2011; Lobell et al., 2012). Crop responses to shorter

periods of high temperature, particularly when coinci-

dent with flowering, show yields falling dramatically

beyond a threshold temperature (Luo, 2011). This

mechanism is observed in both controlled environ-

ments and field studies (Ferris et al., 1998; Wheeler

et al., 2000). Similar responses to hot days are beginning

to be found at the regional scale: maize yields in the

United States have been found to decrease sharply when

exposed to temperatures over around 29–30 °C, and

this effect outweighs any yield increase due to higher

temperatures more generally (Schlenker & Roberts, 2009).

Crop yields are also sensitive to precipitation. Quan-

tifying the relative effect of temperature and precipita-

tion variability is important for understanding impacts

and developing adaptation options for future climatic

changes. Although this relative importance will vary

regionally (e.g. Sakurai et al., 2011), some generaliza-

tions may be possible through an analysis of mecha-

nisms. For regions where irrigation is increasing, for

example, it seems likely that the sensitivity of yield to

rainfall will be decreasing. More detailed analyses also
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indicate that in particular environments (Thornton

et al., 2010) or at the regional scale (Lobell & Burke,

2008), temperature may be a more significant driver of

future yields than precipitation. As temperatures are

projected to significantly increase over the next few

decades due to continuing anthropogenic emissions of

greenhouse gases, whereas precipitation changes are

far less certain (Meehl et al., 2007; Hawkins & Sutton,

2011), this suggests predictability in future crop yields.

To effectively guide adaptation to future changes,

perhaps with different crop growing strategies (Rosen-

zweig & Tubiello, 2007) or selective crop breeding (Cat-

tivelli et al., 2008), there are several key questions to

consider. Firstly, can the relative effects of improved

technology, precipitation variability and increasing

temperatures be quantified? If so, what is the relative

size of the effects of rainfall and hot temperatures on

yields? And, what level of technology development

may be required to overcome any impact of future

climatic changes on yield?

In this analysis we develop a methodology to address

these questions, focussing on one particular crop

(maize) and one country (France) as a case study to bet-

ter understand the technology trend and the influence

of climate on crops. France is chosen specifically for this

case study because it has experienced recent extremes

of climate. In particular, the heatwave in summer 2003

(Sch€ar et al., 2004) has previously been linked to a drop

in crop yields across Europe (Easterling et al., 2007;

Battisti & Naylor, 2009; van der Velde et al., 2012).

Materials and methods

The overall approach is to fit an empirical model to histor-

ical observations of climate and crop yield to determine

the relative importance of technology, heat stress and pre-

cipitation. Climate model simulations are used to make

calibrated projections of future heat stress, which are then

used to produce yield forecasts assuming no technological

development and that the present relationships between

climate and yield variability apply in the future. Equiva-

lently, this provides an estimate of how much technologi-

cal development may be required to maintain yields at

present levels. Unless otherwise stated, all uncertainties are

given as a 5–95% confidence range.

Observed climate and crop yield data

The relationships between yield and climate are examined

using historical daily precipitation and maximum tempera-

tures from the E-OBS data set (Haylock et al., 2008), which is

available on a 0.5° 9 0.5° grid since 1950, and annual maize

yield data from FAOSTAT (http://faostat.fao.org/). We

choose to focus on national-level yield data (1961–2010) to pro-

vide longer time series to examine trends. Regional yield data

(for NUTS2 regions) is only available from 1980 to 2007 which

does not allow such a long timescale view. However, we

briefly compare the analysis on national scales with the regio-

nal data in the Supporting Information.

We consider two alternatives for measuring heat stress – a

simple count of the number of days above a certain critical

threshold, and an integrated measure of the degree days

above a threshold. Both measures are defined using daily

maximum temperature (Tmax) during the growing season

(June, July and August – JJA), averaged over the whole of

France, but weighted by the area of maize harvested in each

region (Monfreda et al., 2008; Fig. 1). A precipitation index is

defined as the mean JJA rainfall, similarly averaged over

France. Although the locations of maize growth may have

changed over time, similar conclusions are reached if no

weighting is applied. In addition, the average planting day

may have changed over time (Kucharik, 2006), but given that

we are using seasonal averages of climate the effect on our

analysis is likely to be small. Finally, we have not considered

the details of the timing of the weather events, although this

may be extremely important for certain phenological stages of

crop growth.

An empirical model for maize yield

A simple physical understanding for the causes of yield

changes suggest that an empirical model for maize yield in

France, considering a nonlinear ‘technology’ trend and both

the effects of temperature and precipitation, should effectively

describe the yield variability. However, the variability in hot

days and precipitation is not independent and it is also possi-

ble that the effect on yield of an increase in hot days will
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Fig. 1 The percentage of land harvested for maize in France in

the year 2000, using data from Monfreda et al. (2008). The

France averages of hot days and precipitation shown through-

out the study are weighted using this distribution of maize

growth.
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depend on the precipitation, suggesting that an interaction

term may be required (e.g. Runge, 1968; Schlenker & Roberts,

2009). Hence, a generalized additive model (Rigby & Stasinop-

oulos, 2005) generalized for maize yield (Y) is proposed:

YðtÞ ¼ gðtÞ þ b1XðtÞ þ b2ðtÞðPðtÞ � �PÞ þ b3XðtÞPðtÞ þ eðtÞ ð1Þ
where X and P are the temperature and precipitation indi-

ces, respectively, �P is the mean precipitation index over 1961

–2010, the b parameters represent the size of the effects of

the various terms, g(t) is the expected yield in year t if there

were no hot days and average precipitation and e is a sto-

chastic error term. We let g be a cubic regression spline to

represent the increase in expected yield due to improving

technology, which avoids the arbitrary, but often used,

assumption that the technology trend is linear with time.

The errors are assumed to be normally distributed and tem-

porally independent, but we allow their variance to vary

with time to allow for changes in the influence of weather

(e.g. precipitation) on yield variability due to technological

improvements such as irrigation. To facilitate this we let

e(t) = h(t) e(t) where h(t) is a cubic regression spline and the

e(t) are independent standard normal random variables. The

unknown b parameters and the spline functions g and h are

all estimated by maximizing a penalized likelihood function

(see Supporting Information for more details). Note that b2
is time dependent – we assume a similar spline function for

its variation. The justifications for the choice of this empirical

yield model, as well as tests of simpler and more complex

versions, are given below, in Results and in the Supporting

Information.

Empirical yield model selection

Many different empirical models for crop yield have been

proposed. A key benefit of choosing a generalized additive

model such as Eqn (1) is that all the empirical model param-

eters, including the nonlinear trend component, are fitted

simultaneously (e.g. Lobell et al., 2011), so as to reduce the

chances of overfitting on certain parameters, in contrast to

other studies (e.g. Sakurai et al., 2011). In addition, the

choice of technology trend has been much discussed, with

many arbitrary assumptions used. For example, technology

trends have been assumed to be linear (e.g. Lobell & Asner,

2003), or quadratic with time (e.g. Schlenker & Roberts,

2009; Lobell et al., 2011), or removed using local linear

regression (e.g. Sakurai et al., 2011) or first differences (e.g.

Nicholls, 1997). In some cases the technology trend has not

been considered at all (e.g. Tao et al., 2006; Knox et al., 2012).

Our choice of a cubic spline covers many of these other pos-

sibilities as a special case, but is far more flexible. However, to

examine the sensitivity to the choice of technology trend in

our analysis we considered a version of Eqn (1) with a linear

trend for g(t), rather than a cubic spline. This version of the

model produced a significantly poorer cross-validation (see

Supporting Information), and we argue that a nonlinear trend

is more robust.

In addition, we advocate ‘appropriate complexity’ for an

empirical yield model, but additional complexity needs to

be considered. For example, the validation statistics of the

model were found to be significantly improved if the

direct influence of precipitation (b2) varies with time (also

see e.g. Sakurai et al., 2011), and so this factor was

included. However, we also tested versions of the empiri-

cal model with higher order terms (such as quadratic in X

and P) and also considered time-varying b1 and b3, but

found that these changes did not improve the empirical

relationship significantly (see Supporting Information). This

yield model also overcomes criticisms of simpler empirical

models (e.g. Gregory & Marshall, 2012; Semenov et al.,

2012) by including an interaction between temperature and

precipitation, and basing the choice of possible heat stress

indices on the known physical links between hot days and

crop growth. Eqn (1) is the simplest version which

is found to produce yield estimates which are consistent

with the assumptions made in the empirical model, i.e. the

residuals are consistent with being independent and

random.

Climate simulations and calibration

Our set of climate model simulations is a QUMP (Quanti-

fying Uncertainty in Model Predictions) ensemble, which

consists of 16 variants of the HadCM3 global climate

model (GCM) (Gordon et al., 2000; Collins et al., 2011). This

GCM has an atmospheric resolution of 2.5° 9 3.75°. Each

member of the ensemble differs only in values of particu-

lar atmospheric parameters which govern physical pro-

cesses which are not fully resolved in the model. This

ensemble is particularly appropriate for this analysis

because it was designed specifically to sample a wide

range of climate sensitivities (Collins et al., 2011). We use

the daily maximum temperature data in JJA during 1960–

2035. Historical radiative forcings were used before the

year 2000, and the SRES A1B emissions scenario (Nakice-

novic, 2000) was followed after 2000.

Here we utilize two approaches for the calibration, both of

which are fairly standard in crop modelling, namely ‘bias cor-

rection’ (BC) and ‘change factor’ (CF). Both of these methods

use historical observations and simulations to derive correc-

tions which can be applied to the future projections, but using

different assumptions. In addition, we extend previous meth-

ods by also accounting for differences in daily temperature

variability between the climate simulations and observations,

as well as differences in mean climate (Ho, 2010; Ho et al.,

2012; Hawkins et al., 2012), which is particularly important

when considering the hot day counts over a threshold (see

Supporting Information).

To perform a calibration we require daily Tmax time ser-

ies from a GCM simulation and observations for the same

reference period, which we denote by TREF(t) and OREF(t)

respectively. We also need output from the GCM for some

future period of the same length as the reference period,

TRAW(t). The question remains about how to best combine

these three sources of information into the most robust

projections of the unknown future observations ( bOFUT) to

use as input for crop models. We consider both BC and

© 2012 Blackwell Publishing Ltd, Global Change Biology, 19, 937–947
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CF methods, including corrections for the variability as

well as the mean climate, to sample this source of uncer-

tainty.

Bias correction. The usual BC methodology corrects the pro-

jected raw daily GCM output using the differences only in the

mean between observations and the GCM in a particular refer-

ence period (e.g. Huntingford et al., 2005; Ines & Hansen,

2006). However, a more general case when correcting the vari-

ability also (Ho et al., 2012) is as follows:

bOFUT;BCðtÞ ¼ OREF þ rO;REF

rT;REF
ðTRAWðtÞ � TREFÞ ð2Þ

where σT,REF and σO,REF represent the standard deviation of

the daily GCM output and observations in the reference per-

iod respectively.

Change factor. The CF methodology instead utilizes the

observed daily variability and changes the mean as simulated

by the GCM (e.g. Arnell et al., 2003; Gosling et al., 2009). The

general form when correcting the daily variance also

(Ho et al., 2012) is as follows:

bOFUT;CFðtÞ ¼ TRAW þ rT;RAW

rT;REF
ðOREFðtÞ � TREFÞ ð3Þ

whereas σT,RAW represents the standard deviation of the daily

raw model output for the future period.

The grid point of the climate model which includes the

position of the observations is used in Eqns (2) and (3), so

these methodologies also effectively downscale the simulated

temperature data to the spatial scale of the available observa-

tions. Where the observations are in a location where the cli-

mate model has an ocean grid point (grey areas in left column

of Fig. 5 later), the nearest land point is selected from the cli-

mate model. We use each of the 16 QUMP simulations as

independent projections and calibrate Tmax separately for each

simulation as above.

The assumptions in the choice of BC or CF are slightly

different. If considering future mean climate and no

changes in variability, then the two methods produce iden-

tical results. However, the more general case above can

produce differences in future calibrated climates which are

as large as differences between emission scenarios (Ho et al.,

2012; Hawkins et al., 2012). Both methods essentially assume

that the change in climate is independent of the mean state,

but CF starts from the observations and BC starts from the

model output. These methodologies do not consider changing

the shape of the distribution of climate data, but this does not

matter for a hot days metric in our analysis (see Supporting

Information), but may be more important in other situations.

Some limited idealized experiments suggested that CF

methods may outperform BC methods because they utilize

the spatial and temporal variability in the observations,

but they may also underestimate the uncertainty because

of the limited sampling of the observed variability

(Hawkins et al., 2012). In the absence of more concrete

results, we assume that both methods are equally

plausible.

Results

Observed changes to yield and climate

Maize is a widely grown crop in France (Fig. 1) and

yields have gradually increased from 0.25 kg m�2 to a

peak of 0.97 kg m�2 over the past 40 years1 (Fig. 2c).

This increase has been attributed to a combination of

improved technology (such as fertilizers, pesticides and

machinery), more robust and productive crop varieties,

as well as CO2 fertilization effects (e.g. Gervois et al.,

2008).

In addition, the number of hot days has increased in

France since the 1960s (Fig. 2b, using a 32 °C thresh-

old). Assuming a linear relationship with global mean

temperatures suggests a significant increase of 4.5 (0.7–
8.3) hot days per 1 °C global temperature rise. Particu-

larly hot years, when compared with nearby years,

occurred in 1964, 1976, 1990, 2003 and 2006 (also see

Figure S1), and the corresponding maize yield also

shows depressed yields in the same years (Fig. 2c).

There is no significant trend in precipitation since the

1960s, but variations in maize yields in the 1960s and

1970s seem to be strongly related to precipitation vari-

ability (Fig. 2a).

During the heatwave of 2003, the maize yield in

France fell to 0.71 kg m�2 – a 20% drop on the previous

year (also see e.g. van der Velde et al., 2010). It seems

likely that this yield decrease was related to the hot

temperatures that summer – but is this true of less

extreme years? And, what is the role of precipitation

variability?

Considering temperature only

To explore these suggestive qualitative links we first

utilize a simple form of Eqn (1), considering the effects

of temperature alone, i.e. b2 = b3 = 0. We consider two

choices for the temperature index, X: firstly, a simple

count of the number of days over a critical temperature

threshold, and secondly, the integrated temperature–
days above a critical threshold. By fitting the suggested

yield model [simplified from Eqn (1)] to the observed

data, it is found that a threshold of 32 °C is the optimal

choice for a simple hot day count, and 26.5 °C is opti-

mal for the integrated temperature–days (Figure S3a).

For the analysis which follows, we utilize a simple hot

day count, which produces a superior fit to the observa-

tions than an integrated measure, and also better

accounts for differences between the observed and climate

model simulated temperature variability (Figure S4). In

1We use SI units for yield, but 1 kg m�2 is equivalent to

10 T ha�1 or 104 kg ha�1
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addition, Fig. 3a (red line) shows the residuals from the

expected yield,

residuals ¼ observed yield� gðtÞ � b1XðtÞ ð4Þ

when considering the count of days above 32 °C as X.

The running standard deviation of the residuals (red

line in Fig. 3b) shows a noticeable decline with time,

suggesting increased yield stability recently. In addi-

tion, the residuals are well correlated with the mean

precipitation anomaly for France (r = 0.57, Fig. 3a),

especially for the earlier years when there was less irri-

gation (Fig. 3b). This finding demonstrates the need to

include precipitation in the empirical model and is con-

sistent with an increase in irrigation, and/or the devel-

opment of maize varieties which are more robust to

drought, reducing the impact of precipitation anoma-

lies. However, it should be noted that irrigation may
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also be increased by farmers during periods of high

temperature stress, such as the 2003 heatwave, as an

adaptation strategy (van der Velde et al., 2010).

Considering both temperature and precipitation

The findings above suggest improving the yield model

by adding the effects of precipitation, including an

interaction term. However, the influence of precipita-

tion should decrease over time (Fig. 3b), suggesting

that b2 should be a smooth function, rather than a con-

stant. Note also that the hot day index and precipitation

are not independent – the correlation, r = �0.46.

Fitting the full model [Eqn (1)] to the data retains the

finding that a 32 °C threshold is optimal (Figure S3a).

When precipitation is included the residuals are consistent

with having a constant variance and there is no significant

improvement in the yield model by allowing a time-depen-

dent effect for h(t). For this full yield model, the h(t) term is

therefore assumed to be a constant.

The predicted yield [Y; Eqn (1)] with associated

uncertainties reliably encompasses the observed yields

(Fig. 2c). The red shading indicates the uncertainty in

expected yield (without the e term) and the red lines

indicate the total uncertainty in actual annual yields.

The derived technology trend (g) for this yield model

increases nonlinearly since 1961 with a noticable pla-

teau in the 1970s (Fig. 2c, grey shading). Although the

absolute rate of increase has also slowed again in the most

recent decade, the technology trend is still increasing more

rapidly than the actual yield. This supports the hypothesis

that the recent increase in the number of hot days has

caused the actual yield to stagnate (Brisson et al., 2010),

and is inconsistent with suggestions that the observed

plateau in yields is evidence of a fundamental genetic limit

on potential yields (Calderini & Slafer, 1998). We now only

consider this full empirical yield model.

Relative importance of temperature and precipitation

Akey aspect of this analysis is the ability to determine the

relative importanceof temperatureandprecipitation,and

how this importance has changed over recent decades.

Examining the relative size of the different b parameters

suggests that precipitation variability was the dominant

contributor to yield variability until around 2000 (Fig. 4).

For the most recent decade, the effects of heat stress vari-

ability are now as important as precipitation variability,

perhaps due to increased irrigation of maize in France

(Fig. 3b). Although the interaction term slightly compli-

cates this simple interpretation, it is clear that the relative

importanceof temperaturehas increasedover time.How-

ever, it is worth noting that the presence and sign of the

interaction termmeans that hot days become less damag-

ingforyieldsasprecipitation increases.
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For the near term (2016–2035), the mean IPCC AR4

projection for summer over Europe is an increase of

around 1 °C in mean temperature and a 5% decrease in

precipitation from 1980–1999 levels (Meehl et al., 2007).

However, the uncertainty in precipitation projections is

far larger than for temperature (Hawkins & Sutton,

2011), and confidence in the sign of the precipitation

change is much lower (Meehl et al., 2007), partly

because present day simulations of both mean precipi-

tation and its variability are worse than for temperature

(Randall et al., 2007). In addition, it is likely that tem-

perature will have the largest impact as the projected

changes are far further outside the range of natural var-

iability than for precipitation changes (Lobell & Burke,

2008), and because of the seasonal timing of changes in

climate (Semenov & Shewry, 2011).

So, for making future projections of crop yields we

use the full empirical model considering temperature

and precipitation, but focus purely on the effects of

changes in temperature, and make the (slightly optimis-

tic) assumption that the climatological distribution of

precipitation (from 1961 to 2010) will not change.

Retrospective calibrated projections of climate

The construction of the empirical model suggests that

yields can be forecast if the number of hot days is

known. In principle, climate model simulations can be

used to make this projection. However, a key issue in

using climate model simulations to study impacts is

that the models are biased and do not perfectly repro-

duce the current climate. For instance, the QUMP

ensemble of simulations used here is generally too

warm over Europe and produces too many hot days

when compared with observations (Fig. 5). Other

climate models are less or more biased in this metric

(Hawkins et al., 2012). Therefore, some calibration is

needed before the simulations can be used. To increase

confidence in the ability of the calibrated climate model

simulations to make forecasts for the number of hot

days, we test the predictions retrospectively by compar-

ing with historical observations.

Using the observational data from 1966–1985 only

and climate model data from 1966–1985 and 1991–2010,
it is possible to make an out-of-sample calibrated pro-
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Fig. 5 Mean number of hot days in France from the raw QUMP ensemble (left) and E-OBS observations (second column), for various

time periods. The mean number of hot days are shown for the out-of-sample prediction of 1991–2010 (second row) and of the future

2016–2035 period (third row) after applying bias correction (BC) calibration (third column) and change factor (CF) calibration (right

column), including corrections to daily temperature variability, to each QUMP ensemble member separately.
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jection for the number of hot days observed in the 1991

–2010 period using the two different calibration meth-

ods (Fig. 5). The calibrations correct much of the warm

bias in the raw simulations and produce robust projec-

tions of the number of hot days. Note that the variabil-

ity corrections introduced in Eqns (2) and (3) are

essential to producing reliable predictions (compare

Fig. 5 with Figure S5).

Averaged over the maize growing regions of France,

the raw simulations would produce a hot day index of

more than 30 for the 1991–2010 period, but the cali-

brated projection for the hot day index is 6.3 (3.9–9.4)
days (CF) and 4.1 (0.8–7.8) days (BC). The observed hot

day index for the 1991–2010 period was 6.4 days (or

5.5 days without the extreme of 2003), an increase on

3.2 days from the 1966–1985 period. The observations

are therefore within the uncertainties predicted by the

calibrated climate model simulations. It is worth reiter-

ating that we have not used the observations for 1991–
2010 to train this climate model prediction – it is made

out-of-sample.

When considering a particular location where the

largest fraction of the maize is grown (black dots in

Fig. 5), the calibrations have narrowed the QUMP

spread, reduced the projected number of hot days, and

now encompass the observations for both calibration

methodologies, unlike the raw simulations (Fig. 6). His-

tograms are shown for the projections of the QUMP

ensemble using raw model output (left column) and

calibrated output (right column). The remaining spread

in the projected number of hot days represents differ-

ences between the climate models used, and also differ-

ent realizations of climate variability.

When considering projections on annual timescales

(Figure S6) it is shown that the retrospectively pro-

jected calibrated probability for a 2003-type summer

would have been less than 0.6% for the 1991–2010 per-

iod. This suggests that the 2003 summer was extreme,

even considering the climatic changes, and consistent

with other studies examining this heatwave which sug-

gested it was a roughly a 1-in-200 year event (Stott

et al., 2004).
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tions (columns).
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Overall, these retrospective tests, along with previous

studies in idealized situations (Hawkins et al., 2012),

provide evidence that relatively short lead time (a dec-

ade or two) calibrated projections of the number of hot

days can be made.

Projections of future hot days over France

Having demonstrated that the methodology works ret-

rospectively, it can be applied to make a projection for

the future period 2016–2035, using 1991–2010 (without

2003) as our training data. There is a projected increase

in the number of hot days for many regions (Fig. 5),

particularly in regions where maize is grown. Projec-

tions for the mean number of hot days per year in the

2016–2035 period for an individual region in south-

west France are shown in Fig. 6. The calibrations have

narrowed the QUMP range and reduced the projected

number of hot days when compared with the raw

ensemble. However, the projections still indicate an

increase in the number of hot days in 2016–2035 from

present, to around 15–20 days per summer for this

location. Note particularly that the observations from

2003 are deliberately excluded from the calibration as it

was such an extreme year, and could bias the projec-

tions to produce too many hot days.

Finally, Fig. 2b shows a calibrated probabilistic

near-term projection for the period 2016–2035 for the

average number of hot days per year, averaged over

France, and weighted for maize growing regions.

The projected ranges for 2016–2035 show a likely

increase in the number of hot days to around 10

hot days per year, compared with the present day

(1991–2010, without 2003) of around 5.5 hot days

per year. The two calibration methods do not pro-

duce significantly different estimates – 6.8–16.9 (CF)

and 4.4–14.4 (BC).

Using annual projections, the chance of a 2003-type

summer in the 2016–2035 period is projected to be

around 3% per year (Figure S6), equivalent to an

increase in risk of about an order of magnitude from the

historical period. This suggests that the probability of at

least one summer like 2003 is around 50% in this near-

term period, assuming independence between years.

Consequences for future maize yield

At the time of writing, yield data for 2011 has not been

published by FAOSTAT. However, the observed cli-

mate variability data are available from E-OBS, suggest-

ing a summer close to the long-term mean in terms of

precipitation and hot days (Fig. 2). Applying our full

empirical model, the yield forecast for 2011 is 0.90–
1.00 kg m�2, assuming no change in yield due to

technology since 2010. Over the past decade yield has

increased at roughly 0.005 kg m�2 per year due to the

technological trend (g).

We also define the base level yield (0.92 kg m�2) as

the mean present day yield (1991–2010, without 2003),

corrected for the technology trend increases over the

same period. For the future, we do not know the tech-

nology trend, and can only make projections for the

yield assuming the technology remains constant.

Figure 2c shows probabilistic projections of mean

maize yield for France for 2016–2035 using both calibra-

tion methodologies (colours) and for two different

assumptions on the links between future temperature

and precipitation (Figure S7). Assuming future precipi-

tation is independent of temperature, then the projected

yield for 2016–2035 is 0.93 (0.89–0.96) kg m�2 (BC) and

0.92 (0.88–0.96) kg m�2 (CF). However, if the historical

correlation between precipitation and temperature is

maintained, which we consider more likely, then the

predicted yield decreases to 0.91 (0.86–0.96) kg m�2

(BC) and 0.88 (0.81–0.92) kg m�2 (CF), demonstrating

the need to consider correlations between temperature and

precipitation in yield projections. We see no reason why a

correlation of the same sign would not remain in this

near-term period, although its magnitude may change.

Equivalently, according to these climate model simu-

lations and calibration techniques, technology develop-

ments must increase yield by 0.11 kg m�2 (or around

12% of the current base level yield) to be confident of

maintaining yield at present levels. The current rate of

yield increase due to technology is not sufficient to

meet this target, but would be sufficient to meet the

median projection of a required 0.04 kg m�2, or a 4%

increase in base level yield.

Discussion

We have quantified the relative importance of tempera-

ture and precipitation for historical and future maize

yield on France. In addition, we have outlined a meth-

odology for producing calibrated projections of future

climate and crop yields, and tested the methods retro-

spectively. Our main findings are as follows:

1. Our modelled historical technology trend for yield is

nonlinear, and suggests a recent slowing in potential

yield increases.

2. Maize yield stability in France has increased mark-

edly since the 1960s, likely due to irrigation and

technology improvements.

3. The relative importance of precipitation variability

for maize yields in France has decreased since the

1960s and the effect of heat stress variability is now

as important as precipitation.
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4. The number of hot days (above 32 °C), averaged over

France, has increased since the 1960s and is projected

to increase further to around 10 per summer in the

period 2016–2035. For some large maize producing

regions, around 15 days per summer are expected.

5. Improved technology will need to increase base level

yields by 12% above current levels to be confident

about maintaining current maize yields. The current

rate of yield increase due to technology is not suffi-

cient to meet this target.

6. Appropriate use of climate model simulations by

taking account of differences in both the mean and

variability of climate is essential, and a rigorous

assessment of the characteristics of GCM output is

required before its use.

Uncertainty in the projected yields comes from vari-

ous sources. The component of uncertainty due to the

choice of calibration method is not negligible, although

CF performs slightly better in retrospective forecasts

(see Supporting Information) and idealized modelling

studies (Hawkins et al., 2012). Each QUMP simulation

produces a different calibrated projection, and we have

assumed that the QUMP ensemble spans the full range

of climate response uncertainty and climate variability

for European temperatures. In addition, there are other

potential sources of uncertainty in our projections that

we have not considered. For example, we have only

used a single (SRES A1B) future emissions scenario, but

the relative importance of emissions uncertainty is

likely to be small for the near term for temperature and

precipitation (Hawkins & Sutton, 2009, 2011). The effect

of these caveats could be reduced by utilizing the forth-

coming CMIP5 climate model simulations which will

produce daily data at a higher spatial resolution for

more climate models than QUMP (Taylor et al., 2012).

Finally, we have not considered the effects of changes

in ozone, which could be significant for maize yields

(e.g. Heagle et al., 1972; Hollaway et al., 2012). This will

be explored in further work.

There has been recent, andwe believe correct, criticism

of the use of simple empirical relationships between cli-

mate and crop yields to infer future yields (e.g. Gregory

& Marshall, 2012; Semenov et al., 2012). We suggest that

the careful consideration of nonlinear technology trends

and an interaction between temperature and precipita-

tion is essential in any such empirical model. In addition,

the empirical yield model parameters, including the

trend component, should befitted simultaneously.

The availability of smaller spatial-scale crop yield

data may also allow improvements in the empirical

relationships between hot days, precipitation and yield,

although the regional yield time series are not currently

long enough to make robust conclusions about long-

term trends in the temperature and precipitation effects

(see Supporting Information).

Although this is a case study aimed at providing

decision-relevant information for a single crop for a sin-

gle country, future work will aim to provide a wider

scale view of future crop yields, based on appropriate

use of climate model simulations.
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Table S1. Best-fit and uncertainty ranges of parameters
[Eqn (1)] for the two different versions of the empirical
model, with and without including precipitation.
Table S2. Validation statistics for maize yield [Eqn (1)] for the
different versions of the empirical model, with and without
including precipitation, and the full model with a linear g(t).
Table S3. Akaike Information Criterion (AIC, Akaike, 1974)
values for different versions of the maize yield empirical
model [Eqn (1)] with constant or time-varying parameters for
b1 and b2.
Figure S1. The number of days in each summer exceeding 32 °C
over France, from theE-OBS v5.0 dataset (Haylock et al., 2008).
Figure S2. The mean summer (JJA) precipitation over France,
from theE-OBS v5.0 dataset (Haylock et al., 2008).
Figure S3.Testing the empiricalmodel.
Figure S4.Quantile-quantile diagnostics for daily Tmax for JJA in
1991–2010, for the E-OBS dataset and each QUMP member as
labelled, for a particular location (the blackdots in Fig. 5).
Figure S5. As Fig. 5, but without correcting the daily tempera-
ture variability.
Figure S6. Histograms showing number of years across all
QUMPmembers of annual calibrated projections in 20 year peri-
ods of the number of hot days for a particular grid point in south-
west France (blackdot in Fig. 5).
Figure S7. The relationship between temperature and precipita-
tion and the effect on yield.
Figure S8. The empirical yield model fitted to two regions of
France where a large fraction of the area is harvested for maize
(Fig. 1).
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