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Abstract

In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA
nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative
and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for
the next generation of nanofabrications. The majority of these applications are based upon the complementarity of
DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the
creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a
number of bases before switching to the other helix by passing through a crossover junction. The association of two

crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures.
Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of
multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology.
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Introduction

Nucleic acids (e.g., deoxyribonucleic acid (DNA) and ribo-
nucleic acid (RNA)) encode the genomes of all living things
on earth. Of these, DNA has become a key biological mol-
ecule in the study of genetics, medicine, and biotechnology.
It possesses the natural ability to self-assemble and inter-
acts with a wide range of molecules. Besides its importance
in genetic studies and its application in various biological
fields like biomedicine, cancer research, and genetic engin-
eering, DNA has also become a preferred material for
nanotechnologists because of its unique properties of
structural stability, programmability of sequences, and pre-
dictable self-assembly. Nanobiotechnology is made up of
two words: ‘nano’ pertains to the study or development of
structures in the 1 to 100-nm size range in at least one di-
mension, while ‘biotechnology’ refers to technological tools
associated with the development of living things or bio-
logical molecules. Thus, components of natural biological
systems are scrutinized by nanobiotechnologists to engin-
eer innovative nanodevices [1].
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Figure 1 shows the double helical structure of DNA
proposed by Watson and Crick in 1953. It primarily con-
sists of nitrogenous base pairs of adenine with thymine
(A-T) and guanine with cytosine (G-C), thus offering the
advantage of being easily assembled into predictable
nanoscale structures by hydrogen bonding. This preci-
sion programmability makes DNA an excellent smart
material for designing and fabricating nanostructures [2].
Over the last three decades, single and double stranded
DNAs have been manipulated to construct branched
junction structures in one, two, and even three dimen-
sions with distinct and intricate geometries. The majority
of researchers have used a ‘bottom up’ approach of DNA
self-assembly to construct dynamic structures.

This has led to the development of several macroscopic
structures with nanometer-size features [4-7]. DNA
nanotechnology has also been used to produce various
kinds of reprogrammable functionalized devices and sen-
sors, some of which will be discussed in this review.

The history of nanoarchitecture is fairly short. In the
early 1990s, Seeman and colleagues first described a
process by which DNA could be hybridized in more than
one way to create self-assembling nanostructures. They
created tiles made up of DNA with sticky ends which were
allowed to hybridize to form a cube-like structure [8,9].
Yurke et al. experimented with the interesting idea that a
single DNA strand can undergo multiple hybridizations
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Figure 1 Basic DNA structure proposed by Watson and Crick.
DNA is made up of two kinds of nitrogenous bases, purines (adenine
and guanine) and pyrimidines (thymine and cytosine). Purine bases
bind only to their respective pyrimidine bases, i.e, adenine always pairs
with thymine, while guanine binds to cytosine [3].

through strand displacement cycles using a toehold or
hinge made up of the DNA itself. Instead of using proteins
and other bio-supportive molecules to build their struc-
tures, they demonstrated that DNA strand displacement
and hybridization was enough to coax molecular-level
changes in the structure of DNA. They achieved this by
exploiting two double helical arms of DNA connected by
another short DNA sequence acting as a ‘hinge’. This
‘hinge’ repeatedly cycled the two strands into an opened
and closed state by consecutive addition of two single-
stranded DNA molecules [10]. This method made it
possible to form a variety of nanostructures based on
differences in sequence, rather than being dependent on
the influence of changes in the environment surrounding
the DNA (pH, salt, and temperature) [11,12].

DNA-modifying enzymes can also be used to generate
and manipulate DNA nanostructures. Although studies
in this area have so far been limited, many design tools
have been developed for the application of these en-
zymes to alter DNA in a sequence-specific manner.
Most of these enzymes work like small nanofactories
and are, hence, highly specific in their actions, based on
various biological processes [13].

The sequence specificity and ease of manipulation of
DNA nanoarchitectural structures allow them to carry or
organize various biological molecules such as peptides,
proteins, and viral capsids [14], as well as complex struc-
tures such as carbon nanotubules and other nanoparticles.
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Such self-assembling DNA nanostructures have increased
the activity of enzyme cascades and shifted surface plas-
mon resonance wavelengths based on their custom-
controlled arrangement [15-24]. Nanoconstruction can be
used to form structures of various shapes and sizes. Based
on the Rothemund model of DNA origami [25], scientists
were able to fold long strands of DNA into various inter-
esting two-dimensional shapes depicted in Figure 2 [26].
This approach has been very successful so far in producing
not only two- but also three-dimensional structures
[27-30]. On other occasions, scientists have also employed
the use of filamentous viral particles to organize various
nanomaterials for short periods of time to form diverse
and complex structures which may function as wires, rings,
etc. which may have optical, electronic, and biotechno-
logical applications [31,32].

Despite these advances in DNA nanotechnology, it re-
mains in the development phase. Generally, only about
30% of the assembled DNA molecules are similar to the
original design [33]. This presents a great challenge for
the development of techniques to fabricate modern
DNA nanostructures, especially in the DNA computa-
tional area. Researchers compare this process with the
complicated and eventually successful development of
electronics, computers, and automobiles. Besides errors
in the ‘designed’ genetic sequences, another shortcoming
is that prolonged thermal cycling for up to 24 h is
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Figure 2 Complex shapes designed using a DNA molecular
canvas. AFM images of 100 distinct shapes, including the 26 capital
letters of the Latin alphabet, 10 Arabic numerals, 23 punctuation marks,
other standard keyboard symbols, 10 emoticons, 9 astrological symbols,
6 Chinese characters, and various miscellaneous symbols [26].
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required to produce a useful nanodevice. In case of auto-
mobiles, it took over a decade to produce the first func-
tional prototype. Hopefully, the development of potent
nanomaterials will not take as long. Here, we review
some of the functional challenges and exciting future
prospects of developing nanobiotechnology with a spe-
cial focus on DNA nanotechnology.

DNA biological applications

Modern research in nanobiotechnology has offered
new hope for its potential application in biomedicine.
The physical and chemical properties of nanomaterials
such as polymers, semiconductors, and metals present
diverse advantages for various in vivo applications [34].
Nanobiotechnology provides a new perspective on ana-
lytics and therapy in both medicine and pharmacology
which has led to the development of a new field called
nanomedicine. Various pharmaceutical companies are
expanding their research to the application of nano-
technology in vital areas of medicine such as drug de-
livery and disease therapy [1]. DNA nanotechnology
faces several key challenges for its advancement in the
future. Nature has developed an intelligent and com-
plex material at the nanoscale through millions of
years of evolution. Now, we need time to aggressively
pursue new and forward-looking ideas. Along this tra-
jectory of development, advances in structural DNA
nanotechnology are expected to allow important pro-
gress in the nanotechnology field. Indeed, DNA nano-
technology has already become an interdisciplinary
research area, with researchers from physics, chemistry,
materials science, computer science, and biology com-
ing together to find solutions for future challenges in
nanotechnology. Figure 3 shows the interdisciplinary
approaches to DNA nanotechnology and its diverse
applications. We believe that more new and exciting
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directions of research in DNA nanotechnology will
emerge in the near future.

Cancer and nanotechnology

One of the forefronts of nanomedicine has been the at-
tempt to diagnose, treat, and destroy cancer cells. More
than ten million people around the world develop some
form of the disease in a single year. Cancer develops
when cells begin to function and divide abnormally, not
only causing havoc within a particular set of organs but
also disrupting the physiology of the entire human body
[27,35]. Most cancer therapies require an optimum con-
centration of chemotherapeutic agents at the tumor site
to be able to destroy cancerous cells while diminishing
injury to normal cells. Nanotechnology offers several so-
lutions to prevent healthy cell loss as an alternative to
chemotherapy. Recent research has focused on the de-
velopment of technologies such as ligand-targeted deliv-
ery of therapeutic drugs and nanocarriers ranging in
sizes from 10 to 100 nm. These nanocarriers may be
liposomes or albumin-based nanoparticles and were
approved for clinical trials by the Food and Drug admin-
istration in the United States as recently as 2009 [28,29].
The lipid compositions of liposomes allow them to easily
diffuse across cell membranes to deliver therapeutic
product to cells (Figure 4).

In addition to the use of liposome-based nanoparticles
to carry miniscule amounts of chemotherapeutic agents
to affected cancer sites, albumin-bound nanostructures
may be used to enhance permeability of the endoplasmic
reticulum for breast cancer therapy [29]. Most nano-
structures, however, are considered insufficient for
effective treatment of cancer cells. This has led to
the development of potent ‘nano-systems; generally
possessing four basic qualities: firstly, they can them-
selves be therapeutic or diagnostic and thus in theory

Figure 3 Structural DNA nanotechnology has many applications in modern nanodevice fabrication.
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Figure 4 Drug deliveries by (a) liposomes and (b) emulsions across a cell membrane. Freely incorporated as well as ligand-bound modes
of drug delivery by lipid-based molecules known as liposomes are shown [36].

can be designed to carry a hefty therapeutic cargo de-
liverable to the tumor site. Secondly, more than one
targeting ligand can be attached to these nanosystems,
providing high affinity and specificity for target cells.
Thirdly, these nanosystems have the advantage of being
able to house more than one type of therapeutic drug,
thereby providing multivalent drug therapy. Finally, most
nanosystems that are designed from biological materials
such as DNA and RNA are ‘programmed’ to be able to
evade most, if not all, drug-resistance mechanisms. Based
on these properties, most nanosystems are able to deliver
high concentrations of drugs to cancer cells while
curtailing damage to surrounding healthy cells [30].

Drug delivery and biosensors

Recently, scientists have been able to develop devices
that are capable of picking up very specific biological
signals and converting them into electrical outputs that
can be analyzed for identification. Such devices are
known as biosensors [37]. Figure 5 shows a schematic of
a biosensor fabrication setup designed to mediate vari-
ous molecular interactions and to identify minuscule
molecular changes with high sensitivity. Unlike macro-
scopic materials, these biosensors are efficient as they
have a high ratio of surface area to volume as well as ad-
justable electronic, magnetic, optical, and biological
properties. Besides having flexible physical structures,
these molecules can also be engineered to have diverse
chemical compositions, shapes, sizes, and hollow or solid
structures. These properties are being incorporated into
new generations of drug delivery vehicles, contrast
agents, and diagnostic devices [38].

Porous inorganic particles can now be loaded with an
assortment of drugs contained in organic nanomicelles
that can target very specific cells and tissues in the body.
Some of these carbon nanotubules are very potent drug
delivery vehicles for cancer treatment [40]. The tubular
structure of nanotubules allows for both carrying and
protection of drugs from external influences. Thera-
peutic applications which involve nanomaterials com-
bined with cytotoxic materials such as antineoplastic or
chemotherapy agents are a key area of development for
science and technology [41].

Research is also being conducted on the use of highly
organized DNA lattices to detect biological activity of
various molecules. Amin and colleagues have developed

Figure 5 Schematic illustration of biological sensors used in

immunological assays [39].
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a biotinylated DNA thin film-coated fiber optic reflect-
ance biosensor for the detection of streptavidin aerosols.
DNA thin films were prepared by dropping DNA sam-
ples into a polymer optical fiber which responded
quickly to the specific biomolecules in the atmosphere.
This approach of coating optical fibers with DNA nano-
structures could be very useful in the future for
detecting atmospheric bio-aerosols with high sensitivity
and specificity [42].

Dendrimers, enzyme cascades, and contraception

Nucleic acid nanotechnology has many other applica-
tions besides medical diagnosis and drug therapy. Syn-
thetic polymers such as dendriworms are made up of
dendrimer units of magnetic nanoworms and are being
used for intercellular delivery of small interfering RNA
(siRNA). These siRNA carriers are assembled from mag-
netic as well as fluorescent nanoparticles.

The magnetism of nanoworms allows them to be di-
rected to a particular location, while the fluorescence al-
lows detection. siRNAs are known to be responsible for
both activation and silencing of mammalian genes.
These siRNAs can be combined with different metals or
bound together in diverse ways. Each such assembly
may be used to produce contrasting therapeutic effects
or to assist drug delivery (Figure 6).

siRNAs have been widely acknowledged as a potent
new class of therapeutics, which regulate gene expres-
sion through sequence-specific inhibition of mRNA
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translation. siRNA delivery vehicles such as lipid and poly-
mer nanoparticle-based dendrimers have proven effective
in improving the stability, bioavailability, and target specifi-
city of siRNAs following systemic administration in vivo
[44]. Other important applications have included the acti-
vation of enzyme cascades on topologically active scaffolds.
This process makes use of DNA self-assembly and uses
DNA as a scaffold. Enzymes or cofactor enzymes are at-
tached to this scaffold and then plays an active role in im-
proving the biological efficiency of the system [45].
Bionanotechnology has also been applied in the field of
contraception. Where traditional methods have employed
over-the-counter drugs and an assortment of widely avail-
able contraceptives, bionanotechnology aims to develop
drugs that may be effective in targeting the fallopian
tubes while anti-implantation drugs can be employed in
the uterus to foil pregnancy without influencing other or-
gans. Current studies are centered on manipulating fol-
licle stimulating hormone (FSH) and its inhibitor known
as FSH binding inhibitor in mice [46] and monkeys [47].

DNA computing

DNA computing was first proposed as a means of solv-
ing complex problems by Adleman in 1994. He recog-
nized that the incredible storage capacity of DNA could
be used to solve complex computational problems. For
this, he picked a common mathematical problem nor-
mally referred to as the ‘traveling sales man problem’
and was able to solve it using strands of DNA [48]. In
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Figure 6 An assortment of newly assembled structures of dendrimers showing different bonds and metal infusions [43].
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1996, a new technology called the ‘sticker DNA’ model
was introduced by Roweis and colleagues. This model
applies to random access memory and requires no en-
zymes or strand extension. This method, thus, has the
capability of becoming the universal method for DNA
computation. A controlled robotic work station helped
not only in implementing the sticker model but also
in reducing error rates [49]. Since then, many tech-
nologies which make use of DNA to resolve basic
mathematical equations and pure computational prob-
lems have been developed.

Mathematical and biological problems

Inspired by Adelman's experiment, researchers have been
able to solve a diverse group of mathematical problems
using DNA molecules. In 2011, Qian and Winfree were
able to calculate square roots using ‘seesaw’ logic gates.
The idea behind these gates is that a single stretch of
DNA can pair up with various molecules, thus allowing
competition for binding sites. Once a molecule is at-
tached, it can be replaced instantly to allow other mole-
cules to fasten themselves to the resident sequence,
which itself can be displaced again. This system allows
‘gates’ to be loaded with several input molecules and gen-
erates logical output molecules as a result. The various
DNA strands can come to represent numbers, of which
output can yield the square root result as answers [50].

In another attempt to mimic smart biological compu-
tations, the Qian group has developed an artificial neural
network. This model employs the use of four neurons. A
neuron in its natural environment is susceptible to many
incoming inputs, and it ‘reacts’ or ‘fires’ when it reaches
a certain threshold. Based on their previous development
of logic gates, Qian and his colleagues were able to con-
struct Boolean logical circuits and other circuits which
could store memories. The DNA logic circuits were not
only able to recall memory using incomplete information
but also to determine when conflicting answers were
obtained [51]. In other instances, scientists have also
used sticker-based DNA to solve the independent set
problem [52]. Unlike the earlier sticker DNA system,
this model had a random access memory and, thus, re-
quired no extension of its strands and enzymes [49].

Inspired by Roweis and Adelman's methods, Taghipour
and colleagues [52] set out to unravel the independent
set problem through the use of DNA computing. In the
beginning, a solution space was created using memory
complexes made up of DNA. Then, by the application of
a sticker-based parallel algorithm, the independent set
problem was solved in polynomial time. Other biological
molecules besides DNA have also been used for compu-
tation. Faulhammer and colleagues used RNA to solve an
assortment of chess problems through DNA computing
[53]. Bandyopadhyay and colleagues were able to apply
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the same reasoning and used 2,3-dichloro-5,6-dicyano-p-
benzoquinone which is capable of transforming between
four different states to mimic natural phenomenon such
as diffusion of heat and detection of cancer growth [54].

Pure computation through DNA

DNA has also been applied for the development of pure
computational methods. While many techniques are
available to use DNA for computation, the most widely
used technique involves the manipulation of mixtures of
DNA on a support. A DNA molecule which encodes all
possible solutions to a designed problem is synthesized
and attached to this supportive surface. Repeated hybri-
dization cycles and action of exonuclease enzymes are
used to digest, identify, and eliminate non-solution
strands of DNA. Upon completion of this step, several
polymerase chain reaction (PCR) reactions are used to
amplify remaining molecules, most of which are then
hybridized to an array of molecules [55]. Recent progress
in DNA computation has been remarkable. Although
these advances may be far off to be equivalent of the
today's computational capacities of computers, the long-
term goal of this research would be DNA computing,
overriding everyday computing with great perfection.

DNA physical applications

The term nanoelectronics refers to the use of nanotechnol-
ogy for the use and development of electrical components
and circuits. Nanoscale electronics have been developed at
the molecular level. Such devices are referred to as mo-
lecular electronics [56]. Nanoelectronics had been highly
dependent on the complementary-symmetry metal-oxide
semiconductor (CMOS) technology. CMOS has been vital
in analogue circuits such as image sensors, data convertors,
and logic-based devices such as digital logic circuits,
microcontrollers, and microprocessors [57]. However,
CMOS is being replaced as the demand for further
miniaturization and processing speeds increase. CMOS cir-
cuitry has limitations that can greatly influence the size
and shape of computers and other electronics.

DNA offers a solution to these problems. Carbon
nanotube devices and wires have been developed through
self-guided assembly [58]. These materials are capable of
forming electronic devices such as nanowires like those
shown in Figure 7 and transistors [59,60], thus behaving
very similarly to a typical CMOS circuit. The advantage
of such devices is that DNA can be accumulated in larger
densities and numbers as compared to a typical circuit in
a normal electrical system. In addition, DNA is fairly effi-
cient in terms of power consumption and cost [58].

DNA wires, transistors, capacitors and other devices
DNA self-assembly is essential to form any nanoscale
biological device. Prior to the development of nanowires,
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Figure 7 DNA uncoiling and forming precise patterns, a prelude

to biologically based electronics and medical devices [61].
.

mostly B-DNA was used. B-DNA has excellent geo-
metrical properties for self-assembly but very limited
conductivity at room temperature. Modified DNA
(M-DNA) was discovered in 1993 by Lee and col-
leagues [62]. It was found that the addition of zinc or
other divalent metal ions such as cobalt and nickel
raised the thermal denaturing temperature at a high
pH of 9. The addition of zinc at high pH suggested
that a new conformation was formed. This structure
is a good conductor compared to B-DNA molecules
as the M-DNA duplex is a chain of metals surrounded
by an organic sheet and, hence, capable of electron
transport. Thus, M-DNA can be considered as a
nanowire [63]. Figure 8 is a representation of a scan-
ning electron microscopic image of a nanowire made
up entirely of DNA [64].

Fink and Schonenberger extended this rationale to a
single DNA rope which consisted of a few molecules.
They measured the current conducted through the DNA
with a potential applied across the DNA under high-
vacuum conditions at room temperature as shown in
Figure 9. The charge transport mechanism was, thus, de-
termined to be electronic in nature [65]. In another ex-
periment by Porath and colleagues, the voltage applied
across the DNA was about 4 V between two platinum
nanoelectrodes, and the resulting current did not sur-
pass 1 pA below the threshold voltage of a few volts.
This showed that the system behaved as an insulator at
low bias. However, beyond the threshold, the current
sharply increased indicating that DNA could transport
charge carriers [66].
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Figure 8 SEM image of DNA template nanowires. DNA is used as
a template to produce horizontal nanowires. Here, DNA is tagged
with a metal such as gold to produce nanowires through self-
assembly while being coated onto a niobium oxide surface [64].

Various spectroscopic methods were also used to in-
vestigate DNA conductivity. The movement of electrons
was detected at the level of single molecules by fluores-
cence decay. Varying fluorescence levels indicated how
electrons may have been transferred along the DNA
chains [68,69]. Contact methods can be used to measure
conductivity directly. Molecules are laid directly on top
of gold electrodes, and current flowing across these cir-
cuits is plotted on a graph to ascertain levels of conduct-
ivity. However, with this method, it is often difficult to
determine whether DNA molecules are in direct phys-
ical contact with the electrodes. It is thought that
weak physical contact between the DNA and electrode
produces an insulating effect and, thus, accounts for
varying resistance across the circuit. An expansion in
experimental methodology to measure conductivity by
a contactless approach will improve understanding of
this process [70].

Recently, researchers have been able to develop elec-
trical units besides wires, such as DNA-based transistors
[67,71]. In 1999, Ben-Jacob and colleagues [67] started
to build the world's first DNA-based transistor. Figure 9
is a unit representation of the DNA transistor [4]. To do
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Figure 9 A qubit made of one short DNA strand attached to two
long strands by two H-bonds. The long strands are metal-coated and
connected to an external voltage source, V, via resistance, R, and
inductance, L [67].
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this, they began by joining two DNA strands. These
were assigned as a main strand and a gate strand. The
end base of the gate strand was connected to the mid-
dle of the main strand. Both strands were metal-coated
(as that is important for conductivity) except for the
middle region of the main strand. This middle region
was connected to the gate strand as well as to two adja-
cent phosphate bonds. The subsequent connecting
hydrogen bonds were also left uncoated. It is important
to mention that these strands were artificially synthe-
sized so that both coated and non-coated regions were
made up of very specific but unique sequences of nu-
cleotide bases [67]. The ends of the DNA strands,
which were coated with metal ions were connected to a
voltage source, V; as well as to another voltage source,
Vg, which could act as the gate voltage. This DNA de-
vice, thus, acted as a single electron transistor [72].
Figure 10 below shows a pictorial representation of this
process [73,74].

This model is essentially a grain connected by two
tunnel junctions to a voltage source. The DNA molecule
is not very conductive; however, it does possess a large
energy gap which makes single electron transfer pos-
sible. In order for this circuit to operate as a transistor,
the voltage supplied to the circuit is varied around
threshold levels. This voltage can be varied if the tunnel-
ing rates of electrons between the two junctions are

Figure 10 Representation of the phosphate bonds in a DNA
transistor. The phosphate group forms a P-bond between two
sugars, which acts as a tunneling junction between the sugars
[73,74].
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different or if there is a gap in the density of the energy
states of the grain. The natural energy gap of the DNA
can be enhanced using a longer strand of DNA having
more than one grain. Longer chains of DNA tend to
have more non-linear effects. As a result, more charges
are formed. A large uncoated DNA molecule is, thus,
used as compared to one that is entirely coated with a
metal sheath. The tunneling rates of electrons, however,
are about the same as the two phosphate bonds are
identical. To counter this effect, a chemical group may
be attached to one of the phosphate bonds, thus altering
its properties and making electron transport and transis-
tor behavior possible [67].

Some studies have reported the formation of three-
dimensional structures such as switches [75] and motors
[11]; devices such as DNA-based capacitors are also be-
ing contemplated. Biological polymer-based DNA hy-
brids have intriguing electrical characteristics such as a
high dielectric constant, dielectric breakdown behavior,
and good resistivity. These are encouraging signs for the
development of DNA-based capacitors [76]. In another
DNA -bioploymer-based study, Nakamura and colleagues
developed a light-emitting diode based on a DNA/
polyaniline/Ru(bpy)%+ and  tris(8-hydroxyquinolinato)
aluminum complex. The voltage across the hybrid cir-
cuit was increased from 5 to 14, 16, and finally 18 V.
The light emitted varied in color, ranging from green,
yellow, orange, and finally to red. This was the result of
electron transfer in the DNA hybrid molecule with in-
creasing voltage [77]. Other important DNA-based
nanoscale devices that have recently been developed in-
clude highly conductive nanowires [78], quantum dots
with carbon nanotubules [79], and even radically ad-
vanced devices which detect single-nucleotide poly-
morphism and conduct nucleotide sequence mutation
analysis [80]. With added progress in this field, it could
be possible to use DNA-based electronics for both
DNA-based diagnostics and sophisticated nanoscale
electrical devices.

DNA optoelectronics

With recent advances in the field of biological electron-
ics, there is great interest in developing problem-solving
novel nanodevices for detection [81,82], diagnosis [83],
and discovery [84]. These devices may be used for a var-
iety of purposes. Nano-optoelectronics is the field of ap-
plying light to achieve or modify various biological
functions at the DNA or protein level. Kulkarni and col-
leagues recently attempted to do just that by demon-
strating the ability of photons to induce conductivity in
two-dimensional DNA nanostructures with and without
the help of graphene (Figure 11) [85]. They proved that
the conductivity of DNA lattices lined with streptavidin
protein could be further improved by the addition of
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streptavidin binding to the biotin protein [85].

Figure 11 Schematic of the biotinylated DNA lattice structure layered onto a graphene sheet connecting two gold electrodes, with

graphene sheet [85]. This optical pulse response of the
DNA to graphene is very encouraging and may be
exploited in the construction of biological sensors for im-
munological assays, DNA forensics, and toxin detection.

In another study, Kim and colleagues attempted to
construct a biosensor based on graphene and polydi-
methylsiloxane (PDMS) [86]. An evanescent field shift
occurred in the presence of chemical or biological struc-
tures which were very sensitive in the refractive index.
They were able to monitor the target analyte by
attaching the selective receptor molecules to the sur-
face of the PDMS optical waveguide resulting in a shift
of the optical intensity distribution. Hence, they moni-
tored the electrical characteristics of graphene in
the dark and under PDMS wave-guided illumination.
Changes in the resulting photocurrent through the
graphene film showed that the fabricated graphene-
coupled PDMS optical waveguide sensor was sensitive
to visible light for biomolecular detection [86]. This
finding can be used for the development of optical
biosensor for the detection of various biological mole-
cules in future biological assays.

Correction of sequence mismatch

The rise of DNA-based nanobiotechnology has led to an
increase in demand for synthetic DNA. DNA can be
synthesized from nucleotides into small molecules such
as ssDNA up to entire viral genomes. In spite of these
accomplishments, the time and cost of synthesizing such
molecules have somewhat limited the use of DNA as a
current research tool. Another significant drawback in
this technology has been the significant error rate of
synthetic DNA sequences [87]. The reduction and cor-
rection of errors are, thus, essential for the synthesis of
long DNA molecules. The correction of these errors is,
however, very time-consuming and expensive. There are

several approaches to develop error-free sequences in
synthesized populations of DNA.

These methods may include, but are not limited to,
physical separation which may apply the use of metals to
chelate partially denatured purine bases and allow elim-
ination of errors [88] or PCR-based approaches such as
hairpin PCR, which completely separates genuine muta-
tions from polymerase mis-incorporations. Hairpin PCR
operates by converting a DNA sequence to a hairpin fol-
lowing ligation of oligonucleotide caps to DNA ends.
Conditions are such to allow a DNA hairpin to be effi-
ciently PCR--amplified so that during DNA synthesis,
the polymerase copies both DNA strands in a single
pass. Consequently, when a mis-incorporation occurs, it
forms a mismatch following DNA amplification and is
distinguished from genuine mutations that remain fully
matched [89].

Sequential errors have also been removed using ‘select-
ive destruction’” methods. Smith and Modrich employed
the use of MutH, MutL and MutS mismatch repair pro-
teins under double-strand cleavage conditions, followed
by isolation of uncleaved product by size selection. This
technique has allowed them to reduce the number of
mutations in PCR products and reduce errors [90]. In
another instance, Young and colleagues combined dual
asymmetrical PCR and overlap extension PCR, which
enables any DNA sequence to be synthesized error free.
For PCR-based purification methods, gel electrophoresis
and cloning is performed. However, the existing ap-
proaches are not well suited for error removal in long
synthetic DNA sequences where virtually all members in
the population contain multiple errors [91] as shown in
Figure 12.

New approaches in the production of error-free DNA
exploit the use of self-assembly and natural error correc-
tion proteins. Among these proteins, celery I nuclease
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enzyme (CEL [; Surveyor, Transgenomic, Inc.,, Omaha,
USA) endonuclease has been very useful [92]. Hughes
and colleagues [92] found CEL I to be a reasonably ef-
fective at reducing synthetic DNA errors up to six times.
The enzyme is added to previously amplified PCR prod-
uct, and this mixture is subjected to a second round of
thermal cycling at the end of which it is put through gel
electrophoresis, quantified, and cloned. CEL I is a natur-
ally occurring enzyme that cleaves mismatched DNA se-
quences [93-95]. It is, thus, most effective at removing
common insertions and deletions that may occur during
DNA synthesis [96].

Another tactic in dealing with error-prone DNA syn-
thesis is changing the way we synthesize premeditated
DNA. Usually, the formation of synthetic DNA requires
the use of PCR-based technologies, but microarrays are
now also used to synthesize DNA [97]. In this case,
DNA synthesis typically relies on spatial confinement of
reactions to certain regions on a silica chip since this
technology employs the addition of picoliters of reagents

to the silica chip. Error rates can be reduced by control-
ling the locations on the chip where the reagents eventu-
ally end up. Another possibility could be directing
reacting reagents through the use of photochemistry. In
this way, light can be used to block or restrict reactions
at potential error sites. Directing redox reactions only at
desirable sites in the forming DNA is another approach.
All these strategies can help reduce error rates from 1 in
200 bases to 1 in 600 bases [98].

Conclusion

DNA is one for the most useful engineering materials
available in nanotechnology. It has the potential for self-
assembly and formation of programmable nanostruc-
tures, and it can also provide a platform for mechanical,
chemical, and physical devices. While the formation of
many complex nanoscale mechanisms has been perfected
by nature over the course of millennia, scientists and en-
gineers need to aggressively pursue the development of
future technologies that can help expand the use of DNA
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in medicine, computation, material sciences, and physics.
It is imperative that nanotechnology is improved to meet
the need for better detectors in the fields of biological
and chemical detection and for higher sensitivity. In
terms of DNA-based nanostructures, there is an urgent
need to develop sophisticated architectures for diverse
applications. Currently, much progress is being made in
modelling DNA into various shapes through DNA ori-
gami, but the next step is to develop intelligent and re-
fined structures that have viable physical, chemical, and
biological applications. Despite the fact that DNA com-
putation may be in its infancy with limited forays into
electronics and mathematics, future development of
novel ways in which DNA would be utilized to have a
much more comprehensive role in biological computa-
tion and data storage is envisaged. We are hopeful that
the use of DNA molecules will eventually exceed expec-
tations far beyond the scope of this review.
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