
Platten et al. BMC Plant Biology 2013, 13:32
http://www.biomedcentral.com/1471-2229/13/32
RESEARCH ARTICLE Open Access
Salinity tolerance, Na+ exclusion and allele mining
of HKT1;5 in Oryza sativa and O. glaberrima: many
sources, many genes, one mechanism?
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Abstract

Background: Cultivated rice species (Oryza sativa L. and O. glaberrima Steud.) are generally considered among the
crop species most sensitive to salt stress. A handful of lines are known to be tolerant, and a small number of these
have been used extensively as donors in breeding programs. However, these donors use many of the same genes
and physiological mechanisms to confer tolerance. Little information is available on the diversity of mechanisms
used by these species to cope with salt stress, and there is a strong need to identify varieties displaying additional
physiological and/or genetic mechanisms to confer higher tolerance.

Results: Here we present data on 103 accessions from O. sativa and 12 accessions from O. glaberrima, many of
which are identified as salt tolerant for the first time, showing moderate to high tolerance of high salinity. The
correlation of salinity-induced senescence (as judged by the Standard Evaluation System for Rice, or SES, score) with
whole-plant and leaf blade Na+ concentrations was high across nearly all accessions, and was almost identical in
both O. sativa and O. glaberrima. The association of leaf Na+ concentrations with cultivar-groups was very weak, but
association with the OsHKT1;5 allele was generally strong. Seven major and three minor alleles of OsHKT1;5 were
identified, and their comparisons with the leaf Na+ concentration showed that the Aromatic allele conferred the
highest exclusion and the Japonica allele the least. A number of exceptions to this association with the Oryza
HKT1;5 allele were identified; these probably indicate the existence of additional highly effective exclusion
mechanisms. In addition, two landraces were identified, one from Thailand and the other from Senegal, that show
high tissue tolerance.

Conclusions: Significant variation in salinity tolerance exists within both cultivated Oryza species, and this is the first
report of significant tolerance in O. glaberrima. The majority of accessions display a strong quantitative relationship
between tolerance and leaf blade Na+ concentration, and thus the major tolerance mechanisms found in these
species are those contributing to limiting sodium uptake and accumulation in active leaves. However, there appears
to be genetic variation for several mechanisms that affect leaf Na+ concentration, and rare cases of accessions
displaying different mechanisms also occur. These mechanisms show great promise for improving salt tolerance in
rice over that available from current donors.
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Background
The development of improved rice varieties with high
tolerance of salt stress has been a major and long-
standing goal of rice breeding efforts. Salinity is a signifi-
cant constraint to rice productivity in many inland and
coastal rice-growing areas and, furthermore, is contrib-
uting to the loss of arable lands in many countries due
to salt accumulation as a result of excessive use of irriga-
tion water with poor or improper drainage, a fact that is
likely to be aggravated by sea level rise in coastal areas
caused by climate change [1-3]. Therefore, efforts to im-
prove the salinity tolerance of rice and many other crops
are intensifying. Significant bodies of work have been
accomplished on the characterisation of physiological
responses affected by salt stress. These studies
highlighted the complexity of the mechanisms involved
in rice in which tolerance varies with the stage of devel-
opment, with the crop being relatively more tolerant
during germination and active tillering as well as during
late grain filling and maturity, but sensitive during the
early vegetative and reproductive stages [4,5], and with
weak association between the degree of tolerance at the
two sensitive stages [6].
Numerous physiological studies on the mechanisms of

tolerance during the vegetative stage have been
published [5,7-9], most of which showed an inverse rela-
tion between shoot Na+ content and/or Na+/K+ ratio
and plant survival, injury scores and grain yield [10,11].
Other traits suggested to be associated with salt toler-
ance in various studies are compartmentation of Na+ in
older leaves and leaf sheaths and in the vacuoles, main-
tenance of mineral nutrient homeostasis, especially K+

and Ca2+, high selectivity for K+ and/or Ca2+ uptake over
that of Na+, limiting effects of reactive oxygen species
(ROS scavenging), accumulation of compatible solutes to
offset osmotic effects (osmotic adjustment), maintenance
of leaf area index and maintenance of tiller number
[5,9-13]. The importance of the apoplastic bypass flow
in delivering Na+ to the xylem, thus reducing leaf Na+

concentration and improving tolerance, has also been
noted [14-17]. During the reproductive stage, tolerant
genotypes strongly exclude salt from flag leaves and
developing panicles [6,18]. The complexity of tolerance
highlighted in these studies suggests the need for com-
bining tolerance mechanisms at each stage as well as at
the two most sensitive stages to develop varieties that
are widely adapted to salt-affected areas.
Efforts also focused on the mapping of QTL loci con-

trolling these various component traits, and a few major
loci and numerous minor loci controlling various
aspects related to salinity tolerance were subsequently
identified. The best known and seemingly most robust
QTL is Saltol/SKC1 on the short arm of chromosome 1
[19,20]. QTLs have been identified in this region in a
number of populations derived from several donors
([21-23], A. Ismail unpublished results), and the gene
has been identified to a high degree of confidence as
OsHKT1;5 [24] (see [25] for nomenclatural clarification).
A very recent association mapping effort using varieties
from the japonica cultivar-group [21] has also identified
the Saltol genomic region as controlling important
aspects of salinity tolerance, as well as validating many
other QTLs. In wheat, two members of the HKT gene
family (including the wheat HKT1;5 orthologue) have
also been shown to co-localise with major QTLs [26-28],
and the HvCBL4 gene, a homologue of the Arabidopsis
SOS3 known to confer salt tolerance, mapped to a gen-
omic region similar to that of a barley salt tolerance
QTL [29].
In addition to the Saltol locus, many other QTLs have

been identified in rice (e.g. see [8] for a recent review).
Several of these appear to be common among multiple
mapping populations, though they seem to be derived
from the same or genetically similar donors. Examples
include the long arms of chromosomes 1, 3 and 6
[20,22,30-35]. Although numerous studies have identi-
fied hundreds of genes involved in salt stress responses,
many of which lead to improved tolerance when over-
/underexpressed, and some co-localise with QTL
regions, studies on the cloning of other QTLs in cereals
are yet to be published. This might be in part due to
these additional QTLs typically controlling much smaller
portions of the total variance than does Saltol, and thus
being more difficult to work with.
Despite the long history of salinity tolerance research

and breeding efforts, very few large-scale screening
efforts have been undertaken. A number of authors
published studies involving small numbers of accessions
[10,36-41]. Only four studies appear to have examined
more than a few dozen accessions [9,42-44], and even
these have focused on breeding lines and improved
cultivars, which tend to stem from a small donor pool
typically involving Pokkali and/or Nona Bokra as donors.
In screens of 21 and 38 genotypes of wheat (Triticum
aestivum L.) [45], the authors concluded that leaf Na+

concentration showed little correlation with perform-
ance, and that Na+ exclusion and tissue tolerance were
equally important, and segregating independently. How-
ever, even in this case, the germplasm examined
consisted of breeding lines and improved cultivars stem-
ming from a very restricted geographic area.
Thus, there seems to be a lack of large-scale screening

efforts specifically aimed at identifying significant new
donor germplasm, particularly with regard to traditional
varieties/landraces. It would thus appear difficult to gen-
eralise about the level of salinity tolerance displayed or
the mechanisms possessed by these species as a whole,
factors that are important when considering breeding



Table 1 Salt-tolerant accessions identified in this study

IRGC # Genotype Species Origin Accession status SES Tolerance

104022 O. glaberrima Guinea-Bissau Landrace/traditional cultivar 2.22 High

104023 O. glaberrima Guinea-Bissau Landrace/traditional cultivar 2.40 High

103459 O. glaberrima Senegal Landrace/traditional cultivar 3.00 High, segregating

103462 O. glaberrima Senegal Landrace/traditional cultivar 3.78 High

Kalarata O. sativa India Landrace/traditional cultivar 2.17 High

22710 Nona Bokra O. sativa India 2.17 High

108921 Pokkali O. sativa India Landrace/traditional cultivar 2.17 High

26869 Pokkali (8558) O. sativa Sri Lanka 2.17 High

Capsule O. sativa Bangladesh Landrace/traditional cultivar 2.22 High

Kutipatnai O. sativa Bangladesh Landrace/traditional cultivar 2.22 High

Cheriviruppu O. sativa India Landrace/traditional cultivar 2.33 High

44131 Daw Hawm O. sativa Thailand 2.50 Very high

40593 Ching-Tai-Chan O. sativa China 2.56 High

44442 Gundang O. sativa Philippines Landrace/traditional cultivar 2.58 High

44480 Jumbo-Jet O. sativa Philippines Landrace/traditional cultivar 2.67 High

26577 Bora Dudh Kalam O. sativa Bangladesh Landrace/traditional cultivar 2.78 High

37104 Hoglapata O. sativa Bangladesh Landrace/traditional cultivar 2.78 High

32315 Mulai O. sativa Iran Landrace/traditional cultivar 2.78 High

88396 Urichadra O. sativa Bangladesh Landrace/traditional cultivar 2.80 Very high

26633 Gurdoi O. sativa Bangladesh Landrace/traditional cultivar 2.83 Very high

26596 Demshi O. sativa Bangladesh Landrace/traditional cultivar 2.89 Very high

26622 Gia Dhan O. sativa Bangladesh Landrace/traditional cultivar 2.89 High

53637 Basmati 217 O. sativa India 3.00 High

39185 BPI RI-2 O. sativa Philippines Released/improved/advanced cultivar 3.00 Very high

26602 Dharga Sail O. sativa Bangladesh Landrace/traditional cultivar 3.00 High

15800 Eratio O. sativa Senegal 3.00 High

26615 Gachia O. sativa Bangladesh Landrace/traditional cultivar 3.00 High

117275 Pokkali O. sativa India 3.00 Very high

37108 Horkocha O. sativa Bangladesh Landrace/traditional cultivar 3.10 High

32281 Anbarloo Sadri O. sativa Iran Landrace/traditional cultivar 3.11 High

3214 Celtik Tosya O. sativa Turkey 3.11 High

32311 Hassan Tareme O. sativa Iran Landrace/traditional cultivar 3.11 High

56752 Som O. sativa Guinea-Bissau Landrace/traditional cultivar 3.11 High

FL478 O. sativa Philippines Breeding line 3.13 High

12880 Dom Sofid O. sativa Iran Landrace/traditional cultivar 3.17 High

32312 Larome O. sativa Iran Landrace/traditional cultivar 3.22 High

32313 Massan Mulat O. sativa Iran Landrace/traditional cultivar 3.22 High

26595 Choia Mora O. sativa Bangladesh Landrace/traditional cultivar 3.33 High

83125 Maroantrano O. sativa Madagascar Landrace/traditional cultivar 3.33 High

77210 Rayada O. sativa Bangladesh Landrace/traditional cultivar 3.33 High

17038 Damodar O. sativa India Released/improved/advanced cultivar 3.44 High

6144 FR13A O. sativa India 3.50 High

56445 Walimbo O. sativa Senegal Landrace/traditional cultivar 3.50 High

26576 Bora Dhan O. sativa Bangladesh Landrace/traditional cultivar 3.67 High
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Table 1 Salt-tolerant accessions identified in this study (Continued)

16817 Hasawi O. sativa Saudi Arabia 3.67 High

4154 Taangteikpan O. sativa Myanmar 3.67 High

70635 Msalim Jaro O. sativa Kenya Landrace/traditional cultivar 3.70 High

3401 Carolina Seln O. sativa Peru Landrace/traditional cultivar 3.75 High

16767 Ta Lay O. sativa Vietnam Landrace/traditional cultivar 3.83 High

1723 Carolina Gold O. sativa United States 3.89 High

49051 Rajasail O. sativa Bangladesh Landrace/traditional cultivar 3.89 High

43287 ARC 18567 O. sativa India 4.00 High

26594 Chini Sokkor O. sativa Bangladesh Landrace/traditional cultivar 4.00 High

117282 Cypress O. sativa United States Released/improved/advanced cultivar 4.00 High

Selected tolerant accessions identified and/or examined in this study. Passport information is derived from annotation in the T. T. Chang Genetic Resources
Centre database.
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approaches. In addition, a common feature of nearly all
these studies is screening under relatively mild salt stress,
typically of electrical conductivity (EC) of 6 dS m-1

(approx. 50 mM NaCl) to 12 dS m-1 (approx. 100 mM
NaCl), and there seems to be a lack of screening efforts
specifically aimed at identifying highly tolerant germplasm
Hasawi, mAromatic, highly tolerant

Aus, tolerant/mod. tol.

Japonica, tolerant

Japonica, sensitive

O. glaberri

Figure 1 Geographic provenance of tolerant landraces. Geographic pro
this study, and association with HKT1;5 allele.
that might therefore contain additional major QTLs as ef-
fective as or more effective than Saltol. The objectives of
this work are to (1) screen known and novel germplasm
under high salinity to identify new highly tolerant lines,
with particular emphasis on traditional landraces that may
have novel alleles/mechanisms of tolerance unrelated to
od. tol.

IR29 (chimeric), sensitive

Agami, mod. tol.

Daw, tolerant/mod. tol.

unknown allele, tolerant

ma, tolerant

venance of tolerant landraces identified in the literature or through
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Pokkali and Nona Bokra; (2) characterize the tolerant
lines, specifically with reference to Na+ and K+ uptake, to
classify lines based on tolerance mechanisms; (3) supple-
ment phenotyping results with allele mining of the
OsHKT1;5 gene, and relate alleles to function; and (4) in-
tegrate this information with respect to Saltol/OsHKT1;5
activity, and identify novel donors for use in breeding.

Results
Screening of diverse landraces
Screening of approximately 550 accessions from the T.T.
Chang Genetic Resources Centre of IRRI, chosen for
having plausible likelihood of salinity tolerance based on
origin and other passport information, resulted in the
identification of 103 moderately to highly tolerant
accessions, including 12 from O. glaberrima (Table 1
and Additional file 1: Table S1). These accessions were
Figure 2 Tolerant landraces stem from all cultivar-groups of O. sativa
majority of tolerant lines identified fall within the indica cultivar-group, but
cultivar-groups are also represented. Additional lines found to be tolerant a
indicated clades.
from diverse geographic locations, and likely span the
entire geographic range of O. sativa (Figure 1). Some
clusters of tolerance can be made out, such as those
from the well-known origins of many lines in southeast
India and southern Bangladesh. In addition, a number of
tolerant lines were identified from regions such as
Guinea/Guinea-Bissau in West Africa, Iran and the Phil-
ippines. Further examination of additional accessions
from these areas may yield additional tolerant lines.
Likewise, the lines identified were genetically and

phenotypically diverse. SNP genotyping of selected lines
showed that while many were from the indica cultivar-
group, as is often presumed, a very significant number
also came from the group V (aromatic) cultivars
(Figure 2). In addition, several accessions from the aus
and tropical japonica clades were identified that show
significant tolerance.
. SNP genotyping on the 384-plex indica-indica Illumina set [46]. The
a large number originate from the aromatic cultivar-group, and other
nd known to be in particular cultivar-groups are listed by the
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Correlation of SES scores and concentrations of Na+ and
K+ in plant tissue
The visual SES scores showed a continuous distribution,
highlighting the polygenic nature of salinity tolerance.
Na+ concentrations also showed a wide range and con-
tinuous distribution and, surprisingly, a strong correl-
ation was observed between SES scores and leaf Na+

concentration (Figure 3). This was observed for both lin-
ear regression based on average values per line (P < 10-15

for leaf 5, Figure 3A; also P < 10-17 for leaf 6, data not
shown) and Spearman’s rho based on observations per
plant (P < 10-58, Additional file 2: Table S2). This rela-
tionship held true among almost all O. sativa accessions,
held for all leaf blades sampled and for the leaf 6 sheath
and also held true for O. glaberrima. In contrast, little or
no such relationship is seen for Na+ concentrations in
roots, leaf K+ concentration or between Na+ and K+

concentrations (Figure 3B–D). Significant associations
were also observed between SES scores and leaf 5/leaf 6
and the leaf 6 blade/sheath ratios of Na+ concentrations
(Additional file 3: Figure S1). These showed a much
weaker relationship, but appeared to be at least partially
independent of the leaf 6 blade Na+ concentration and
may represent additional tolerance components.
SES scores also showed strong correlations with vari-

ous biomass parameters (Additional file 2: Table S2).
The strongest of these correlations was with leaf 6
sheath biomass (r2 = 0.54), followed by total harvested
tissue and root biomass (r2 = 0.47 and 0.46, respectively).
However, correlations with leaf biomass were far lower
(r2 = 0.14, 0.20 and 0.36 for leaf 4, 5 and 6, respectively).
SES scores also correlated significantly with leaf Na+

content (as opposed to concentration). The overall cor-
relation was moderate (r2 = 0.47), mainly because of a
small number of outlying accessions (Additional file 4:
Figure S2), all of which carried the Japonica or IR29
alleles of OsHKT1;5 (see below). Excluding these
accessions produced a strong correlation (r2 = 0.69).
However, the correlation of SES scores (and Na+ con-

centration) with cultivar-group was not so clear
(Figure 4). The aromatic and, to a lesser extent, the aus
accessions were all in the “tolerant” class (SES score < 4)
despite not being chosen for tolerance, whereas the
japonica types were mostly sensitive. Accessions from
the indica group and O. glaberrima showed a wide range
in both tolerance and Na+ concentration.

Association of tolerance with HKT1;5 allele groups
HKT1;5 has been identified as a major determinant of
tissue Na+ concentration and salt tolerance in rice [24]
and wheat [26], and circumstantial evidence points to a role
also in barley, sorghum and maize (personal observations).
Therefore, it was of interest to determine the correlation of
salt tolerance and tissue Na+ concentration in rice with
HKT1;5 allelic diversity; a related question is to determine
whether multiple mechanisms exist for reducing tissue Na+

concentration. Portions of the HKT1;5 gene totalling ap-
proximately 6.5 kb, including the entire coding region and
about 3.5 kb of promoter, were amplified from selected
lines, with a focus on newly identified tolerant lines from
diverse cultivar-group/geographic backgrounds. A total of
seven major alleles were identified within O. sativa, to-
gether with three minor alleles within the Japonica, Aro-
matic and IR29 allele groups (Figure 5; minor alleles are
not easily visible due to the scale of the tree, but are present
in the varieties Azucena, Dom Sofid and IR29, respectively).
Interestingly, the allele present in the sensitive line IR29
(and shared with the reference genome of 93–11) is a
chimeric allele, with the promoter, transcription and trans-
lation start shared with the Hasawi allele, fused to the 30

regions (including the remainder of the coding regions) of
the Japonica allele. This allele to date has been identified
only in improved indica-group cultivars, namely, IR29,
IR64, Pusa Basmati 1 and 93–11. Chimeric sequences tend
to destabilise phylogenetic trees by artificially inflating
branch lengths and producing incorrect topologies, and
thus the IR29 sequence has been excluded from the tree
shown in Figure 5.
In general the various alleles could be assigned to spe-

cific cultivar-groups of rice, based on ubiquitous occur-
rence in several accessions known to be essentially pure
representatives of those cultivar-groups. Thus, the
Japonica, Aromatic and Aus alleles are quite easily iden-
tified. The Hasawi allele (so named because it was first
isolated from Hasawi, a tolerant landrace from Saudi
Arabia) is found in many accessions, but is overrepresented
in those from the indica cultivar-group and it may repre-
sent the allele originally from that group. The geographic
provenance of accessions carrying the Japonica and
Hasawi alleles is wide-ranging, indeed global (Figure 1).
The Aromatic allele seems to stem solely from southern
Asia (India and Bangladesh) and the northern Middle East
(Iran), but nonetheless appears common. The Aus allele
appears largely restricted to South Asia, notably around
eastern India and Bangladesh, as typical for the aus
cultivar-group [47] in which it is overrepresented. The
Daw and Agami alleles are exceptionally rare, and do not
fit into the generally accepted divisions of O. sativa, or
seemingly the older rayada and ashina clades [47,48]. The
Daw allele has been found so far in only two accessions,
one from Thailand and the other from Vietnam, both of
which are in the indica cultivar-group. The Agami allele is
so far found only from Agami Mont 1 (IRGC 3084), an
Egyptian traditional cultivar reported to be in the japonica
cultivar-group and possessing mild salinity tolerance
(present data and, e.g., [8,49]). The origin of these alleles is
uncertain. They are clearly distinct and separate alleles, not
derived from any of the other identified alleles by simple
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mutation or recombination, and it is tempting to speculate
that they may represent either remnants of otherwise now-
extinct cultivar-groups or introgressions from wild
relatives. Further sequencing (particularly whole-genome
sequencing) would be needed to clarify this further.
Examination of Na+ concentrations in representatives

of the different allele groups showed a surprisingly
strong association between the HKT1;5 allele and overall
tissue Na+ concentration (Figure 6). This was seen after
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showed exclusion equivalent to or better than FL478, the tolerant
check; in the case of 357, it was below reliable detection limits in
leaf 6.
11 days of salt stress in both the youngest and second-
youngest expanded leaf (marked at the time of salinisa-
tion), though this was clearest in the latter. The
Aromatic allele group clearly showed the highest exclu-
sion overall. This was followed by the Aus and then
Hasawi allele groups, though the difference between
these was not statistically significant. The IR29, Daw and
Agami allele groups seem to have approximately the
same exclusion though sample sizes were too small to
make confident generalisations. The Japonica allele group
had by far the highest overall Na+ concentrations, and even
the two newly identified tolerant lines that showed “low”
Na+ were only the equal of the highest concentrations seen
in the Hasawi and Aus allele groups. Thus, comparison of
the average Na+ concentrations across a number of diverse
landraces allows a tentative hypothesis as to the relative
strength of the various alleles:

Aromatic > Aus≥Hasawi
> Daw≅Agami≅IR29≥Japonica

This information should prove useful in breeding programs
when choosing the best donor for the HKT1;5 gene, and it
is probably not coincidental that all currently used highly
tolerant donors contain the Aromatic allele (e.g. Nona
Bokra, Pokkali, Cheriviruppu, Kala Rata, Kuti Patnai,
Chikiram Patnai, Capsule). However, it is notable that
FL478, despite its high tolerance, actually carries the Aus
allele, which does not seem to be as effective.
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Figure 8 Na+ concentrations in selected accessions from Iran.
Na+ concentrations in various organs of selected accessions from
Iran and checks. Note that while FL478 (tolerant check) has lower
concentrations in its leaf blade and sheath than a sensitive line such
as Nipponbare, it actually contains an increased concentration in
roots. This is typical of many tolerant Na+-excluding lines, but the
relationship is broken in these lines from Iran (Larome, Massan
Mulat, Mulai); which contain low Na+ concentrations in roots in
addition to aerial portions.
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Novel sources and mechanisms of salinity tolerance
As can be seen from Figure 3A and Figure 4, salinity tol-
erance in rice (as measured by the visual SES score) is
highly correlated with leaf Na+ concentration in an ex-
tremely diverse set of germplasm, encompassing all
cultivar-groups and all known HKT1;5 alleles from O.
sativa and even including O. glaberrima. This is true for
both “sensitive” and “tolerant” germplasm. Clearly many
of these lines are displaying high (or low) tissue Na+

concentrations largely due to the particular HKT1;5
allele they possess. Thus, the association between tissue
Na+ concentration and the Aromatic and Japonica alleles
is generally quite strong; however, two accessions
carrying the Japonica allele (Carolina Gold from Peru
and Gachia from Bangladesh; lines 468 and 20 in
Figure 6) show reasonably low tissue Na+. These there-
fore probably possess novel mechanisms maintaining
low Na+ uptake.
Likewise, although very little is still known about the

situation in O. glaberrima, tolerant accessions from this
species also show extremely low tissue Na+ concentrations
(Figure 7) – such that concentrations in the youngest leaf
were below the reliable detection limit for one accession
(line 357 in Figure 7; IRGC 104022). However, line 357
appears to have the same HKT1;5 allele as several sensitive
lines that show very high Na+ concentrations (e.g. CG14,
IRGC 103455 and IRGC 104038; see phenotyping data in
Table 1, Supplemental Table 1 and Figure 7; the
OgHKT1;5 allele from IRGC 104022 is GenBank accession
JQ695813), and is therefore also likely to possess exclusion
mechanisms apart from HKT1;5.
A further observation on leaf Na+ concentrations is the

tendency of many Na+-excluding lines to show decreased
leaf Na+ concentrations, but increased concentrations in
roots relative to sensitive lines. This is seen in FL478 and
most of the excluding lines described here, including the
tolerant O. glaberrima accessions. However, a small
number of accessions actually display lower Na+

concentrations in both roots and leaves (and leaf sheath,
Figure 8). Notable among these are Massan Mulat and
Mulai from Iran, Carolina Gold from Peru, Rayada from
Bangladesh and possibly Eratio from Senegal. The low Na+

concentration in all sampled organs suggests that these
lines may have a mechanism to limit the amount of Na+

that is getting into inner parts of the root (probably the
stele in particular) in the first place. Such mechanisms
may include re-export of Na+ via SOS1, or increased su-
berisation of the endodermal layer, thus reducing the
transpirational bypass flow and passive uptake.
Based on the SES scores, Na+ and K+ concentrations

data examined in these experiments, maintaining low
leaf Na+ concentration is probably the major mechanism
conferring salinity tolerance in Oryza sativa and O.
glaberrima. However, other mechanisms are likely to
exist, and two lines of particular interest are Daw Hawm
from Thailand (IRGC 44131) and Eratio from Senegal
(IRGC 15800). Based on the correlation of SES with leaf
5 Na+ concentration, both Daw Hawm and Eratio show
much lower SES scores than expected (Figure 3A). For
Daw Hawm, this is even more pronounced under
180 mM NaCl (data not shown). The correlation with
SES is much as would be expected if these lines were
showing high tissue tolerance; further work is clearly
needed to define the mechanisms of tolerance operating
in these lines.

Additional evidence for multiple Na+ exclusion
mechanisms
Examination and comparison of several QTL mapping
populations show the presence of multiple QTLs
affecting Na+ uptake [20,22]; our unpublished data].
These include populations derived from parents such as
Pokkali, Nona Bokra, Capsule, Kala Rata, Cheriviruppu
and Kuti Patnai. In many of these the Saltol/SKC1 QTL
is identified as a major cause and all these examples con-
tain the Aromatic allele, but numerous other QTLs of
varying effect have been noted. Further genetic evidence
for the existence of multiple Na+ exclusion mechanisms
comes from the examination of SES score distribution in
a population derived from a cross between the two toler-
ant lines, FL478 and Hasawi. Hasawi is a landrace from
Saudi Arabia (IRGC16817; G. Gregorio, personal com-
munication, [8]; this may be the same as that reported
by [50]) that shows moderate salinity tolerance and leaf
Na+ concentrations intermediate between FL478 and
IR29 (Wei et al. in preparation; present data). SES score
distribution in an F2 population showed transgressive
segregation in both the sensitive and tolerance direction
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(Figure 9). This indicates that the two parents are likely
to have different loci conferring significant tolerance,
presumably the mechanisms maintaining low tissue Na+

concentrations in these lines, and that these loci segre-
gate independently. Although genetic evidence is yet to
be established, similar results could be expected for
many of the other lines presented in this study.

Discussion
Screening of landraces from coastal and saline inland
regions identified a number of accessions showing mod-
est to significant salinity tolerance that are distinct from
traditionally used donors such as Pokkali and Nona
Bokra. These accessions are from diverse backgrounds,
including nearly all cultivar-groups of O. sativa and also
O. glaberrima. To our knowledge this is the first report
of significant salinity tolerance from O. glaberrima, and
also from the aromatic cultivar-group of O. sativa. Salin-
ity tolerance in rice thus appears to be widespread both
geographically and phylogenetically, or, put in another
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Figure 9 Genetic separability of tolerance mechanisms. Further
evidence that different lines may have different genes conferring
tolerance. SES scores of an F2 population derived from the cross of
the two tolerant genotypes FL478 × Hasawi were recorded after
treatment with 150 mM NaCl (applied at 21 days after germination).
The F2 population displayed transgressive segregation in both the
sensitive (early timepoint, 14 days after salinisation, das; A) and
tolerant (late timepoint, 34 days after salinisation; B) directions,
compared with FL478 and Hasawi controls. IR29 (sensitive) is
included for comparison.
way, tolerance is not well associated with either geo-
graphic or cultivar-group origin. Together with the fact
that these are landraces and not expected to show
relationships apart from gene flow inherent in the spe-
cies’ history, this suggests that many of these have prob-
ably gained tolerance independently and that multiple
mechanisms may thus exist.
On the other hand, tolerance is quite well correlated

with leaf Na+ concentration across almost all accessions
of both O. sativa and O. glaberrima. Despite the di-
verse origins and relationships of the accessions, toler-
ance could in almost all cases be explained largely
with reference to lower Na+ concentrations in the
photosynthetically active leaves. This further suggests
that processes controlling this are the predominant
mechanisms of tolerance in O. sativa and O. glaberrima,
and that tissue tolerance mechanisms (vacuolar seques-
tration, ROS scavenging, osmotic adjustment, certain
hormonal responses) play secondary roles. Na+ exclusion
from roots, sequestration of Na+ in roots, stems and
basal portions of the leaf (sheath), partitioning of Na+

from leaf to leaf and dilution of Na+ content in a large
biomass are mechanisms proposed to influence leaf Na+

concentration. Na+ sequestration is one such mechanism
known to operate in a number of species from both the
dicots and monocots (e.g., wild and cultivated barleys:
[51,52]; durum and bread wheat [53,54]). However, the
relationship is not universal. For example, it has not
been observed in studies on maize and sorghum
([55-57], although see [58]) and it is an important [54]
but not a universal determinant in wheat [45]. In some
cases this may be due to a lack of genotypic variability
[57]. The fact that total leaf and shoot Na+ content (not
just concentration) also shows a very strong correlation
indicates that Na+ sequestration from the leaf blade is a
very important contributor to maintaining low tissue Na+

concentrations.
Dilution of Na+ concentrations through a large bio-

mass is also a well-accepted mechanism for maintaining
low tissue Na+ concentrations, and Yeo et al. [9]
concluded that Na+ accumulation (content) showed only
a poor correlation with performance in rice, being sig-
nificantly confounded with plant height; tall varieties
showed better tolerance and lower Na+ concentrations
due simply to dilution of Na+ in the larger volume of tis-
sue produced. The data presented provide an apparent
contradiction to the latter, but this may be due to the
screening conditions: the latter study conducted
screening at relatively low salinity (60 mM) for short
periods (10 days). Salt concentration of 150 mM NaCl
was used for the physiological characterisation presented
here, which is higher than that used in most previous
screening studies; the higher salt concentration causes a
much greater influx of Na+, which may overwhelm other



Platten et al. BMC Plant Biology 2013, 13:32 Page 12 of 16
http://www.biomedcentral.com/1471-2229/13/32
mechanisms, notably the effect of plant vigour [9].
Under these conditions, growth effectively ceases in all
varieties after the application of the salinity treatment. A
few of the most highly tolerant varieties will resume
growth after some time, but at a greatly reduced rate;
over the lifetime of an experiment, even the most highly
tolerant variety will produce only about half a new leaf.
This growth arrest actually appears to be an adaptive
feature, and lines that try to keep growing show a differ-
ent type of growth arrest – the youngest leaves expand,
but soon yellow and die, presumably due to excessive Na+

accumulation. Thus, screening at higher salinity levels
may help to reduce the contribution of biomass to toler-
ance, and so “simplify” the response in this respect.
It is interesting to note that the correlation of SES

scores with plant vigour is highest for leaf sheath bio-
mass (r2 = 0.54), followed by total harvested tissue and
root biomass (r2 = 0.47 and 0.46, respectively), but much
lower for leaf biomass (r2 = 0.14, 0.20 and 0.36 for leaf 4,
5 and 6, respectively). The leaf sheaths and roots are the
main tissues known to act as reservoirs for Na+ seques-
tration, such as that mediated by OsHKT1;5 [24]. Thus,
the contribution of biomass may be partly to dilute the
Na+ taken up, but also to provide a reservoir for seques-
tration in non-photosynthetic portions.
One gene known to contribute significantly to Na+ se-

questration in rice and other species is HKT1;5 [24,26].
Allele mining of this gene revealed seven major allele
groups within O. sativa, and comparison of leaf Na+

concentrations across a number of diverse landraces
allows a tentative hypothesis to be proposed as to the
relative strength of the various alleles:

Aromatic > Aus≥Hasawi
> Daw≅Agami≅IR29≥Japonica

It should be noted that the most highly active allele,
found in traditional donors such as Pokkali, Nona Bokra
and others, has almost certainly originated within the
aromatic cultivar-group, despite these being indica types.
Indeed, although the sample size and fold changes are
small, it seems that the most highly tolerant lines are
those from the indica cultivar-group that also possess
this Aromatic allele; these are often more tolerant than
lines from the aromatic cultivar-group. It may be that
some feature of the indica cultivar-group genetic back-
ground is in some way synergistic with the action of the
Aromatic allele. Alternatively, it has been noted that
many aromatic lines (according to the functional defin-
ition) have lower salt tolerance due to their inability to
produce gamma aminobutyric acid – the same mutation
that confers their aromaticity [59]. Although the aroma-
ticity of most of the lines in this study hasn’t been tested,
it may be that the HKT1;5 allele from traditional
aromatic lines has evolved higher activity to compensate
for this deficiency and, when transferred into other gen-
etic backgrounds, its full effect is seen.
In many cases low tissue Na+ concentrations (and

therefore tolerance) can be largely explained by the ap-
parent relative activity of the particular HKT1;5 allele
present in a line. This suggests that it is not sufficient to
declare a line as a major new donor of tolerance without
first determining the HKT1;5 allele present, and this
should be a component of future screening efforts. How-
ever, several exceptions do exist and the association of
low leaf Na+ concentration with the HKT1;5 allele is not
as tight as that for SES score. Examples of these
exceptions include accessions such as Carolina Gold
(from Peru, tropical japonica cultivar-group, Japonica al-
lele of HKT1;5), Gachia (Bangladesh, aromatic cultivar-
group, Japonica allele) and several accessions from the
Philippines and China (indica cultivar-group, Hasawi
allele). These all possess much lower tissue Na+

concentrations and higher tolerance than would be
predicted from their HKT1;5 allele. Likewise, tolerant O.
glaberrima lines showed very low leaf Na+ concentrations,
yet all share an OgHKT1;5 allele with several accessions
that are manifestly not tolerant and have quite high leaf
Na+ concentrations (data not shown); thus, it seems likely
that these are also using some other mechanisms apart
from OgHKT1;5 that are, nonetheless, highly effective. Also,
varieties from Iran and Turkey would fit in this category.
Although these mostly possess the Aromatic allele of
OsHKT1;5, they appear to possess an additional mechanism
that limits the amount of Na+ entering the root (as opposed
to reducing the amount of Na+ translocated to the shoot)
and so, unlike varieties such as Pokkali and FL478, they
possess both low shoot and low root Na+ concentrations
(Figure 8). Thus, in all these cases it seems likely that alter-
native mechanisms besides Saltol/OsHKT1;5 (for example,
reduced transpirational bypass flow, alternative sequestra-
tion mechanisms) are contributing to a reduction in shoot
Na+ content and concentration.
Thus, while maintaining low tissue Na+ concentrations

appears to be the predominant trait conferring tolerance in
most rice genotypes, the actual mechanisms conferring low
tissue Na+ concentration may be quite diverse. Genetic evi-
dence from multiple QTL studies (e.g. [20,22]) shows that
while HKT1;5 contributes a major QTL for Na+ exclusion,
a number of other minor QTLs also exist. The FL478 ×
Hasawi F2 population presented here also suggests that
these mechanisms can be alternately separated and
combined genetically using molecular markers. Hasawi is a
landrace from Saudi Arabia that shows intermediate toler-
ance and tissue Na+ concentrations (Wei et al. in prepar-
ation, current data). It is in the aus cultivar-group, and is
expected to contain QTLs/mechanisms distinct from those
found in traditional donors from India and Bangladesh,



Table 2 Primers used to amplify HKT1;5 from rice

Primer Sequence (50 – 30) Tm (°C) Size (bp)

Tile8For GTCGCCTCCCTCCAGCTAATGTACTGTC 78.7 3102

Tile8Rev GGCCTCCAACAAACTGAAAGCGTCAAT 79.6

Tile9For GGCGGTGGGTGGTGCTTGGGTAGAGATA 83.9 1806

Tile9Rev GATGACAAGAGCGGCCGACAGTACATTA 78.8

Tile10For CTACACTGAATTATACTGCGTGAAC 65.5 1390

Tile10Rev TAGAGCTCGACCAGATCCTGATATAGAC 71.1

Primers used to amplify HKT1;5 from O. sativa and O. glaberrima.
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such as Pokkali, the presumed tolerant donor for FL478
[60,61]. Examination of an F2 population derived from
these parents showed transgressive segregation in both the
tolerant and sensitive directions. This strongly suggests
that the mechanisms present in the two parental lines are
distinct and can be combined to produce plants with even
higher tolerance. Thus, although maintenance of low tissue
Na+ concentrations appears to be the predominant mech-
anism of tolerance in O. sativa and probably O. glaberrima,
there appear to be many mechanisms by which this can be
achieved, and these mechanisms are possibly additive.

Conclusions
Despite their reputations as salt-sensitive species, both
O. sativa and O. glaberrima show a wide range of diver-
sity in salinity tolerance. This is well distributed geo-
graphically and phylogenetically, yet, at this high salt
concentration, tolerance appears to be mostly related to
the ability to maintain low Na+ concentrations in the
most sensitive tissues such as the blades of active leaves.
Much of the variation in this trait can be explained in
reference to the HKT1;5 allele, and future screening
efforts should include genotyping for this gene to deter-
mine the novelty of the germplasm being evaluated.
However, despite the uniformity of mechanisms, it
appears that multiple highly effective QTLs/genes/
pathways are contributing to this tolerance in different
accessions, and these genes show at least some, and
probably considerable, potential for pyramiding. Further-
more, some lines appear to show evidence of additional
mechanisms of tolerance, such as the putative tissue tol-
erance in Daw Hawm from Thailand and Eratio from
Senegal. The number of accessions screened and
characterised in this work, although specifically chosen
from areas likely to produce tolerant donors, and much
larger than examined in similar studies, is nonetheless
relatively modest and a more extensive screening may
identify additional rare donors that have complementary
mechanisms. Thus, there would seem to be considerable
scope for additional exploration of genetic resources
apart from traditional donors frequently used in
breeding, to further improve salinity tolerance of rice
and ensure higher productivity of salt-affected marginal
soils.

Methods
Plant materials
Seeds were obtained from the T. T. Chang Genetic
Resources Centre at the International Rice Research
Institute, Los Baños, Philippines (http://irri.org/index.php?
option=com_k2&view=itemlist&layout=category&task=cate
gory&id=573&Itemid=100236&lang=en). Accessions were
chosen first based on previous work, both to provide a
comparison to previous physiological investigations and to
characterise those new tolerance sources for which little or
no work was done on them before. Second, passport infor-
mation on location, breeding status (landrace) and cultural
type was examined to find accessions likely to originate
from areas that might have been experiencing salt stress.
The majority of the accessions were chosen from areas that
could reliably be determined as residing within tidal
wetlands (mangrove swamps, areas frequently inundated by
tidal movements) on the basis of historical information and
visual searches on Google Earth. Priority was given to
landraces, as many tolerant breeding lines are derived from
a small donor pool. Likewise, accessions were chosen to
maximise the diversity of their geographic origins, and
some accessions representative of the different O. sativa
cultivar-groups were added from Garris et al. [47] and
McNally et al. [48] to maximise the genetic diversity.
Dormancy was broken by incubating seeds at 50°C for

5 days. Seeds were germinated in petri dishes on moist
paper towels for 2 to 3 days at 32°C, then transplanted
to Styrofoam floats on de-ionised water. The styrofoam
floats consisted of 100 holes in a 10 row × 10 column
grid. Seedlings were selected for normal growth and
transplanted one per hole. After 3 days, seedlings were
transferred to Yoshida’s solution [62], adjusted to pH
5.0. The pH of the solution was monitored and adjusted
daily with HCl/KOH, and the solution was refreshed
weekly. After transplanting, plants were grown in
screenhouse facilities with ambient temperature and
photoperiod during April-March 2011. After 2 weeks of
growth, seedlings were further thinned to six per row to
reduce crowding and to ensure uniformity.

Screening of landraces
Screening was carried out by applying 180 mM NaCl
(Sigma-Aldrich, USA) to the hydroponic solution when
seedlings reached the 4- to 6-leaf stage (growth stage 2 –
3; [63]). NaCl was applied in 60-mM increments separated
by 2 days to reduce osmotic shock. Eighteen entries were
screened per Styrofoam float, with FL478 and IR29
included in each tray as tolerant and sensitive checks, re-
spectively. Three plants per entry were retained after the
final thinning, with three treatment replicates for a total of
nine plants per treatment. Progress of symptoms was

http://irri.org/index.php?option=com_k2&view=itemlist&layout=category&task=category&id=573&Itemid=100236&lang=en
http://irri.org/index.php?option=com_k2&view=itemlist&layout=category&task=category&id=573&Itemid=100236&lang=en
http://irri.org/index.php?option=com_k2&view=itemlist&layout=category&task=category&id=573&Itemid=100236&lang=en
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monitored and final scoring was done (using the SES,
Standard Evaluation System, with 1 denoting normal
growth and 9 most plants dead or dying; [63]) once the
sensitive check reached an average score of 6 – 7, which
was typically 12 – 15 days after the initial salinisation and
9 – 11 days post-180-mM treatment.

Physiological characterisation
Selected lines from screening experiments were chosen
for further physiological characterisation, with particular
reference to Na+ and K+ concentrations. Plants were
grown as described for the screening setup, except that
stress was carried out at 150 mM NaCl (applied in 75-
mM increments) to allow meaningful characterisation of
lines whose tolerance is only moderate. After the final
SES evaluation at 11 days after salinisation, plants were
harvested for determination of ion concentration in the
plant tissue. Selected tissues (root, leaf 4, 5 and 6 blade,
and leaf 6 sheath) were dissected, washed twice in
tap water and twice in de-ionised water, and bagged.
Leaves 4, 5 and 6 were chosen as they represented the
youngest and most active leaves (leaf 6 the youngest),
and it is in these leaves that varietal differences in Na+

concentrations are greatest. Samples were dried at 50°C
for 5 days and tissue dry weights recorded. Na+ and K+

were extracted in 0.1 M acetic acid (Sigma-Aldrich,
USA, diluted in Nanopure water) at 60°C until fully
hydrated and tissue was leached. Na+ and K+ were
measured on a Perkin-Elmer AAnalyst200 atomic ab-
sorption spectrophotometer (Perkins Elmer, USA), oper-
ating in emission mode. Data manipulation and simple
statistical analyses were performed in Microsoft Excel,
while Spearman’s correlations were calculated using
SPSS v. 13.

SNP genotyping and allele mining of HKT1;5
Leaf tissue was harvested from bulked samples and fro-
zen in liquid N2. Samples were ground to a fine powder
in liquid N2, and DNA extracted with a phenol-
chloroform method. DNA was quantified on a
NanoDrop 2000 (Thermo Scientific, USA) and diluted
to 100 ng/μL. SNP genotyping was carried out by Dr.
Michael Thomson, IRRI, on an Illumina BeadExpress
system using the 384-plex indica-indica assay as
described in Thomson et al. [46].
Portions of the HKT1;5 gene were amplified with

Phusion Hotstart II polymerase (Finnzymes, USA) and
cloned into the EcoRV site of pZErO2 (Invitrogen, USA).
Ligations were transformed into chemically competent
XL10-Gold cells (Stratagene, USA). Primers used are
described in Table 2.
Positive clones were identified based on blue/white

screening with X-Gal (Invitrogen, USA) and confirmed
by restriction digests. Sequencing was carried out by
Macrogen, Korea. Sequencing results were assembled
with Lasergene software (DNAstar, USA), and exported
as fasta consensus files. Fasta alignment and phylogeny
estimation was carried out with MEGA5 [64]. Sequences
were deposited in GenBank [GenBank: JQ695808 –
JQ695818].
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independent of actual L6 Na+ concentrations. A, SES vs. L6 blade/sheath
ratio of Na+ concentrations. B, SES vs. L6/L5 ratio of Na+ concentrations.
C, L6 Na+ concentration vs. L6 blade/sheath ratio of Na+ concentrations.
D, L6 Na+ concentration vs. L6/L5 ratio of Na+ concentrations. FL478 was
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Abbreviation
ROS: Reactive oxygen species.
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