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Abstract
From the patients’ management perspective, a good diagnostic test should contribute to both
reflecting the true disease status and improving clinical outcomes. The diagnostic randomized
clinical trial is designed to combine both diagnostic tests and therapeutic interventions. Evaluation
of diagnostic tests are carried out with therapeutic outcomes as the primary endpoint, rather than
test accuracy. We lay out the probability framework for evaluating such trials. Two commonly
referred designs –the two-arm design and the paired design– are compared in a formal statistical
hypothesis testing setup and the causal connection between the two tests is identified. The paired
design is shown to be more efficient than the two-arm design. The efficiency gains vary depending
on the discordant rates of test results. Sample size formulas are derived for both binary and
continuous endpoints. Estimation of important quantities under the paired design is derived and
simulation studies are also conducted to verify the theoretical results. The method is illustrated
with an example of designing a randomized study on preoperative staging of bladder cancer.
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1. INTRODUCTION
Most clinical studies of diagnostic tests are designed to assess the diagnostic and/or
predictive performance of tests in particular clinical settings. However, the impact of a test
on patient outcomes, such as morbidity, mortality, or health related quality of life is
considerably harder to assess. Unlike therapeutic interventions, which can be linked directly
to patient outcomes, a diagnostic modality produces information which is fed into
subsequent decisions about disease management and treatment. As a result, the effects of a
diagnostic modality on patient outcomes are generally mediated by subsequent therapeutic
interventions.

The fundamental methodological difficulty of the mediated outcomes of diagnostic tests has
led to the development of modeling approaches, such as decision analysis and micro-
simulation [1]. These methods utilize results from clinical studies of diagnostic or predictive
performance and combine them with information about the effectiveness of therapy and the

Copyright © 0000 John Wiley & Sons, Ltd.
*Correspondence to: Bo Lu, Division of Biostatistics, College of Public Health, 244 Cunz Hall, 1841 Neil Avenue, Columbus, OH
43210 blu@cph.osu.edu.

NIH Public Access
Author Manuscript
Stat Med. Author manuscript; available in PMC 2014 April 30.

Published in final edited form as:
Stat Med. 2013 April 30; 32(9): 1451–1466. doi:10.1002/sim.5655.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



natural course of the disease in order to estimate the impact of the use of diagnostic
modalities. The literature on modeling methods and their applications is by now extensive.

An alternative but less utilized approach to the evaluation of patient outcomes of diagnostic
tests is to use randomization. Indeed, with the exception of studies of the impact of
modalities for early detection, randomized studies of diagnostic tests have been rare up to
now. However, the growing availability and utilization of diagnostic tests, the recent advent
of various types of biomarkers, and the limitations of modeling approaches, have all
combined to create new interest in clinical studies of the patient outcomes of diagnostic
tests.

The possibility of using randomized designs for diagnostic test evaluation and the efficiency
limitations of such designs were discussed in a Lancet paper by Bossuyt and colleagues [2].
In subsequent work, Lijmer and Bossuyt examined several possible designs which
incorporate randomization [3]. de Graaff and colleagues [4] compared a two-arm design and
a paired design for the management of critical limb ischemia, where the reference standard
is lacking. The acronym DRCT (Diagnostic Randomized Clinical Trial) was introduced to
differentiate such designs from conventional RCTs.

The recent advent of biomarkers and the need to evaluate their utility and define their
effective clinical role is also fueling interest in studies that combine diagnostic and
therapeutic interventions. In their widely cited paper, Sargent and colleagues [5], discussed
randomized designs for the study of a predictive marker and compared the sample size
required for different study designs involving a predictive marker for survival outcomes. In
practice, however, the utilization of such design is very limited, partly due to the lack of
statistical justification. In a recent literature review paper, Vickers and colleagues [6]
systematically reviewed 129 published studies of molecular biomarkers. They found that
only a very small portion of those studies reported any measure of predictive accuracy and
none of them experimentally evaluated the clinical value of the markers.

The major thrust of this paper is to lay out the probability framework for evaluating
diagnostic randomized clinical trials. Two commonly referred designs are compared in a
formal statistical hypothesis testing setup and the causal connection between the two tests is
identified. We also provide sample size and power formulas for practitioners, which are not
available in literatures, to the best of our knowledge. The sample size determination for the
paired design is not trivial because it depends on the discordant rate, which is a function of
the characteristics of the diagnostic tests. Unlike simple study design to compare
interventions, the designs considered here combine both diagnostic tests and therapeutic
interventions. Binary and continuous outcomes are two commonly seen types of clinical
endpoints across clinical trials, including trials involving the comparison of tests. Without
loss of generality, we illustrate our methodology with binary outcomes and assume that two
alternative therapeutic interventions are available (The sample size formula for continuous
outcomes are provided in the appendix). The first design is named as two-arm design in
which patients are randomly assigned to one of the two tests and subsequent therapeutic
interventions are based on the individual test results. The second design is named as paired
design in the sense that patients undergo both tests. The therapeutic intervention is
predetermined for cases in which the two tests agree but is decided by randomization for
cases in which the two tests disagree. An essential feature of such design is that only patients
with discordant tests results are randomized. An example of a trial in which patients with
discordant test findings were randomized is the MINDACT trial [7, 8].

The paper is organized as follows. In section 2, we provide the formal description of the two
designs, define the notation and derive sample size formulas for each of them. Point and
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interval estimators for the outcomes are presented in section 3. In section 4 we present the
results of simulation studies comparing the sample size, power and estimations of the two
designs. Section 5 presents an example of preoperative staging of bladder cancer to illustrate
the proposed methodology. We summarize our conclusions and discuss the implementation
of the two designs in section 6.

2. TWO DESIGNS FOR RANDOMIZED TEST COMPARISON
As noted above, we will examine two study designs intended to compare patient outcomes
of two tests, A and B. We assume that two alternative therapeutic interventions, treatment I
and II, are available and that the choice of therapy is determined by the test result as
specified by the particular design. In many settings, treatment I may be a more intensive
therapeutic intervention and treatment II may be a less intensive intervention or a placebo.

The first of the two designs we consider is a streamlined “two-arm” design, in which
patients are randomized to test A or B and then undergo treatment I if the test result is
positive and treatment II if the test result is negative (Figure 1A). The second design
specifies that all patients undergo both tests. If the tests agree, the patient undergoes
Treatment I if both test results are positive and Treatment II if both test results are negative.
When the two tests disagree, treatment assignment is decided by randomization with equal
probabilities for each discordant type (Figure 1B). As a result, half of the discordant cases
are randomized to follow test A based strategy, and the other half follows test B based
strategy.

To avoid the confusion from too many notations, we assume the primary outcome for
comparison is binary in the main context and include the formulas for continuous outcomes
in the appendix II. The outcome is denoted by Y with 1 for favorable outcome and 0 for
unfavorable outcome. We also define a set of cure rate parameters to be the probability of a
favorable clinical outcome given disease status and assigned treatment. As shown below, r11
denotes the cure rate for treatment I assigned to true disease patients. We assume that the
more aggressive treatment I should work better for true disease patients and the conservative
treatment II should work better for disease-free patients. Therefore, practically, test-positive
patients receive treatment I and test-negative patients receive treatment II. Mathematically, it
implies that r11 > r21 and r22 > r12. A point worth noting in the flow of the two designs is
that the treatment contributes to the patient’s outcome and the test result is used only to
determine the treatment management. So, our goal is to compare two patient management
strategies: one based on the results of test A and the other based on the results of test B.

The hypothesis of interest in the two-arm design can be written as , where 

denotes the true rate of favorable outcomes for patients randomized to test A and  denotes
the corresponding rate for patients randomized to test B. For the paired design, the outcomes
will be identical for (test-)concordant cases and will only differ in the discordant cases.

Thus, the hypothesis of interest can be written as , where  denotes the rate of
favorable outcomes in discordant cases who are randomized to follow test A based strategy

and  denotes the corresponding rate for those who follow test B based strategy.

For both designs the hypothesis of interest involves the comparison of two proportions based
on independent samples. Following the notation in Meinert [9], we use α for type I error
probability and β for type II error probability. Accordingly, zα is the critical value for the
standard normal distribution with upper tail probability of α and zβ is the critical value for
the standard normal distribution with upper tail probability of β. For brevity, all the
formulations in this paper are for one-sided test and they may be used for two-sided tests by
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replacing α by α/2 wherever it appears in the formulas. We also use λ = nB/nA as the
sample size allocation parameter between the two arms. An equal allocation implies nA = nB
with λ = 1 and an unequal allocation means λ ≠ 1. Therefore, the sample size formula for
testing the equality of two binomial proportions pa and pb with equal allocation is given as:

(1)

where p̄ = (pa + pb)/2. Similarly, for unequal allocation,

For brevity, In the following sections, we focus on the formulations for equal allocation
only.

While both designs test a null hypothesis of the form H0: RA − RB = 0, specifically,

 and , the alternative hypotheses are different:

Where f is the discordant rate. With sensitivities and specificities of the tests known, we can
show the relationship Δ2 = Δ1/f later in this section.

2.1. Two-arm design – Sample Size

In the two-arm design,  is the true response rate in patients randomized to arm A (to take

test A) and likewise for . Assuming the prevalence (p), and operating characteristics for

tests A and B are known (sensitivities and specificities denoted by SeA, SpA, SeB, SpB). 

and  are simply defined:

(2)

(3)

The difference in response rates is:

The sample size formula (2) with  and  yields the required sample size in each
arm to detect the response rate difference for pre-specified α and β.

2.2. Paired design – Sample Size
Under the paired design, each patient receives both tests and we randomize only the
discordant patients. The derivation of the overall response rates is a bit more complicated
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because it depends on discordant rate that is a function of prevalence, sensitivities and
specificities.

With known prevalence, sensitivities and specificities, we can cross tabulate test results for
true disease patients and disease free patients respectively, as shown in tables 2A and 2B.
Define θ+ = Pr(A+B−|D+) and it is easy to show that θ+ ∈[max(0, SeA − SeB), min(SeA, 1 −
SeB)] since the cell counts are bounded by the marginal counts. Np(SeB − SeA + θ+)
represents the subpopulation of true disease participants mis-classified only by test A, and
Npθ+ is interpreted as the subpopulation of true disease participants mis-classified only by
test B.

Similarly, we can derive θ− = P (A+B−|D−) ∈ [max(0, SpB − SpA), min(SpB, 1 − SpA)]. The
cell count of N (1 −p)θ− is interpreted as the subpopulation of disease free participants mis-
classified only by test A, and the cell count of N(1 − p)(SpA − SpB + θ−) is the
subpopulation of disease free participant mis-classified only by test B.

The total number of participants with discordant test results is determined by summing up
the off-diagonal cells in the above two tables, denoted by ND. Grouping the cells together,
we have

So the discordant rate is

(4)

In the discordant portion, half of the patients are randomized to follow test A and the other
half are randomized to follow test B. So the response rate for A-based strategy is:

(5)

For B-based strategy:

(6)

The difference of response rates is

Note that the difference in response rates is magnified by a factor of f when we consider
only the discordant results.
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The sample size formula evaluated with  and  yields ND/2, the required number

of discordant patients in each arm. Recall that , so the required total (both concordant

and discordant patients) sample size is therefore .

2.3. A Causal Inference Perspective
In this subsection, we look at the causal implication of both designs using the potential
outcome framework. The potential outcome framework was first proposed by Neyman [10],
later formalized by Rubin [11], to evaluate the causal effect of the intervention. Under the
classic potential outcome framework, each subject has a pair of potential outcomes
depending on their assignment of interventions– one potential outcome if treated with the
experimental intervention, another potential outcome if treated with other alternative or
standard intervention. If both potential outcomes are equal, it indicates no difference in the
effects between interventions.

In our setup, denote T be the treatment strategy indicator, i.e., T = 1 for patient management
following test A results and T = 0 for patient management following test B results. For any
final outcome of interest, Y, there is a pair of potential outcomes (Y 1, Y 0) for T = 1 and T
= 0. Ideally, the population average treatment effect between strategies is estimated as E(Y 1

− Y 0), provided that both potential outcomes can be observed. In reality, only one of them
can be observed for each subject at the same time. Therefore, randomization design is used
to estimate the desired effect unbiasedly. Specifically, for the two designs we are comparing,

• two-arm design

• paired design

The population consists of two subpopulations: concordant and discordant
subpopulation. In concordant subpopulation, Y 1 = Y 0, since the two test results
always agree. Therefore, the difference between the two treatment strategies is
solely determined by their differences in the discordant subpopulation.

The above two equations yield the same relationship shown in section 2.2. From a causal
inference perspective, the two-arm design is based the entire population, while the paired
design is based on the discordant population. Both designs are valid for making inference
regarding the treatment effect and the latter is more efficient since it takes advantage of extra
test information to identify the differential subpopulation.

3. PARAMETER ESTIMATION
The formulas derived in the previous section can be used to compute the sample size needed
to ensure adequate power to detect the postulated difference in response rates. In this
section, we provide estimates for the individual response rate associated with each test and
derive their standard errors. Recall that RA and RB are the rates of favorable clinical
outcome due to treatments assigned by test A and B. Since the structures of the designs

differ, we use subscripts to distinguish those estimators:  for test A in the two-arm design
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and  in the paired design. In all cases and in the interest of brevity, it suffices to derive the
estimators for RA and simply replace the notation of A with a B for formulas related to RB.

3.1. Estimation in Two-arm design
In the two arm design, estimation is straightforward. Each patient receives treatment based

on only one test, so , which denotes the true rate of favorable outcomes in the
treatment arm following test A. Under the usual Binomial assumptions,

 where  is the count of patients with favorable outcomes in the arm.
The standard estimator for RA is just the sample proportion:

with known properties:

(7)

3.2. Estimation in Paired Design

In the paired design, we previously defined  to be the rate of favorable outcomes in the
discordant portion. To find RA in the paired design, we need to define the response in the
concordant population and combine it with discordant part. To estimate the variance, we
also need to consider the covariance structure between these two parts.

We partition the whole population into three groups with two test results, A+B+, A−B− and
discordant (including A+B− and A−B+). Denote the corresponding sample size by N+, N−,
ND, and assume (N+, ND, N−) ~ Multinomial(N; π+, f, π−), where π+ + f + π−= 1, where
π+, π− are the probabilities of concordant positives and concordant negatives. Randomizing
the ND patients into groups following test A and B evenly, the count of responses in each
group conditional on the size of the group have the following distributions.

where ρ+ and ρ−are analogously the rates of favorable outcomes in the concordant portions.
Their unconditional mean and variance are given as below (See Appendix for details in
derivation):

Unconditional variances and covariances,
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Therefore, we can derive the estimator of RA as sum of three components, correspondingly,
concordant positives, concordant negatives and discordant patients. We substitute sample
proportions for each parameter in estimation. The estimator can be considered as a weighted
average of the three components by double counting the patients in discordant population
since we do not have the information on half of the discordant patients who follow test B.

(8)

(9)

RB,  have similar forms. We can show that the paired design estimators are unbiased with
variance (See Appendix for details in derivation):

(10)

It is easy to show the consistency of the estimator as . Comparing with (7),
we observe that the efficiency gain of the paired design is high when the discordant rate, f, is
low. This finding is confirmed by the simulation studies in the next section.

4. SIMULATION RESULTS
The simulation study presented in this section was conducted under the Multinomial and
Binomial assumptions described above. In practice, the discordant rate, f, might not be
known in advance. When the sensitivities and specificities are known, however, we can
always specify the range of possible values for f because f is determined by (4) and θ+ and
θ− are bounded as shown in subsection 2.2. In this section, we simulate the data for five
possible values of f to illustrate how the change of discordant rate would affect the sample
size. In practice, if a reliable estimate of the frequency of discordant test results is available,
it is advisable to use it. Otherwise, the maximal f should be used to ensure adequate sample
size.

4.1. Algorithm
Given the sensitivities and specificities of the tests, the prevalence of disease, we can find
the range of values for θ+ and θ − and determine the range of f since f is a monotonic linear
function of θ+ and θ−. Taking five values evenly distributed in the range of θ+ and θ−,
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starting with the minimum and ending with the maximum, we compute five sample values
of f over the its range. Each round of simulations follows the general steps as below:

• Sample a true disease status vector D as Binomial with Pr(D+) = p.

• Conditional on D, f, sensitivity, specificity and prevalence, simulate test results for
tests A and B using a multinomial distribution as given in Table 2.

• Randomize the patients for each design. In the two-arm design, permute the
assignment vector of N/2 ones and N/2 zeroes; in the paired design, permute the
assignment vector of ND/2 ones and ND/2 zeroes for discordant population only.

• For each design, assign treatments according to the assignment vectors. For the
paired design, concordant patients A+B+ and A−B− are assigned to treatments I and
II respectively.

• Finally, for each patient, a binary outcome of treatment is generated as Bernoulli
with probability chosen from the corresponding cure rates in Table 1.

For each set of operating characteristics, cure rates and each level of f, 1000 simulations
have been run.

4.2. Sample Size Calculation and Power Simulation
We computed the required sample size under four different scenarios. The high accuracy test
with perfect treatment (High-Accu. Perfect-Trt) scenario assumes that the diagnostic tests
have high sensitivity and specificity and the patients respond perfectly to the right treatment
decision; the high accuracy test with imperfect treatment (High-Accu. Imperfect-Trt)
scenario assumes that the diagnostic tests have high sensitivity and specificity and half of
the truly diseased patents respond favorably to the right treatment decision. The next two
scenarios consider diagnostic tests with low sensitivity and specificity and patients
responding perfectly to the right treatment decision. The difference is that the low accuracy
test with perfect treatment and high prevalence (Low-Accu. Perfect-Trt High-Prev.) scenario
assumes a high prevalence of 10%, the low accuracy test with perfect treatment and low
prevalence (Low-Accu. Perfect-Trt Low-Prev.) scenario assumes a low prevalence of 5%.
Table 3 lists all parameter values for four scenarios, the calculated range of f, as well as the
true values for RA,RB and Δ1.

For the parameters above, the required number of patients in both arms in order to detect a
specific alternative with power 0.80 for type I error of 0.05 are tabulated in Table 4. In all
scenarios, the paired design require much less sample size than the two-arm design. We also
see that the decrease in sample size is quite drastic for smaller f’s, the rate of discordant test
results. In section 2, we showed the paired design magnifies the difference in responses by a
factor of f. The pattern here suggests that the smaller the discordant rate, the more the
difference is magnified and therefore the smaller sample size it demands. When treatment
responses are less than ideal, the required sample size increases. In practice, however, the
true discordant rate may be hard to estimate based on previous data. Then it is highly
recommended to use a conservative sample size by assuming the highest discordant rate
possible, which guarantees the desired power for type I error of 0.05.

Table 5 summarizes the estimated powers (the observed proportion of rejected tests). For
illustration purpose, we just show the results under High-Accu. Perfect-Trt scenario. The
simulated powers are right on target; the simulation errors here are no larger than 0.005, so
the simulation appears to be well calibrated for both designs. We do not compute the power
of the paired design when f = 0.05, because the expected sample size is 90 in each arm and
the expected number of discordant patients is (90)f = 4.5, which is far too small to satisfy the
normal approximation assumed for the sample size formulas.
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4.3. Estimation
In each simulation, we compute the two-arm design estimators and the paired design
estimators based the observed count of responses in each subpopulation. Results are also
shown in Table 5. Recall that the true parameter values are RA = 0.852 and RB = 0.812.

The point estimators from the two-arm and paired design show very good agreement and
both are very close to the true values, suggesting the estimation scheme for the paired design
will be an adequate substitute for the two-arm design. We also notice that the variance of the
estimators from the paired design is a bit bigger. This is due to fewer observations used in
the paired design. The standard error of the estimator across the simulated samples also
match well with theoretical results calculated by formula (10) (results not shown here).

Cautions should also be exercised in practice when the discordant rate is low. Because
normal approximation to the binomial distribution is used in the testing, the classical rule of
thumb of np(1 − p) should be checked to ensure that each arm of the discordant sample is
large enough to apply the normal approximation.

5. EXAMPLE: PREOPERATIVE STAGING OF BLADDER CANCER
Randomized studies of the impact of tests on patient outcomes are not very common, with
the possible exception of comparative studies of screening tests. However, there is
increasing interest in comparative studies of tests outside the screening context [12–14]. In
particular, this interest is fueled by the recent growth of Comparative Effectiveness
Research. In this section, to illustrate the methodologic approaches, we choose an example
in which a test is used for diagnosis and staging, given our familiarity with the specific
medical context. In addition, we refer the reader to de Graaff’s work [4, 15] for a detailed
discussion of the role of DRCT design to study tests used in critical limb ischemia, where a
continuous outcome, bodily pain score (PBS) was evaluated.

Bladder cancer is the fourth most common cancer among males and the ninth most common
among females. It is not known exactly how bladder cancer begins and the identified risk
factors include smoking, occupational hazards, chronic bladder problems, etc. Commonly
used diagnostic tests are urine test, cystoscopy, biopsy, CT, MRI and other imaging
modalities. Imaging methods are used to determine if the cancer has spread to other organs.
For non-metastatic bladder cancer, the standard treatment is surgical removal of the entire
organ by radical cystectomy. However, this does not work well for the patients who already
have tumor spread to the locoregional lymph nodes or occult distant metastases at the time
of initial diagnosis. Recent studies indicate that the addition of neoadjuvant chemotherapy
improves survival and cure fraction in patients with metastasis to the locoregional lymph
node [16]. However, the potential disadvantage of the neoadjuvant chemotherapy may
include unnecessary treatment in patients who may not respond to chemotherapy and a
resulting delay in time to cystectomy [17]. So, accurate staging is pivotal in identifying
patients that will respond to chemotherapy and in planning the optimal therapy. The
conventional CT or MRI are not accurate enough for the therapeutic decisions. Recent
studies have examined the diagnostic accuracy of newer imaging methods for the
preoperative staging of bladder cancer, including enhanced MRI, PET, etc. [18,19] In
particular, lymph node imaging is done before surgery in order to detect possible metastases
and provide better guidance to the surgical intervention. Knowledge of the size, number,
location and characterization of the nodes prior to surgery would increase the probability
that malignant nodes would be removed and decrease the morbidity by avoiding removal of
benign lymph nodes [20].
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For illustrative purpose, suppose that researchers are interested in testing whether the
enhanced MRI is superior to the conventional MRI, both followed by the appropriate
therapeutic intervention, in terms of achieving better therapeutic outcomes. They want to
investigate the prognostic value of the imaging beyond merely the accuracy of the test. To
this end, we propose using the methods developed in the previous sections to design a
randomized study among patients with urothelial cancer of the bladder. The two imaging
modalities under evaluation are conventional MRI and Ferumoxtran-10-enhanced MRI. The
participants undergo one or both of the two exams. Lymph nodes information is acquired
from imaging and is used to determine whether extended lymphadenectomy and
neoadjuvant chemotherapy may be appropriate. The primary outcome of interest is 5-year
survival after treatment. As reported by Deserno et al. [18], the sensitivity and specificity for
conventional MRI are 76% and 99%; corresponding values for enhanced MRI are 96% and
95%. We assume that if lymph node metastasis is present, the more aggressive treatment
leads to 50% survival in 5 years and the conservative treatment leads to 20% survival. If
there is no lymph node metastasis, the conservative treatment results in 85% survival and the
more aggressive treatment results in 65% survival. The prevalence of metastasis is assumed
to be 30% among the study population.

To test the null hypothesis of no difference in 5-year survival between the two imaging
modalities and the following treatments, we set the type-I error at 0.05 and the power at 0.8.
Under the above assumption, the enhanced MRI group is expected to have only a modest
increase in 5-year survival by 1.24% over the conventional MRI group. A one-sided test is
used and sample size formula is adjusted correspondingly. Table 5 summarizes the sample
size required by the two designs to detect the difference of 1.24% in 5-year survival for the
minimal and maximal level of discordant rate f.

In the paired design, the required sample size increases with the discordant rate. This is
because that in the paired design, the true difference between the two patient management
plan is magnified by the inverse of the discordant rate. So a smaller discordant rate is
associated with a bigger difference to be detected, which, in turn, demands less sample. In
practice, we may determine a range of possible values for the discordant portion given the
test characteristics and the disease prevalence. A conservative approach would be to go with
the maximum required sample size which corresponds to the scenario with the maximal
discordant rate. In this example, the maximal sample size required is 6923, which is about
one fifth of the sample size required by the traditional two-arm design.

Unlike the traditional design that determines the total sample size in one formula, the sample
size determination for the paired design proceeds by first computing the sample size of the
discordant pairs and subsequently dividing it by the discordant rate. To ensure adequate
sample size for the discordant population, a practical solution is to derive the total sample
size by inverting a Binomial one-sided confidence interval. Picking any reasonable
confidence level (for example, 0.99 to be prudent), we can equate the lower bound of the
one-sided interval to the required sample in the discordant population calculated in the first
step, then solve it to find the total sample size. In this example, a total sample size of 6923
guarantees us to have 808 patients in the discordant population with 99% confidence for the
discordant rate of 0.126.

6. DISCUSSION
At present, the assessment of the impact of diagnostic tests on patient outcomes is done
primarily via modeling and secondarily via clinical and possibly randomized studies. With
the exception of randomized studies of screening modalities, the methodology of clinical
studies of the effect of tests on patient outcomes has not received much attention in the
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literature and the actual studies of this type have been rather few. However, this situation is
changing rapidly in the era of personalized medicine. Diagnostic tests are increasingly used
to guide therapy decisions at each step of the way, including decisions about withholding
further treatment and/or switching to other available treatments without waiting for
completion of the full course of therapy. In the language of biomarkers, there is wide interest
in the evaluation of prognostic and predictive markers.

In this paper we study the efficiency of two of the simpler designs for comparing two
diagnostic tests, the two-arm design in which randomization to one of the other test takes
place at the outset, and the paired design in which both tests are performed on each patient
and randomization is used to assign therapy in the discordant pairs. In both designs, the
decisions of therapeutic procedures are made on the basis of test results. We discuss the
estimation of the rate of favorable outcomes for each test and the comparison of rates
between the two tests. We also discuss sample size considerations for each design and
compare their efficiency in a simulation study. Our computations show that the paired
design is more efficient than the two-arm design. This finding parallels the superiority of
McNemar’s test, which also compares only the discordant portion.

In this paper we evaluate the feasibility of each design under different scenarios. We also
use a clinical example to illustrate the sample size determination in a practical setting. Even
though the sample size needed for the paired design is less than 20% of that required for the
two-arm design, a study of 6,923 patients still seems prohibitively large for this particular
clinical question. Such result is primarily due to the fact that the expected survival difference
is so small, only 1.24%. The survival gain would be larger if the new treatment had much
more favorable outcomes than the standard practice. Though the clinical implication might
not be that significant for this example, we think it serves a good purpose of exemplifying
the method.

A variety of other types of designs for diagnostic randomized clinical trials can be
considered although not many of them have been used in practice [21]. We chose a
streamlined version of the designs studied in this paper by assuming binary test results, two
treatment strategies and binary/continuous patient outcomes. This version is potentially
useful in many practical settings and the approach can also be generalized to more complex
situations, for example, situations with more than two tests or with time-to-event type of
outcomes.

Some difficulties may need to be overcome before DRCTs are used broadly. The practical
feasibility of DRCTs depends on the possibility to base therapeutic strategy decisions on test
results, without the need of definitive information on whether the test result is correct. As a
consequence, the acceptability of such designs in practice would depend on how accurate
the tests are thought to be. More elaborate designs could also be formulated to include, for
example, verification of positive test findings, if that was feasible before making therapeutic
decisions. Specifically for the paired design, randomization of patients with discordant
results to one of the two therapies implicitly assumes there is still equipoise about which is
the correct therapy approach after the two test results are known. Such equipoise would be
feasible only for particular combinations of test performance characteristics and therapy
effectiveness.

Our setup and results can be easily extended to predictive marker studies as a tool to
evaluate the clinical value of the biomarkers. Sargent et al. [7] discussed clinical trial
designs for predictive marker validation and compared the sample size required for different
designs with only one predictive marker for survival outcomes. The predictive marker is a
marker that predicts the differential efficacy of a particular therapy based on marker status
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and can aid in optimal therapy selection. By this definition, the diagnostic test is a special
case of predictive markers, therefore, our methods can be used to compare two predictive
markers in terms of treatment efficacy.

Acknowledgments
This work was partially supported by grant U01-CA-79778 from the National Cancer Institute and a grant from
National Institute on Drug Abuse Award Number R03DA030662. The authors thank Kevin Eng for his valuable
contribution in the simulation studies. The authors also thank the associate editor and two anonymous reviewers for
their helpful comments, which substantially improve the paper.

References
1. Zauber A, Lansdorp-Vogelaar I, Knudsen A, Wilschut J, van Ballegooijen M, Kuntz K. Evaluating

Test Strategies for Colorectal Cancer Screening: A Decision Analysis for the U.S. Preventive
Services Task Force. Annals of Internal Medicine. 2008; 149:659–669. [PubMed: 18838717]

2. Bossuyt P, Lijmer J, Mol B. Randomised comparison of medical tests: sometimes invalid, not
always efficient. Lancet. 2000; 356:1844–47. [PubMed: 11117930]

3. Knottnerus, A., editor. Evidence Base of Clinical Diagnosis. BMJ publishing group; 2001.

4. de Graaff JC, Ubbink DT, Tijssen JGP, Legemate DA. The diagnostic randomised clinical trial is
the best solution for management issues in critical limb ischemia. Journal of Clinical Epidemiology.
2004; 57:1111–1118. [PubMed: 15567626]

5. Sargent D, Conley B, Allegra C, Collette L. Clinical Trial Design for Predictive Marker Validation
in Cancer Treatment Trials. Journal of Clinical Oncology. 2005; 23:2020–2027. [PubMed:
15774793]

6. Vickers A, Jang K, Sargent D, Lilja H, Kattan M. Systematic Review of Statistical Methods Used in
Molecular Marker Studies in Cancer. Cancer. 2008; 112:1862–1868. [PubMed: 18320601]

7. Bogaerts J, Cardoso F, Buyse M, Braga S, Loi S, Harrison JA, Bines J, Mook S, Decker N, Ravdin
P, Therasse P, Rutgers E, van’t Veer LJ, Piccart M. TRANSBIG consortium. Gene signature
evaluation as a prognostic tool: challenges in the design of the MINDACT trial. Nat Clin Pract
Oncol. 2006; 3:540–51. [PubMed: 17019432]

8. Rutgers E, Piccart-Gebhart MJ, Bogaerts J, Delaloge S, Veer LV, Rubio IT, Viale G, Thompson
AM, Passalacqua R, Nitz U, Vindevoghel A, Pierga JY, Ravdin PM, Werutsky G, Cardoso F. The
EORTC 10041/BIG 03-04 MINDACT trial is feasible: results of the pilot phase. Eur J Cancer.
2011; 47:2742–9. [PubMed: 22051734]

9. Meiner, CL. Clinical Trials: Design, Conduct, and Analysis. Oxford University Press; 1986.

10. Neyman J. On the Application of Probability Theory to Agricultural Experiments. Essay on
Principles. Section 9. translated in Statistical Science. 1923; 5:465–480.

11. Rubin D. Estimating Causal Effects of Treatment in Randomized and Nonrandomized Studies.
Journal of Educational Psychology. 1974; 66:688–701.

12. Lord SJ, Irwig L, Bossuyt P. Using the principles of randomized controlled trial design to guide
test evaluation. Medical Decision Making. 2009; 29:E1–E12. [PubMed: 19773580]

13. Lijmer J, Bossuyt P. Various randomized designs can be used to evaluate medical tests. Journal of
Clinical Epidemiology. 2009; 62:364–373. [PubMed: 18945590]

14. di Ruffano LF, Hyde CJ, McCaffery KJ, Bossuyt P, Deeks JJ. Assessing the value of diagnostic
tests: a framework for designing and evaluating trials. British Medical Journal. 2012;
344:e686.10.1136/bmj.e686 [PubMed: 22354600]

15. de Graaff JC, Ubbink DT, Legemae DA, Tijssen JG, Jacobs MJ. Evaluation of toe pressure and
transcutaneous oxygen measurements in management of chronic critical leg ischemia: a diagnostic
randomized clinical trial. Journal of Vascular Surgery. 2003; 38:528–534. [PubMed: 12947272]

16. Winquist E, Kirchner TS, Segal R, Chin J, Lukka H. Neoadjuvant chemotherapy for transitional
cell carcinoma of the bladder: a systematic review and meta-analysis. Journal of Urology. 2004;
171:561–569. [PubMed: 14713760]

Lu and Gatsonis Page 13

Stat Med. Author manuscript; available in PMC 2014 April 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



17. Patel A, Campbell S. Current Trend in the Management of Bladder Cancer. Journal of Wound,
Ostomy and Continence Nursing. 2009; 36:413–421.

18. Deserno W, Harisinghani M, Taupitz M, Jager G, Witjes JA, Mulders P, Hulsbergen van de Kaa J,
Kaufman D, Barentsz J. Urinary Bladder Cancer: Preoperative Nodal Staing with Ferumoxtran-10-
enhanced MR Imaging. Radiology. 2004; 233:449–456. [PubMed: 15375228]

19. Drieskens O, Oyen R, Van Poppel H, Vankan Y, Flamen P, Mortelmans L. FDG-PET for
preoperative staging of bladder cancer. European Journal of Nuclear Medicine and Molecular
Imaging. 2005; 32:1412–1417. [PubMed: 16133380]

20. Leissner J, Hohenfellner R, Thuroff JW, Wolf HK. Lymphadenectomy in patients with transitional
cell carcinoma of the urinary bladder; significance for staging and prognosis. Brithish Journal of
Urology Internatioal. 2000; 85:817–23.

21. Lijmer JG, Bossuyt PM. Diagnostic testing and prognosis: the randomised controlled trial in
diagnostic research” In: Evidence Base of Diagnosis, Knottnerus JA ed. BMJ Books. 2002

Appendix I: Estimation in Paired Design
Following the notations and assumptions in section 3, we have

with unconditional expectations,

and unconditional variances,

Since the outcomes are conditionally independent when N+, N−and ND are known, the
second term is zero.
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Therefore, we find our estimator of the overall response rate following test A as:

which is unbiased,

with variance

Noting that,

We can simplify the variance of the estimator to be

Appendix II: Sample Size Formulas for Continuous Outcomes
This appendix is to derive the sample size formulas for continuous outcomes. If there is a
continuous outcome of primary interest, y, which is measured after the treatment, similar to
table 1, we parameterize the mean changes of this outcome for different disease status and
treatment combinations below:
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Without loss of generality, we assume a positive change is beneficial. We further assume
that for true disease patients, treatment I is better and for disease-free patients, treatment II is
better. Then the above table implies, y11 ≥ y21 and y22 ≥ y12.

The primary hypothesis of interest is the mean comparison between the two treatment
strategies. Then, we can write the hypothesis for the two-arm design as

, where  denotes the mean response for patients

randomized to test A and  denotes the mean response for patients randomized to test B.
Similarly, we can write the hypothesis for the paired design as

, where  denotes the mean response for patients with

discordant results who are randomized to test A based strategy and  denotes the mean
response for patients with discordant results who are randomized to test B based strategy.
For comparison of two independent means, usually, normal approximation is used and a
constant variance for all patients, σ2, is assumed [7]. For brevity, we just show the
formulations for one-sided tests and they may be used for tow-sided tests by replacing α by
α/2 wherever it appears in the formulas.

For two-arm design, similar to section 2.1, the mean responses for the two arms are:

The difference in mean responses is:

The sample size formula for equal allocation is given as:

And the sample size formula for unequal allocation is given as:

For paired-design, similar to section 2.2, the mean responses for the two arms are:

The difference of response means is
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The sample size formula for equal allocation is given as:

And the sample size formula for unequal allocation is given as:
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Figure 1.
Study designs for comparing two test-based patient management strategies
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Table 1

Cure Rates given Disease Status and Treatment

D+ D−

Treatment I r11 r12

Treatment II r21 r22
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Table 2

Cross Tabulation of Test Results

A. True Disease Test B

total+ −

Test A + Np(SeA − θ+) Npθ+ NpSeA

− Np(SeB − SeA + θ+) Np(1 − SeB − θ+) Np(1 − SeA)

NpSeB Np(1 − SeB) Np

B. Disease Free Test B

total+ −

Test A + N(1 − p)(1 − SpA − θ−) N(1 − p)θ− N(1 − p)(1 − SpA)

− N(1 − p)(SpA − SpB + θ−) N(1 − p)(SpB − θ−) N(1 − p)SpA

N(1 − p)(1 − SpB) N(1 − p)SpB N(1 − p)
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Table 3

Simulation Scenarios

Parameters High-Accu. Perfect-Trt High-Accu. Imperfect-Trt Low-Accu. Perfect-Trt High-Prev. Low-Accu. Imperfect-Trt Low-Prev.

Sensitivity (test a) 0.95 0.95 0.85 0.85

Specificity (test a) 0.80 0.80 0.70 0.70

Sensitivity (test b) 0.90 0.90 0.80 0.80

Specificity (test b) 0.75 0.75 0.65 0.65

Prevalence 0.1 0.1 0.1 0.05

Resp. rate of Trt. I
on D+

1.0 0.5 1.0 1.0

Resp. rate of Trt. I
on D−

0.2 0.2 0.2 0.2

Resp. rate of Trt.
II on D+

0.2 0.2 0.2 0.2

Resp. rate of Trt.
II on D−

1.0 1.0 1.0 1.0

Range of f [0.05,0.42] [0.05,0.42] [0.05,0.62] [0.05,0.635]

RA 0.852 0.8045 0.772 0.766

RB 0.812 0.767 0.732 0.726

Δ1 0.4 0.375 0.4 0.4
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Table 6

Sample size required to detect the outcome difference associated with conventional and enhanced MRI

Sample Size

Two-arm Design 40412

Paired Design

f = 0.088 (minimum) Discordant

Total†
394
5008

f = 0.126 (maximum) Discordant

Total†
808
6923

†
The total is calculated based on the lower bound of 99% Binomial confidence interval given the required discordant sample.
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Table 7

Mean Responses given Disease Status and Treatment

D+ D−

Treatment I y11 y12

Treatment II y21 y22
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