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Abstract
Proteins of the Bcl-2 family either enhance or suppress programmed cell death and are centrally
involved in cancer development and resistance to chemotherapy. BH3 (Bcl-2 homology 3)-only
Bcl-2 proteins promote cell death by docking an α-helix into a hydrophobic groove on the surface
of one or more of five pro-survival Bcl-2 receptor proteins. There is high structural homology
within the pro-death and pro-survival families, yet a high degree of interaction specificity is
nevertheless encoded, posing an interesting and important molecular recognition problem.
Understanding protein features that dictate Bcl-2 interaction specificity is critical for designing
peptide-based cancer therapeutics and diagnostics. In this study, we present peptide SPOT arrays
and deep sequencing data from yeast display screening experiments that significantly expand the
BH3 sequence space that has been experimentally tested for interaction with five human anti-
apoptotic receptors. These data provide rich information about the determinants of Bcl-2 family
specificity. To interpret and use the information, we constructed two simple data-based models
that can predict affinity and specificity when evaluated on independent data sets within a limited
sequence space. We also constructed a novel structure-based statistical potential, called
STATIUM, which is remarkably good at predicting Bcl-2 affinity and specificity, especially
considering it is not trained on experimental data. We compare the performance of our three
models to each other and to alternative structure-based methods and discuss how such tools can
guide prediction and design of new Bcl-2 family complexes.
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Introduction
Bcl-2 family proteins play an important role regulating programmed cell death.
Overexpression of pro-survival Bcl-2 proteins contributes to evasion of apoptosis in tumor
cells and is an important characteristic of cancer.1–3 Bcl-2 homologues are also present in
several cancer-associated viruses that include Epstein–Barr and Kaposi sarcoma, suggesting
that anti-apoptotic Bcl-2 proteins may contribute to virally induced cancer by subverting the
normal host apoptosis mechanism.4,5 For these reasons, the Bcl-2 family has been an
important target for the design of cancer therapeutics,6–13 and sequence-structure-binding
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relationships that can guide the design of therapeutics or diagnostics have been extensively
studied.14–23

The Bcl-2 family includes five human pro-survival Bcl-2 receptors (Bcl-xL, Bcl-2, Bcl-w,
Mcl-1, and Bfl-1) that interact with ~16 known pro-death BH3 (Bcl-2 homology 3) domains
(Bim, Bad, Noxa, etc.).24 Structural and biophysical investigations have shown that helical
peptides of ~16–25 residues, corresponding to BH3 motifs, dock in a groove on the surface
of pro-survival receptors.19,25,26 The strength of this interaction is specific to the receptor/
BH3 pairing, such that some BH3 peptides show promiscuous binding to all receptors,
whereas others are highly selective. Examples include the BH3 region of Noxa, which
interacts strongly with pro-survival receptor Mcl-1 but weakly or not detectably with other
receptors, and pro-apoptotic Bim, which promiscuously interacts with many pro-survival
family members.27–31 The selectivity of binding is important for the regulation of apoptosis,
because only those BH3 motifs that can bind to anti-apoptotic receptors are capable of
antagonizing their activity.32,33

Due to its important role regulating cell life versus death decisions, the Bcl-2 receptor–BH3
interaction is an attractive target for drug design. In mouse models, the small-molecule Bcl-2
family antagonist ABT-737, which binds the same hydrophobic groove as the BH3 motif,
can regress or eliminate small cell lung carcinoma, suggesting great promise for therapeutics
that antagonize pro-survival Bcl-2 family proteins.34 Work using chemically stabilized α-
helices and α/β-peptide foldamers indicates that these, too, may provide a route to
therapies.35–38 The receptor-binding specificities of small molecules and peptides determine
which types of cancers they may be effective against. For example, ABT-737 and related
molecules do not bind to Mcl-1 or Bfl-1 and thus are ineffective in inducing death in cancer
cells when these anti-apoptotic proteins are overexpressed.39

In addition to therapeutic applications, designed selective BH3 peptides hold promise as
tools for cancer diagnosis. Panels of natural BH3 peptides have been applied by Certo et al.
to detect specific mechanisms by which Bcl-2 family members confer resistance to
apoptosis in tumor cells.27 This technique, called BH3 profiling, involves determining the
pattern of mitochondrial outer membrane permeabilization in cells exposed to different BH3
peptides. Because BH3 peptides have different receptor-binding profiles, they can be used to
report on a tumor cell's “addiction” to distinct anti-apoptotic receptors. BH3 profiling could
be rendered more sensitive and distinct by discovering or designing new BH3-mimetic
peptides with novel receptor-binding specificities.

Protein engineering and design would benefit enormously from accurate computational
methods for predicting protein–protein interactions. The development of such methods relies
on experimental data to benchmark accuracy. For example, systematic studies using large
data sets of coiled-coil, Ras–Ras effector, PDZ–peptide, SH2–peptide, and SH3–peptide
interactions have led to computational work exploring different approaches to predicting or
recapitulating experimentally observed interactions.40–46 Methods have ranged from
structure-based prediction using different types of energy functions to sophisticated machine
learning.41,46–50 A critical distinction between different approaches is whether or not they
rely on the availability of large amounts of experimental data for model derivation or
training. Another distinction is whether the model is intended to be general, that is,
applicable to any protein complex, or whether it is specific to a certain protein or protein
family. A particularly simple yet often-effective model that is protein specific and based
directly on experimental data is a position-specific scoring matrix (PSSM). Such a matrix is
constructed using the observed frequencies of individual residues at different sites in known
binders. PSSMs can be powerful and have been applied to describing protein–peptide
interactions and identifying new SH2 and PDZ binding partners.51,52
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Dutta et al. previously identified binding specificity determinants for Bcl-2 receptors Bcl-xL
and Mcl-1 using experimental BH3 peptide SPOT arrays and yeast-surface display
screening.14 The study focused on two anti-apoptotic receptors and on mutational variants of
the native BH3 motif of Bim. A simple PSSM model based on peptide array data showed
good performance predicting binding specificity for peptides identified in yeast screening.
More general methods may be required to make predictions for a more diverse binding
space. It is therefore interesting to consider structure-based models. Such models can be
built using only the structures of Bcl-2 family complexes, solved by X-ray crystallography
or NMR, which are available for all five human Bcl-2 receptors.17,25,53–55 Large
experimental binding data sets are not required, except for model testing. London et al.
recently used structures of Bcl-xL and Mcl-1 bound to Bim BH3 to apply a peptide-
modeling module implemented in Rosetta, FlexPepBind, to predict Bcl-2 family interactions
(N. London et al., submitted for publication). A version of this protocol that was optimized
using data from Dutta et al. was capable of discriminating binding to Bcl-xL versus Mcl-1
with impressive accuracy and could accurately rank the specificities of known natural BH3
domains. However, FlexPepBind is computationally expensive and cannot easily be used to
evaluate very large data sets or entire proteomes.

In this study, we extend the work of Dutta et al. by presenting additional experimental data
that can be used to construct PSSM models for the five human anti-apoptotic receptors Bcl-
xL, Mcl-1, Bcl-2, Bcl-w, and Bfl-1. The data include BH3 peptide SPOT arrays and
sequences derived from deep sequencing of thousands of BH3 peptides screened for binding
to Bcl-2 family proteins. The new data sets provide rich information about determinants of
Bcl-2 family specificity and an opportunity to test different computational schemes. We also
present and evaluate a novel structure-based protein–protein interaction statistical potential
called STATIUM that can score interactions of BH3-like peptides with all five Bcl-2
receptors and is rapid enough to evaluate data sets containing more than 106 sequences in
less than 1 s. The very general structure-based STATIUM model shows remarkably good
performance compared to the experimentally derived PSSM models. STATIUM
demonstrates great potential for evaluating candidate protein–protein interactions and can be
used to complement other structure-based modeling techniques such as Rosetta, DFIRE, or
MM/PBSA that require accurate construction of all-atom models.56–59

Results
We used a combination of experimental assays and computational models to explore BH3
peptide interactions with Bcl-2 family receptors. Our goal was to elucidate determinants of
binding affinity and specificity and to capture these in predictive models that can be used for
protein interaction prediction and design. In this section, we describe new experimental
binding data before providing an overview of three different models, two of which were
derived directly from experiments and one of which is a novel structure-based potential. The
bulk of this section reports the performance of different models for predicting different data
sets, and in Discussion, we present things we have learned about Bcl-2 family protein
interactions and different strategies for modeling them.

SPOT arrays for Bim–Bcl-w, Bim–Bfl-1, Bad–Bcl-xL, and Noxa–Mcl-1
SPOT substitution arrays allow concurrent evaluation of binding for hundreds of peptides,
each different by a single substitution, to a given receptor. Membranes displaying
synthesized peptides are incubated with Myc-tagged receptor and then probed with anti-Myc
antibodies labeled with Cy3. This is not an equilibrium binding assay, but SPOT
fluorescence intensities associated with peptides on the arrays are empirically correlated
with binding affinities in solution, at least among a series of similar peptides. This can be
seen in comparisons of SPOT intensities to binding data from Boersma et al.,15 who
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reported solution binding of single-residue variant Bim BH3 peptides to Bcl-xL (R = 0.74,
Fig. S1a) and Mcl-1 (R = 0.88, Fig. S1b). In this study, we present SPOT substitution arrays
that report the binding of single-residue variants of a 26-residue BH3 peptide from Bim to
anti-apoptotic receptors Bcl-w and Bfl-1 (Fig. 1a and b). When combined with publication
of the substitution arrays for Bcl-xL, Mcl-1, and Bcl-214 (London et al., submitted for
publication), these data provide comprehensive data for Bim and 170 of its point mutants
binding to five human Bcl-2 receptors.

To study the effect of sequence variation in peptides not based on Bim, we probed arrays
printed with single-residue mutations of Bad and Noxa BH3 peptides with Bcl-xL and
Mcl-1, respectively (Fig. 1c and d). Bad BH3 is specific for binding Bcl-xL over Mcl-1, and
Noxa BH3 shows the opposite specificity.28 The sequences of Bim, Bad, and Noxa BH3
motifs are considerably different (Fig. S2); hence, these experiments allow us to assess the
role of peptide context for numerous point substitutions. The central residues in BH3
peptides can be labeled as 2a–4g, based on three heptad repeats with positions abcdefg that
capture the periodicity of an amphipathic α-helix (Fig. S2). In addition to the 10 positions in
the core region of the BH3 peptides that were sampled on the Bim BH3 substitution arrays
(2d, 2e, 2g, 3a, 3b, 3d, 3e, 3f, 3g, and 4a), the Bad and Noxa BH3 arrays also included
variation at an additional N-terminal site (2a) and two additional C-terminal sites (4b and
4e), providing 222 peptide variants. Residues in these positions make contacts with the
receptor in many structures.19,25,26,54

With Bim BH3 substitution arrays now available for five human anti-apoptotic Bcl-2
receptors, we compared these data sets. We computed the correlation coefficients for signals
resulting from equivalent peptides on each of 21 pairs of SPOT arrays (Fig. 1e). For Bim
BH3-based SPOT arrays, the equivalent peptides had identical sequences. For the Bad- and
Noxa-based BH3 peptide arrays, we defined equivalence between the same point mutation
made in the context of Bim, Bad, or Noxa. Unsurprisingly, receptors with similar binding
profiles for known native BH3s, such as Bcl-xL and Bcl-2,28,30 gave interaction profiles on
the arrays that were highly correlated (R = 0.88). Receptor pairs with divergent natural
binding profiles, such as Bcl-xL and Mcl-1 or Bcl-xL and Bfl-1, gave profiles that were less
correlated (R = 0.43 and 0.47). SPOT analysis of substitutions in Bad or Noxa BH3 gave
profiles that correlated moderately with Bim BH3 substitution arrays14 probed using the
same receptor (R = 0.77 for Bad versus Bim BH3 variants binding to Bcl-xL, and R = 0.61
for Noxa versus Bim BH3 variants binding to Mcl-1). Differences are apparent at individual
sites; for example, in the context of Noxa, position 4a appears less permissive for
interactions with Mcl-1, compared to the context of Bim. In contrast, position 3d in Noxa is
more tolerant of large hydrophobic amino acids in this assay than the same site in Bim.

Dutta et al., and others, have noted the importance of certain positions for determining
binding to Bcl-xL and Mcl-1.14,15,17 For example, position 4a is very permissive for Mcl-1
binding, but a much more limited range of amino acids can be accommodated at this site for
binding to Bcl-xL.14,15,21 In the SPOT array assay, Bcl-w and Bfl-1 were more similar to
Mcl-1 at position 4a and permitted many point substitutions (Fig. 1a and b). At position 3d,
many amino acids restrict binding to Mcl-1 but not Bcl-xL,14 and our Bcl-w SPOT data
appear very similar to the Bcl-xL profile. At 3d, Bfl-1 was more tolerant than Mcl-1 to
substitutions in array peptides, but not as relaxed as the other receptors at this site. Position
3a is strictly conserved as leucine in natural BH3s, and the SPOT arrays similarly showed a
strong leucine preference.

The Noxa substitution array showed interesting trends supported by previous structural
observations. Position 2d is one of four sites conserved as mostly hydrophobic in native
BH3 motifs, although it is occupied by cysteine in human Noxa. On the Noxa SPOT array,
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position 2d could accommodate negatively charged residues but not positively charged
residues for Mcl-1 binding (Fig. 1d). Mcl-1 has a basic patch consisting of Arg233 and
Lys234 (human Mcl-1 numbering) at the end of helix 3 in close proximity to position
2d.22,61 Mouse NoxaB has a glutamate at position 2d and binds to mouse Mcl-1 with only
~3-fold weaker affinity than mouse Noxa A, which has a phenylalanine at the same
position.18 Noxa B does not show any binding to Bfl-1, which has an acidic patch near this
region.18 We also observed disruption of binding to Bfl-1 for I2dD and I2dE in the sequence
context of Bim (Fig. 1b).

In the Noxa and Bad substitution arrays, we included three additional residues compared to
the Bim BH3 arrays. Surprisingly, the two C-terminal positions 4b and 4e in Noxa could
only tolerate a restricted set of residues for binding to Mcl-1, with 4b exhibiting preferences
for Asp, Glu, and His in addition to the wild-type residue Asn, while 4e was constrained
predominantly to the wild-type residue Gln, and Tyr. In contrast, the N-terminal 2a and C-
terminal 4b and 4e positions in Bad could accommodate many residues for binding to Bcl-
xL.

Deep sequencing of BH3 peptide libraries screened for Bcl-2 binding
Dutta et al. reported the use of yeast-surface display to screen libraries of yeast cells with
>450,000 different surface-displayed Bim BH3 variants for those that bound selectively to
Mcl-1 versus Bcl-xL or vice versa.14 In that work, 33 sequences were identified as selective
for Mcl-1 and 40 were identified as selective for Bcl-xL, based on testing of individual yeast
clones displaying the peptides of interest (labeled as “Specific tight binders” in Table 1). To
access a larger set of Bim BH3 peptide variants that bound to these two receptors, we used
Illumina technology to sequence many yeast clones from previously isolated pools.14 We
sequenced pools that bound to each receptor individually (from affinity screening), as well
as pools that bound preferentially to Bcl-xL versus Mcl-1 or vice versa (from specificity
screening). Data from independent re-sequencing of the same pools indicated high
reproducibility (Fig. S3). We processed the Illumina data using strict filters to identify
unique sequences satisfying several quality criteria (see Methods). Acknowledging that
peptides in these pools were not individually confirmed to be true binders, we labeled the
sequence sets as “Likely binders” and “Likely specific binders,” as indicated in Table 1.
These sets may be contaminated by false positives at an unknown rate. However, overall, the
pools should be highly enriched in true binders. Supporting this, the frequencies of amino
acids from conventional sequencing of true binders and deep sequencing of likely binders
were highly correlated (R = 0.97). Further, a scoring function derived from the deep
sequencing data showed good performance predicting affinity and specificity for unrelated
SPOT array data (see below).

We now report results from preliminary screens to identify Bim BH3 variants that bind to
Bcl-w, Bcl-2, and Bfl-1 (full data from these studies will be reported elsewhere). Two yeast
libraries, one designed to favor preferential binding to Bcl-w, Bcl-xL, and Bcl-2 over Mcl-1/
Bfl-1, and the second to favor binding to Bfl-1 over each of the other four receptors,62 were
screened using FACS (fluorescence-activated cell sorting) at an initial receptor
concentration of 1 µM, followed by more stringent screening at lower concentrations (final
stringency: 1, 10, or 100 nM). Table S1 describes the pools used to generate data sets for all
five Bcl-2 receptors. Sequence logos based on deep sequencing of likely binders to Bcl-w,
Bcl-2, and Bfl-1 identified in this way are shown in Fig. 1f.

Models for Bcl-2 interactions
We present three models that can be used to score the interaction between a BH3 peptide
and five of the human Bcl-2 receptors. PSSMSPOT models are based on SPOT substitution
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array data, PSSMDEEP models are based on deep sequencing of yeast screening experiments,
and STATIUM is a structure-based statistical potential derived from the structures of Bcl-2
receptor–peptide complexes. The derivation of these models is detailed in Methods, and we
briefly summarize the important features of each here and in Table 1 and Fig. 2. To test the
models, we used a large amount of experimental data, also summarized in Table 1. In
addition to previously published SPOT substitution arrays and new data described here, we
used previously published array data for Bcl-xL and Mcl-1 binding that included 359
combinatorial variants of Bim BH3.14 These arrays are referred to as the SPOT library
arrays in Table 1 and below, and only five of the library array sequences were identical with
those included on the substitution arrays. Library array Bim BH3 variants included
sequences with up to five mutations compared to wild-type Bim and were designed to
maximize the number of sequences specific for binding either Bcl-xL or Mcl-1.

The PSSMSPOT potentials were constructed using Bim, Bad, and Noxa BH3 SPOT
substitution arrays. Similar to Dutta et al., the PSSMSPOT energy of a substitution was
calculated by taking the negative logarithm of the ratio of the fluorescence intensity for the
corresponding BH3 substitution to the intensity of the wild-type BH3 (averaging over all
wild-type spots).14 The PSSMSPOT energy of a BH3 sequence was defined as the sum of the
energies of all substitutions. Not all positions were varied in the original SPOT membranes,
and substitutions at positions that were not sampled were treated as equivalent for all amino
acids. Note that two different types of PSSM models were presented in Dutta et al.14 The
model used here corresponds to the first, which was derived directly from SPOT substitution
arrays. PSSMSPOT models are named using subscripts that indicate which array and receptor
were used; for example, PSSMSPOTX_Bim indicates a model based on data for Bcl-xL
binding to Bim variants. In this notation, “X” denotes Bcl-xL, “M” denotes Mcl-1, “2”
denotes Bcl-2, “W” denotes Bcl-w, and “F” denotes Bfl-1.

PSSMDEEP potentials were derived from the deep sequencing data described above. We
defined models based on yeast library pools that underwent affinity and/or specificity
screening. PSSMDEEP_AFFIN models were derived by taking unique sequences from rounds
of positive screening for binding to a given receptor. The PSSMDEEP_SPEC models were
designed to capture the specificity of a BH3 peptide for a desired receptor in preference to
an undesired one. PSSMDEEP_SPEC models were derived using unique sequences resulting
from both positive screening for binding to one receptor (e.g., Mcl-1) and negative screening
disfavoring binding to another receptor (e.g., Bcl-xL) (Table S1). In PSSMDEEP models, the
energy of an amino acid substitution at a BH3 position was computed based on the
frequency of that amino acid in the appropriate set of unique sequences (see Methods).
Successful screening experiments allowed us to construct affinity models for all five
receptors and specificity models for Bcl-xL versus Mcl-1 and vice versa (Table 1). In the
same manner as for the PSSMSPOT models, PSSMDEEP models are distinguished with a
letter in the subscript to indicate which receptor was used as the target in generating the
relevant data; for example, PSSMDEEPX_AFFIN is a model built using affinity pools selected
for binding to Bcl-xL.

Our third type of model is STATIUM, which is a statistical potential based on structural
modeling that does not incorporate experimental binding data. A STATIUM model can be
generated using any structure of a Bcl-2 receptor–peptide complex and then used to score
the affinity of other peptides for that receptor. STATIUM aims to reduce structural detail in
order to maximize the computational efficiency of scoring, but in a way that preserves
accuracy. To that end, the derivation of STATIUM is different from statistical potentials
such as DFIRE58 or the statistical components of Rosetta56,63,64 in that it does not define
generic energies for structure terms but instead derives energies that are tailored to the
residue interaction geometries present in a specific structure.
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The derivation of STATIUM is outlined in Fig. 2 and described in full in Methods.
STATIUM requires as input a structure of a Bcl-2 receptor in complex with a BH3 peptide;
this can be an X-ray or NMR structure, or a homology model. Cα–Cα and Cβ–Cβ distances
are used to define the structures of receptor–peptide and intrapeptide interacting residue
pairs. A structure database derived from the Protein Data Bank (PDB) is then searched for
interacting residue pairs with similar observed distances. The frequencies of observed amino
acid pairs that meet the geometry criteria are used to derive the STATIUM score for that
pair. The overall STATIUM score for a peptide binding to a given receptor is the sum of all
of its residue-pair scores. Based on our observation that increasing the weight of intrapeptide
residue pairs relative to receptor–peptide pairs improved affinity prediction but decreased
specificity prediction (Fig. S5), different weights were used for affinity and specificity
benchmarks presented below, as detailed in Methods and as indicated by the asterisk in Fig.
2.

We constructed numerous STATIUM potentials using different experimental structures of
Bcl-2–BH3 peptide complexes. Below, we refer primarily to five models, each one
constructed on what we judged to be the best structural template for each receptor. These are
referred to as STATIUMM, STATIUMX, STATIUM2, STATIUMW, and STATIUMF using
the same single-letter abbreviations defined above.

Prediction of SPOT array binding
The metric we used to assess binding prediction accuracy for the nine SPOT arrays is the
area under the curve (AUC) value for a binary classification receiver operating characteristic
curve. This approach requires defining two subsets of data, that is, strong binders versus
weak binders. The AUC value then represents the probability that a randomly selected
strong binder will have a lower energy than a weak binder; a perfect predictor will give
AUC = 1.0. After analyzing the distribution of binding signals, we designated the 30% of
sequences with the greatest signals as strong binders and the 30% with the weakest binding
signals as non-binders (see Methods). The choice of 30% as the cutoff for top and bottom
percentiles ensures we use a majority of data points for predictions but limits incorrect class
assignments. Results using other cutoffs are included in Table S2.

AUC values for the prediction of SPOT array data with different scoring functions are
shown in Tables 2 and 3. We made predictions for both the SPOT library array data (Table
2), which are available for Bcl-xL and Mcl-1 only, and for the SPOT substitution array data,
which are available for seven substitution arrays (Table 3). For the library array predictions,
the performance of all models is shown. For example, we include the performance of models
such as PSSMSPOT2_Bim, a model based on Bcl-2, for predicting BH3 peptide binding to
Mcl-1 or Bcl-xL. For the substitution array predictions, we show data only for the most
relevant model, that is, the model built for the appropriate receptor used in the experiments.
The full analysis of all models tested on all SPOT substitution data is available in Table S3.
Every scoring function had at least some predictive capability. The AUC values when using
a model built for the appropriate receptor ranged from 0.7 to 1.0. Interestingly, many scoring
functions could predict SPOT library array binding for Bcl-xL and Mcl-1, even if the model
was constructed using a different receptor. For example, PSSMSPOTX_Bad gave perfect
predictions for Bim variants binding to Bcl-xL in this test (AUC = 1.0). This indicates that
the determinants of affinity at the extremes of very weak and very strong binding are similar
across receptors.

PSSMSPOT and PSSMDEEP models performed very well. This is expected considering that
both models were derived from experimental data that covered much of the sequence space
of the test set. Nonetheless, it is encouraging that PSSMDEEP performed well on the SPOT
tests, given that the model and test data came from imperfect and very different experiments.
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On the other hand, the STATIUM models, which used no system-specific binding data,
performed as well as the experimental models in a few cases and were competitive with
PSSMDEEP for the SPOT library data set. STATIUM also predicted the Bfl-1 SPOT
substitution data as well as the PSSMDEEP models. This is striking, given that much less
prior knowledge was needed to derive this model.

Table S2 shows the AUC values from Table 2, but with cutoffs of 40% and 50% used to
define binders and non-binders. In general, the AUC values slightly decreased as the cutoff
increased. This could be due to the test set becoming more challenging for the prediction
models, as well as to the blurring of the experimental class assignments of strong binders
and non-binders. Table S4 shows the total number of assigned binders/non-binders for each
test.

For cases where the STATIUM AUC values were high for all models, we examined the
correlation between the predicted energy and the experimental SPOT array signal. Note that
the agreement of the SPOT data with solution binding constants was R = 0.74–0.88 (see
above), providing an approximate upper limit on the meaningful correlation that can be
achieved. Figure 3a shows the correlation of the SPOT library array data with STATIUM (R
= 0.72 and 0.67 for Bcl-xL and Mcl-1, respectively). This is exceptionally high for a
structure-based approach and compares well with a version of Rosetta optimized for Bcl-2
binding (unoptimized R = 0.54, 0.46; optimized R = 0.8, 0.67; London et al., submitted for
publication). As discussed below, it should be noted that STATIUM is much faster due to
the simplicity of its derivation.

We also used SPOT data to predict binding specificity, that is, peptide binding preferences
for Bcl-xL versus Mcl-1. The SPOT library arrays were designed to sample a space rich in
sequences with specificity for either Bcl-xL or Mcl-1.14 Thus, we used these data to define a
test set of 134 sequences specific for one receptor versus the other (see Methods). We
considered the experimental specificity to be the difference between −log(SPOT/SPOTWT)
for binding to Bcl-xL versus Mcl-1. The predicted specificity for a sequence was defined as
the difference between the energy from the Bcl-xL scoring model and the Mcl-1 scoring
model for that sequence.

Figure 3b shows the experimental versus predicted specificity for each sequence using
PSSMDEEP_SPEC, PSSMDEEP_AFFIN, PSSMSPOT, and STATIUM. Among the four models,
the strongest correlation was found for PSSMDEEP_SPEC (R = 0.91), and the weakest was
found for PSSMDEEP_AFFIN (R = 0.75), showing that a model built from the sequences of
specific binders did significantly better for specificity prediction. PSSMDEEP_SPEC
outperformed PSSMSPOT (R = 0.83), even though the latter scoring function was derived
from substitution SPOT array data that contained every individual residue mutation made in
the library SPOT array. The performance of the structure-based model STATIUM (R =
0.86) was similar to that of PSSMSPOT, again remarkable for a model that does not
incorporate any experimental binding data. Confidence intervals from bootstrapping analysis
supported the statistical significance of these comparisons (see Methods and Fig. 3).

Prediction of yeast-display screening results
Data from yeast-surface display screening provided another opportunity to test different
binding models (Table 1 and Table S1). Deep sequencing resulted in sequences designated
as likely binders for each of the five receptors. Using each model, we evaluated whether
these likely binders were ranked highly compared to the full theoretical library of sequences
input to the screening experiment. This is related to the extent to which a scoring model can
enrich a library in real binders by design, which is an application of increasing interest.65–69

The metric we used to quantify computational library enrichment was the fraction of likely
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binders identified in the top-scoring 20% of the full theoretical library. For example, a
472,392-member library was screened for interaction with Bcl-xL by Dutta et al.,14 leading
to the identification of 5367 unique likely binders (Table S1). Using each model, we defined
an energy cutoff such that 20% of the 472,392 sequences scored below this. The fraction of
the 5367 likely binder sequences that scored below this cutoff for each model was defined as
the enrichment. Values greater than 20% indicate that a model was able to assign high ranks
to experimental binders.

In Table 4, we present the library enrichment results for all of the models on appropriate
data sets. Predicting library enrichment with the PSSMDEEP model derived from the same
experiment is circular; such values are labeled with an asterisk. In all cases except one, the
logical choice of receptor scoring model for a given data set provided significant library
enrichment, with PSSMSPOT enrichments ranging from 54% to 87% and STATIUM values
ranging from 55% to 90%. PSSMSPOTF_Bim prediction of Bfl-1 library enrichment was
poor, and discrepancies between the SPOT array data and the sequence logo for likely
binders are apparent in Fig. 1. A strong preference for Tyr at position 2e in sequences
identified by yeast screening was not recapitulated on the SPOT arrays, and the SPOT arrays
indicated a preference for polar residues at 2g, whereas hydrophobic residues were selected
in the yeast screening. At this time, we do not have experimental data to resolve these
discrepancies. However, three peptides chosen from this pool (one with Tyr at position 2e),
which showed significant enrichment over successive screening rounds, competed
effectively with wild-type Bim BH3 for binding to Bfl-1, supporting specific binding to the
same site (data not shown). Notably, STATIUM showed enrichment of 90% for the Bfl-1
data set.

We also used yeast-display data to assess predictions of Bcl-xL versus Mcl-1 binding
specificity. First, we examined how well different models could distinguish 33 Mcl-1-
specific versus 40 Bcl-xL-specific peptides reported by Dutta et al.14 (specific tight binders
in Table 1). Results are shown in Fig. 4a. The difference between energies predicted using
the BclxL and Mcl-1 models can separate the two groups of sequences, with the best
performance coming from the PSSMSPOTX/PSSMSPOTM and PSSMDEEPX_SPEC/
PSSMDEEPM_SPEC models, as expected. STATIUMX/STATIUMM also showed good
resolution in this test, with a very low rate of incorrect classifications. Corresponding data
for likely specific binders (a larger but lower confidence data set) are given in Fig. S6.

Finally, we used STATIUM to predict which sequences in the full theoretical library input to
yeast screening would be specific for either Bcl-xL or Mcl-1. This corresponds to running a
computational version of the screening experiment. To do this, we identified all sequences
with STATIUM energies in the lowest 10% for the targeted receptor and in the highest 65%
for the alternative receptor. We generated a sequence logo for this list and compared it to
logos derived experimentally (Fig. 4b). The sequence logo for the entire list of 90,949
sequences that were successfully displayed on the surface of yeast is also provided for
comparison (Fig. S4). At most positions in the Bcl-xL-specific and Mcl-1-specific logos, the
large variability observed in sequences that were successfully expressed was reduced to four
or fewer dominant amino acids by STATIUM. Among those predicted amino acids, many
were the dominant residues observed for the experimentally validated sequences. For
example, at position 3d, the Bcl-xL predicted logo exclusively consists of asparagine, which
was the top amino acid at that position among the likely specific binders. Likewise, at
position 3d in the Mcl-1 predicted logo, the two dominant amino acids are isoleucine and
valine, which are identical with what was preferred experimentally. A significant failure of
STATIUM is at position 2d for the Mcl-1-specific binders, where the model predicts mostly
polar residues rather than the apolar residues present in the Mcl-1 likely specific binders.
STATIUM also predicts greater variability at site 3f than was observed at this site
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experimentally or in native BH3 motifs. This same observation was made previously using
atomic-level structural modeling.70

Prediction of specificity in natural BH3 peptides
Natural BH3 domains share little sequence similarity beyond a few conserved positions (Fig.
S2). Some of these BH3 peptides interact selectively with specific receptors; thus, we used
them to test the performance of our interaction models in cases where the sequence diversity
is much higher than in our experimental data sets, which consist mostly of Bim BH3
variants. There are four natural BH3 domains with unambiguous specificity profiles: Bad
BH3 interacts preferentially with Bcl-xL/Bcl-w/Bcl-2 over Mcl-1/Bfl-1, and Mule/Noxa/Bok
BH3 domains interact preferentially with Mcl-1 over all other receptors.27–31,71 In Table 5,
we show the top predicted receptor for each specific peptide. PSSMDEEP exhibited mixed
results for this test, ranking the top receptor for Bad and Mule correctly, but ranking Mcl-1
as only the third best Noxa binder and the fourth best Bok binder. PSSMSPOT performed
significantly better, predicting the top binders for Bad, Mule, and Bok, while assigning
Mcl-1 as the second best Noxa-binder. The PSSMSPOT assigned Bfl-1 as the top Noxa
binder, although experimentally binding to Mcl-1 is preferred. STATIUM ranked the
tightest binding receptor as the top receptor in every case.

As an additional comparison, we considered peptides from a comprehensive study of BH3
interaction specificity involving all five Bcl-2 receptors.28 In Table 5, we report the
STATIUM rankings for BH3 peptides experimentally assigned as very tight binders (IC50
<100 nM), moderate binders (IC50 <10 µM), and non-binders (IC50 >100 µM). This test is
identical with one used by London et al. (submitted for publication) in an assessment of
Rosetta prediction performance, which allows us to compare the performance of STATIUM
with that model. Noxa BH3, which is specific for Mcl-1, is appropriately ranked last for all
receptors other than Mcl-1. Bad BH3, which does not bind Mcl-1, is ranked last for that
receptor. These results are slightly better than those achieved by Rosetta, which erroneously
ranks Noxa as a better Bcl-xL binder than tight binding Bik BH3. In the same analysis,
PSSMSPOT was less accurate (Table S5). For example, Noxa BH3 was ranked first for Bcl-
w according to the PSSMSPOT, but in experiments, it does not bind that receptor. We
attribute this poor performance to under-sampling of the native BH3 sequence space by
PSSMSPOT. PSSMDEEP was unsuitable for use on this test because it sampled a small
number of positions (Table S1) and a limited number of amino acids at each position. For
that reason, some natural BH3 domains could be evaluated at all sampled positions and
others only at a few, making it impossible to fairly assess their relative ranks.

Performance of the STATIUM statistical potential
An important consideration for any structure-based method is how sensitive the method is to
the specific structure models used. We compared the prediction accuracy of STATIUM
when alternative structural templates were used for Bcl-xL (3IO8 versus 3FDL) and Mcl-1
(3PK1 versus 2PQK). Overall, the prediction capabilities were similar. For example, the
yeast specificity prediction AUC decreased from 0.98 to 0.92 and the affinity prediction
AUC values for Bcl-xL and Mcl-1 changed from 0.94 and 0.94 to 0.93 and 0.93 using 3FDL
and 2PQK.

Because Bcl-2 receptors are all structurally similar,22 we tested how STATIUM performed
in a homology modeling mode, where the structure of one receptor was used to model
others. Note that the modeling problem is a simple alignment problem, because only Cα and
Cβ coordinates are used in STATIUM. We aligned the sequences of Bcl-xL and Mcl-1 and
substituted the amino acid identities at each aligned position. For example, the sequence of
Bcl-xL was modeled using Mcl-1 structure 3PK1. We evaluated several affinity and
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specificity prediction metrics in this mode. The results are shown in Table 6. Specificity
prediction was more sensitive than affinity prediction to the choice of model. In particular,
using Mcl-1 structure 3PK1 to model both Mcl-1 and Bcl-xL had modest effects on affinity
prediction performance but dramatically decreased the AUC value (AUC=0.90 to 0.52) and
correlation coefficient (R = 0.86 to 0.21) for SPOT specificity prediction. Thus, STATIUM
appears to capture important information about specificity that is encoded in the structures
of different receptors, and homology modeling reduces accuracy because appropriate
structural detail is lost. For Bcl-w, we also tested a homology model based on the X-ray
structure of Bcl-2 bound to Bax BH3, rather than an NMR-based model of Bcl-w in
complex with Bid BH3. This decreased performance somewhat, reducing the SPOT AUC
from 0.82 to 0.78 and the library enrichment from 0.75 to 0.70.

We compared our STATIUM results to Rosetta FlexPepBind, which was used by London et
al. to predict binding data reported by Dutta et al.14 The affinity prediction performance of
STATIUM on the SPOT library data is summarized in Table 2 and Fig. 3. STATIUM
achieved a Pearson correlation of 0.72 for the Bcl-xL data and 0.67 for the Mcl-1 data. The
performance of Rosetta “out of the box” was not very good on this test but improved
markedly when small adjustments to the electrostatic part of the energy function and the
structure building protocol were made to improve fit to the Bcl-2 data (unoptimized R =
0.54, 0.46; optimized R = 0.8, 0.67, discussed in London et al., submitted for publication).
For the specific tight binders (Table 1), STATIUM correctly classified the specificity of
virtually all sequences (AUC = 0.98), but the optimized version of Rosetta could distinguish
all (AUC=1.0). Keeping in mind the advantages of a generally applicable protein–protein
interaction model, we did not extensively optimize this version of STATIUM for the Bcl-2
system. We did compare two different approaches for geometrical description of residue–
residue interactions, and we adjusted the weighting of inter- and intracomplex pairs
differently for affinity versus specificity prediction, as described in Methods. Overall,
compared to the all-atom Rosetta method, the reduction in structural detail that makes
STATIUM so fast does not significantly reduce its performance on the types of tests
presented here.

Discussion
To better understand features of BH3 motifs that govern specific binding to Bcl-2 family
receptors, we collected large amounts of experimental data that report the effects of single
and multiple amino acid substitutions in BH3 peptides. Although SPOT arrays do not
directly measure equilibrium binding constants, they do provide one-at-a-time binding
information for large numbers of peptides without laborious synthesis and purification and
therefore can be applied in high throughput.14 Similar approaches have provided important
insights for other protein domains.73 We found that SPOT array intensities can correlate
well with solution measurements of BH3 affinity and specificity (Fig. S1). Furthermore, the
SPOT and yeast-screening methods gave consistent views of BH3 interaction preferences, as
illustrated by the good performance of SPOT-derived models on yeast-screening data and
vice versa.

Large data sets such as those we present here are difficult to interpret or use without a
model. Of the several modeling strategies we applied, two involved converting data from the
experiments directly into position-specific scoring matrices and testing the ability of these
models to predict data not used in their derivation. This mimics a possible long-term
approach focused on measuring as much of the BH3 sequence space as necessary to describe
the entire BH3 sequence universe. A third model was derived directly from protein structure
data, and it utilized experimental binding data only for testing. This approach has the
potential to be much more general and also has the advantage of not requiring extensive
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experimental measurements. Applying different models to different data sets provided
insights into both the data and the models, which we discuss below.

Modeling affinity
An interesting finding was that our models behaved differently when modeling affinity
versus specificity. In particular, our tests based on discriminating strong binders from non-
binders were quite insensitive to which model was used. Table 2 reports predictions for Bcl-
xL and Mcl-1 binding to SPOT library array peptides, and even models that were not
developed to describe Bcl-xL or Mcl-1 binding gave good performance. For example,
models PSSMDEEP2_AFFIN, PSSMSPOTW_Bim, and even PSSMSPOTM_Noxa could describe
either Bcl-xL or Mcl-1 binding to Bim BH3 variants, and STATIUM performance was not
strongly dependent on which Bcl-2 family structure was used as a template. Similar trends
were observed for SPOT substitution array predictions (Table S3) and library affinity
enrichment (data not shown). These observations are not entirely surprising, given that the
Bcl-2 receptors overlap in the types of sequences they bind. In the SPOT substitution arrays,
where 18 mutations were made at each site, many of these stabilized or destabilized binding
to many receptors similarly. Thus, any receptor model good at recognizing such globally
stabilizing or destabilizing influences on binding performed well. The many high
correlations among SPOT substitution arrays, shown in Fig. 1e, support this.

The experiment-based PSSM models provided insights into which mutations were broadly
stabilizing or destabilizing. In general, Bim BH3 variants that bound well to many receptors
on SPOT arrays were quite similar to wild type (e.g., Bim I2dV or F4aL), and peptides that
had weakened binding to all of the receptors included polar substitutions at buried sites (e.g.,
L3aD), charge incompatibility on the surface (e.g., R3bD), large residues at positions
normally occupied by small ones (e.g., A2eF), or a proline in the central region of the BH3
helix. STATIUM correctly predicted many of these types of effects. For example, position
3a is a conserved buried leucine in known BH3 sequences and is the best residue at this
position according to the SPOT arrays. STATIUM predicted leucine to be preferred by a
large energy gap to all polar/charged residues but predicted a much smaller gap to some
hydrophobic alternatives. A preference for small residues Ala, Gly, or Ser at position 2e was
captured well, and STATIUM also recognized that negative charge is disfavored at position
3b. Position 3f is conserved as an aspartic acid in known BH3 domains, and the SPOT
arrays confirmed that all other substitutions decrease binding for all receptors. STATIUM,
however, predicted no preference for aspartic acid over most other hydrophilic residues at
that site (Fig. 4b). This could be due to the fact that STATIUM does not model long-range
electrostatic interactions, which may be critical for that position. An alternative explanation
may be that the conservation of aspartic acid at position 3f is caused by a multi-residue
structural context that is not captured in the pairwise derivation of STATIUM.

For predicting library enrichment in tight binders, models had to do more than recognize
strongly destabilizing residues. This is because the libraries input into yeast-surface
screening were already depleted in such residues by design (see Methods). This test placed a
greater emphasis on identifying the most stabilizing substitutions. Even so, performance in
library affinity enrichment was good when many different models were used (Table 4).

Modeling specificity
For predicting interaction specificity, sequence features that affect all receptors similarly are
unimportant; models must distinguish possibly subtle differences between proteins. In
contrast to affinity tests, in specificity tests requiring discrimination of Mcl-1 versus Bcl-xL
binding, the computational model constructed for the appropriate receptor performed the
best (data not shown). Similarly, when using STATIUM, homology modeling of the
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template gave inferior specificity prediction results to using an appropriate experimental
structure (Table 6). Another difference is that intrapeptide interactions are expected largely
to cancel when comparing binding of one peptide to different receptors, whereas these make
important contributions to determining binding affinity. Following testing that confirmed
this expectation (Fig. S5), we developed slightly different versions of STATIUM for
predicting affinity versus specificity (see Methods).

An interesting result from the specificity tests in Fig. 3, which use SPOT library array
binding specificity data, is that the PSSMDEEP_SPEC (R = 0.91) outperformed PSSMSPOT (R
= 0.83), even though the latter scoring function was derived from SPOT substitution array
data that included every individual residue mutation made in the SPOT library array.
PSSMDEEP_SPEC was derived from sequences selected to be specific for binding one
receptor versus the other and thus directly uncovered specificity determinants. For the
PSSMSPOT models, specificity was computed using differences in scores from affinity
models (PSSMSPOTX−PSSMSPOTM or PSSMSPOTM−PSSMSPOTX). The greater
effectiveness of PSSMDEEP_SPEC highlights the advantages of a specialized model. Figure 3
demonstrates that specificity in at least some cases can be better resolved than affinity,
possibly due to cancellation of errors in the models for different receptors.

Dutta et al. elucidated several features that make BH3 peptides specific for Bcl-xL versus
Mcl-1, and vice versa.14 PSSMSPOT, PSSMDEEP, and STATIUM often agreed on such
sequence determinants of this specificity. For example, a valine substitution at position 4a in
Bim was universally predicted to favor binding to Mcl-1 in preference to Bcl-xL. With
models now available for five receptors, we reexamined previously isolated Mcl-1-specific
BH3 peptides to identify candidate specificity determinants. Several Mcl-1-specific peptides
exhibited specificity over Bfl-1, Bcl-2, Bcl-w, and Bcl-xL, even though negative selection
was only applied against Bcl-xL in screening.14 Position 3b may be an important specificity
determinant in this regard, as most of the Mcl-1-specific sequences from yeast selection
included Gly, Asn, Asp, or Glu at this site. Both STATIUM and the PSSMSPOT models
predicted that three of these four substitutions (Asp, Asn, and Gly) favor Mcl-1 binding over
all the other receptors and predicted Glu at 3b to favor Mcl-1 binding over Bcl-xL, Bcl-2,
and Bfl-1 but not Bcl-w. Interestingly, Asp and Glu at position 3b are mutations of the type
labeled “class 2” for Mcl-1 versus Bcl-xL by Dutta et al.14 Class 2 substitutions destabilize
binding to all receptors, but unequally. Asp at 3b destabilizes interactions with all receptors,
but the effect on Mcl-1 binding is smaller, making this a specificity determinant favoring
Mcl-1 binding. Additionally, an Ile at position 3a, found in a high percentage of Mcl-1-
specific peptides,14 scores favorably for binding Mcl-1 over any of the other four receptors
with all three models. These features appear likely to explain the observed specificities of
some Mcl-1-specific peptides.14

Data-based versus structure-based models
In many cases, the models derived from the experimental data outperformed STATIUM.
This is expected because the experimental models were built using highly relevant
measurements for the prediction tasks at hand and because STATIUM makes numerous
approximations in extracting a binding score from a single structural model. However, there
are tasks for which STATIUM was equally good or occasionally better than the PSSM
models. These included predicting strong binders versus non-binders on the SPOT library
arrays (Table 2) and ranking the native BH3 motif binding preferences of different receptors
(Table 5). The library enrichment performance of STATIUM was also good for some
receptors (Table 4).

Detailed analyses of the test data did uncover some important deficiencies in STATIUM.
Indeed, the main strength of STATIUM, which is generalizing structure information to
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model interactions, can become a weakness when making predictions for idiosyncratic
structure contexts. An example is the substitution of arginine for leucine at buried position
3a, which is not tolerated for binding to any receptor except Bfl-1 on the SPOT arrays (Fig.
1b). Bfl-1 contains a buried glutamic acid that may interact favorably with an arginine at
position 3a,54,74 allowing this unusual substitution.54 STATIUM recognizes charge
compatibility between Arg and Glu at these sites, but because that specific charge–charge
pairing is one out of many pairs involving position 3a, it is outweighed by other interactions
that prefer apolar residues at buried sites. Other groups have approached such problems by
optimizing their methods to suit the specific system that is the subject of prediction. For
example, the Kortemme group has modified the parameters of the side-chain hydrogen-
bonding potential in Rosetta to improve modeling of PDZ–peptide interactions41 and the
Furman group has likewise optimized the parameters of Rosetta for Bcl-2 interactions
(London et al., submitted for publication). We could potentially improve STATIUM in a
similar manner, by up-weighting interactions involving buried charges. For now, we choose
not to take this approach because of the negative effect it may have on the general
applicability of STATIUM.

STATIUM offers two important advantages over data-derived methods that cannot be easily
overcome by increasing the complexity of those models. First and most obvious, it does not
require large amounts of data for model derivation. Large data sets can be costly and time-
consuming to obtain; thus, this is a significant benefit. Second, structure-based methods such
as STATIUM have potentially greater generality. Experimentally derived models can only
describe interactions for the sequence space that is sampled. In our libraries, technical
limitations constrained sampling to ~107 sequences distributed over ~10 sites of Bim BH3.
In contrast, STATIUM can be used to model interactions at any site, although performance
at some sites may be better than at others. The good performance of STATIUM and Rosetta
at predicting the natural specificity profiles of BH3 peptides, shown in Table 5 for
STATIUM, highlights this ability to score highly diverse sequences and has important
implications for the use of these predictive models in the design of novel BH3 peptides and
in genomic searches for undiscovered BH3 domains. An important caveat is that structure-
based models assume a highly conserved binding mode. For cases where there are
significant changes in binding geometry, more structural templates would be required to
make effective predictions.

Implications for Bcl-2 interaction prediction and design
STATIUM provides a practical combination of speed and accuracy that allows a user to
efficiently survey large numbers of sequences. This is important for applications such as
scanning the proteome for new BH3 motifs, and protein design. The results described in this
study demonstrate that STATIUM can evaluate Bcl-2 interactions at a rate of ~106

sequences per second. This is similar to the computational efficiency of the simple PSSM
models and orders of magnitude faster than methods that require full flexible side-chain and/
or backbone modeling. A legitimate question is how much accuracy is lost when structural
detail is reduced by STATIUM. Our comparisons with the work of London et al. suggest
that similar accuracy can in fact be achieved with much higher speed, although with less
insight into exact structural details that may be responsible. What our results suggest is that
STATIUM and atomic-resolution modeling can serve complementary roles, with STATIUM
narrowing down vast regions of sequence space to a smaller number of sequences that
Rosetta, or other methods, can handle. Structure-based models have great potential for
designing novel BH3 domains with nonnative sequences and desired specificities,75 and
combining STATIUM with higher-resolution methods and using it to design combinatorial
libraries for screening are promising directions that we are pursuing.
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Methods
Expression of recombinant pro-survival Bcl-2 proteins

Pro-survival Bcl-2 proteins with a c-Myc tag at the amino terminus were used for all studies,
with the exception of yeast-display screening experiments involving Bcl-xL, where an
amino-terminal His-tagged protein was used. The Bcl-2 protein constructs used by Dutta et
al. were expressed in Escherichia coli BL21(DE3) strains as described previously.14 The
oligomerization state of each protein after purification was analyzed using a Superdex S75
column (GE Healthcare) in 20mMTris, 300mMNaCl, and 10% glycerol, pH 8. All proteins
were predominantly monomeric, the monomeric fraction ranging from ~85% to 100%.

Construction of combinatorial libraries for screening
The BH3 peptide libraries used to generate the affinity and specificity pools for Bcl-xL and
Mcl-1 were described previously.14 The peptide libraries used for screening against Bfl-1,
Bcl-w, and Bcl-2 were designed computationally based on the SPOT substitution array
data.62 The library screened for binding to Bfl-1 was based on the Bim BH3 sequence, with
the following residues encoded by degenerate codons at seven randomized positions: F, I, K,
L, M, N, and Y at position 2d; A, D, H, P, S, and Y at position 2e; C, D, E, F, G, I, K, L, M,
N, R, S, V, W, and Y at position 2g; D, H, I, L, N, and V at position 3a; A, C, D, F, G, H, I,
L, N, P, R, S, T, V, and Y at position 3d; A, E, I, K, L, P, Q, T, and V at position 3g; C, F, I,
K, L, M, N, R, S, W, and Y at position 4a. A separate BH3 peptide library based on the Bim
BH3 sequence was used to screen for binders to Bcl-2 and Bcl-w with the following
composition: C, D, E, F, G, H, I, K, L, M, N, Q, R, S, V, W, and Y at 2d; C, D, E, F, G, I, K,
L, M, N, R, S, V, W, and Y at position 2g; A, D, F, H, L, P, S, V, and Y at position 3a; A, E,
G, I, K, L, R, S, T, and V at position 3b; A, C, D, E, F, G, I, K, L, M, N, R, S, T, V, W, and
Y at position 3d; G and A at position 3e; E, G, Q, and R at position 3g. All combinatorial
BH3 libraries for screening were constructed using homologous recombination in yeast as
described previously and were expressed on the yeast cell surface as Aga2p fusion proteins,
bearing a C-terminal FLAG tag.14

Flow cytometric analysis and screening
Yeast cells for flow cytometric analysis and screening were labeled as described
previously.14 Briefly, yeast cells were incubated with Myc-tagged anti-apoptotic proteins
(starting at 1 µM and using reduced concentration in successive rounds, as shown in Table
S1) for 1–2 h and labeled with primary antibodies (anti-FLAG rabbit and anti-c-myc mouse)
(Sigma), and then after washing, they were incubated with secondary antibodies fluorescein-
isothiocyanate-conjugated goat anti-rabbit antibody and R-phycoerythrin (PE)-conjugated
goat anti-mouse IgG (Sigma). For the first round of FACS screening for Bcl-xL, Bcl-w, and
Bfl-1, ~108 cells (10 times the theoretical library size) were screened based on their
fluorescein isothiocyanate and PE intensities, to quantify BH3 surface expression and
receptor binding, respectively. Typically, expression-positive cells with the top 5% of PE
intensities were recovered in the first round. For each successive round, the number of cells
screened was maintained at least 10× greater than the number collected in the previous
round, and the percentage of recovered cells was reduced to those exhibiting the top 1–2%
PE intensity. For library screening at low concentrations of Bcl-2 and Bcl-w, 6 × 106 cells
were incubated with 5 ml of 1 nM receptor for ~2 h to maintain excess molar concentration
of receptor before staining with antibodies. Recovered cell populations were validated to
bind specifically to the desired anti-apoptotic protein by confirming the absence of
nonspecific binding to antibodies or by confirming that competition with unlabeled anti-
apoptotic proteins reduced binding by at least 90%. All screening was performed on a BD
FACSAria or Cytomation MoFlo using 488 nm and/or 561 nm excitation.
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SPOT arrays
SPOT arrays were synthesized and processed following the procedures described
previously.14

Library preparation for Illumina sequencing
Yeast pellets from all library pools screened for binding to Bcl-2, Bcl-w, Bcl-xL, or Mcl-1
were lysed by heating at 95 °C. DNA from library pools for binding to Bfl-1 was extracted
using the Zymoprep Yeast Plasmid Miniprep I kit (Zymoresearch). Subsequently, all
samples were PCR amplified, employing Platinum Taq DNA Polymerase (Invitrogen) for
Bcl-xL and Mcl-1 pools and High Fidelity Platinum Taq DNA Polymerase (Invitrogen) for
Bcl-2, Bcl-w, and Bfl-1 pools. Errors will be introduced in PCR amplification. We
conservatively estimated the error rate per BH3 sequence of Taq polymerase, considering
varied sequence regions only, as 3.6 × 10−3 to 4.2 × 10−3.76 Thus, the fraction of erroneous
sequences after 31 PCR cycles ranges between 0.05 and 0.06. For HiFi Taq polymerase,
using an error per base of 3.3 × 10−5 gives a fraction of erroneous sequences after 31 PCR
cycles of 0.009–0.011.

The forward primer had the sequence
5′AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACGGCCGTCCGGAAA
TTTGG3′ (containing flow cell annealing site and the 5′ sequencing primer binding site)
and the reverse primer had the sequence
5′CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGGCGACGCGCATAA
TACGCATT3′, where NNNNNN represents a six-base-pair barcode region (containing a
flow cell annealing site and the 3′ sequencing primer binding site). The product was purified
using the Qiagen PCR Purification Kit (Qiagen). The quality of all DNA samples was
checked using the Agilent 2100 BioAnalyzer at the MIT BioMicro Center.

Illumina sequencing
Pools for Bcl-2, Bcl-w, Bcl-xL, and Mcl-1 were sequenced on an Illumina Genome Analyzer
II. Pools for Bfl-1 were sequenced on the Illumina HiSeq system. We multiplexed DNA
samples using 12 barcodes per lane. Each barcode was different in at least three positions
from any other barcode. Data used for model building met three conditions. First, we only
considered reads with perfect barcodes. Second, bases had to be called in all positions of a
sequence and any non-mutated nucleotide had to be read without error. Third, we applied
stringent thresholds for the Illumina quality scores amounting to a confidence probability of
0.995 that the variable nucleotides of a read collectively were correct. Further criteria were
imposed on sequences used for model building and testing, as described for PSSMDEEP
below.

PSSMSPOT

The PSSMSPOT potentials were constructed using fluorescence intensities resulting from the
binding of receptors to single amino acid variants of Bim, Bad, and Noxa BH3 peptides
printed on SPOT membranes (substitution arrays). Similar to Dutta et al., the PSSMSPOT
energy of a substitution was calculated by taking the negative logarithm of the ratio of the
fluorescence intensity for the corresponding BH3 substitution to the intensity of wild-type
BH3 (averaging over all wild-type spots).14 The PSSMSPOT energy of a BH3 sequence was
defined as the sum over all substitutions. Not all positions were varied on the SPOT
membranes, and substitutions at unsampled positions were equivalent for all amino acids.
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PSSMDEEP

PSSMDEEP potentials were derived from Illumina sequencing of previously published yeast
display cell screening experiments (for Bcl-xL and Mcl-1)14 and screening experiments that
we present in this article (for Bcl-2, Bcl-w, and Bfl-1). Sequenced pools included those
selected for binding to specific receptors (positive screening) and those further selected for
not binding to a specific receptor (negative screening).

The PSSMDEEP_AFFIN models were developed to describe affinity towards a receptor. For
these models, we used unique sequences that were consistently present, in at least one copy,
in all available pools from positive screening rounds (we used only positive rounds that were
not separated by rounds of negative screening; see Table S1). At least two such pools were
used in all cases. The PSSMDEEP_AFFIN energy of an amino acid substitution at a BH3
position was computed as the frequency of occurrence of that amino acid in the list of
unique sequences. The total PSSMDEEP_AFFIN score was obtained by summing over all
positions that were varied in each screening experiment:

(1)

The PSSMDEEP_SPEC models were developed to predict binding affinity for targets Bcl-xL
and Mcl-1 and also to capture information about the specificity towards each receptor
relative to the other. The PSSMDEEP_SPEC models were derived using unique sequences
from rounds of yeast screening that included both positive screening for binding to one
receptor and negative screening disfavoring binding to the other receptor. Table S1 shows
the successive screening requirements imposed on each sequenced pool used in the
benchmark. Again, sequences used for model building appeared at least once in all pools
analyzed.

STATIUM potential
Defining interacting residue pairs in a template complex—The STATIUM
potential for a protein–protein interaction consists of the sum of contributions from all
interacting residue pairs in a structure of the protein complex (Fig. 2). A residue pair is
considered interacting if the distance between the Cβ atoms of the two residues is less than
10 Å, and the angle between the Cα–Cβ vectors is less than 120° or the distance between the
Cβ atoms of the two residues is less than the distance between the two Cα atoms of the two
residues.

For a residue pair considered interacting according to these criteria, the Cα atom distance
(Cα1Cα2) and the Cβ atom distance (Cβ1Cβ2) are used to describe the 3D structure of the
pair. Because receptor residues never changed in this study, we did not consider interactions
between residues within the receptor subunit of the complex. Thus, all interacting pairs were
interface contacts between the receptor and peptide or within the peptide.

Generating a STATIUM potential for a complex—The STATIUM scoring function
was generated by searching through all chains in an experimental structure database to
identify residue–residue interactions geometrically similar to interactions in the template
complex. The database used for this work consisted of X-ray crystal structure models with
resolution less than 2.5 Å and sequence similarity less than 90%. It was generated using the
program PISCES.77 The protein chains of multimeric complexes were separated; hence, no
Bcl-2 receptor interactions were present. There were 19,309 chains in the database.

An interacting pair in a unique chain was considered similar to an interacting pair in the
template complex if the Cα1Cα2 and Cβ1Cβ2 distances of the PDB chain pair were each
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within ±0.1 Å of the Cα1Cα2 and Cβ1Cβ2 distances of the template pair. Every time a
structurally similar pair was found in the database, the amino acid identities i and j of the
pair were tabulated in a 20 × 20 matrix of amino acid counts for the appropriate residue pair
in the template complex. The probability of an amino acid pair, Pij, for a given template
structure pair was computed as the counts for that amino acid pair divided by the sum of all
amino acid pair counts for that template structure pair. Also tabulated were the frequencies
of each of the 20 amino acids in the database, and the resulting individual probabilities were
Pi and Pj. The total STATIUM score for a complex is the sum of the score of all pairs in the
complex, and is represented by Eq. (2). We found that affinity prediction was improved by
increased weighting of the intrapeptide pair terms, but specificity prediction was not (Fig.
S5), so for affinity prediction we increased the weighting of those terms by a factor of 5.

(2)

The time it takes to derive a STATIUM potential for a given protein–protein interaction
depends on the total number of interacting residue pairs in the template. For Bcl-2 receptors
with BH3 ligands, the total number of residue–residue interactions ranged from 215 to 227,
and it took ~10 h to generate a potential by searching through all of the interacting residues
in the 19,309 PDB chains in the database on a single processor. This process is highly
parallelizable. After the potential was generated, the STATIUM energy of the interaction
between a Bcl-2 receptor and a BH3 sequence could be determined at a rate of ~2 × 106

sequences per second on a single processor.

Template structures
The PDB accession codes for the human receptor–BH3 template structure models were as
follows: 2XA055 for Bcl-2 (Bax BH3 ligand), 1ZY325 for Bcl-w (Bid BH3 ligand), 3IO817

for Bcl-xL (Bim BH3 ligand), 3PK153 for Mcl-1 (Bax BH3 ligand), and 3MQP for Bfl-1
(Noxa BH3 ligand). 2XA0 is the only crystal structure of a BH3-bound Bcl-2 and 3MQP is
the only Bfl-1 crystal structure with the full range of BH3 residues under consideration;
thus, we only used this structure for the Bfl-1 STATIUM model. There is no crystal
structure available for a Bcl-w complex; hence, we used the NMR-based model of the Bcl-w
complex with Bid (1ZY3). 3IO8 for Bcl-xL and 3PK1 for Mcl-1 were chosen because they
included the full-length BH3 peptide and a preliminary analysis showed that they performed
slightly better than alternative structures.

Affinity prediction for SPOT array data
For the binary prediction of affinity or specificity classes, we used SPOT array data from
Dutta et al.14 and from this work. The fluorescence intensity (SPOT) of Bim, Bad, and Noxa
BH3 variants on SPOT arrays were referenced to the average wild-type fluorescence
intensity:

(3)

The signal distributions did not have strong features that could be used to separate binders
from non-binders, and absolute intensities varied from array to array. Therefore, we defined
peptides with SSPOT values in the lowest 30% of scores as binders and peptides with SSPOT
values in the highest 30% as non-binders. Extracting upper and lower percentiles ensures
equal populations of binders versus non-binders, which is useful for interpreting receiver
operating characteristic curves.
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To compute the correlation between predicted and experimental binding, we used all data
points available in a given experiment. For the calculation of the correlation between
predicted and experimental specificity for binding to receptor 1 versus receptor 2 for the
SPOT data sets, we required that SSPOT1 or SSPOT2 be less than 0.5. This approach excluded
sequences that bound neither receptor strongly but, due to the difference in dynamic range of
each experiment, had a large difference in signal intensity.

Ranking natural BH3 domains
To compare the results from PSSM models derived for different receptors, it was necessary
to define a reference state. For the data in the top section of Table 5, we referenced
PSSMSPOT and PSSMDEEP scores to the scores of these models for Puma, a universal tight
binder. STATIUM scores were not normalized. Normalization was not necessary for the
bottom section of Table 5 because scores were compared for the same receptor in those
tests.

Bootstrapping analysis to provide confidence intervals
To compute confidence intervals for the metrics that we report (R, AUC, and library
enrichment), we used bootstrapping. For each data set, we resampled the data 2000 times to
generate the bootstrap distribution.78 In the tables and figure legends, we report the limits of
the 90% confidence interval resulting from this procedure.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
SPOT substitution arrays and Illumina sequencing of yeast library pools. Shown are array
images for Bim BH3 peptides binding to Bcl-w (a) and Bfl-1 (b), Bad BH3 peptides binding
to Bcl-xL (c), and Noxa BH3 peptides binding to Mcl-1 (d). The leftmost column of each
array consists of repeats of wild-type Bim BH3. All other spots along each row are single-
residue substitutions or a replicate of the wild-type sequence. Rows indicate the substituted
position, labeled as defined in Fig. S2, and columns indicate the substituted amino acid. (e)
Pearson correlation of seven SPOT substitution data sets described in the text. (f) Sequence
logos for pools of yeast clones binding tightly to Bcl-w (top), Bcl-2 (middle), and Bfl-1
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(bottom) were generated using the program WebLogo.60 Positions that were varied in each
library are labeled.
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Fig. 2.
Derivation of the STATIUM potential. The crystal structure of a Bcl-2 receptor bound to a
BH3 peptide (here, PDB ID 3IO8) is used to identify interacting residue pairs (see
Methods). The Cα–Cα and Cβ–Cβ distances for each interacting pair are measured, and pairs
with similar distances are sought in a database of experimentally determined structures. The
STATIUM score for amino acid i at position 1 and amino acid j at position 2 is the
probability of that amino acid pair occurring in all pairs discovered, divided by the
individual probabilities of finding i and j in the PDB. The total STATIUM score for a
receptor–peptide interaction is the sum of all residue-pair scores.
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Fig. 3.
Correlation of SPOT library signals with predicted values. (a) Intensities expressed as
−log(SPOT/SPOTWT) for library variants binding to Bcl-xL or Mcl-1 are correlated with the
STATIUM energy scores for Bcl-xL or Mcl-1 binding. (b) Differences in SPOT signals for
Bcl-xL and Mcl-1 versus differences in the Bcl-xL and Mcl-1 scores from various models,
for strong binders on the library arrays. The model tested is indicated in each panel.
Bootstrapping analysis gave 90% confidence intervals as follows: PSSMDEEP_SPEC, 0.89–
0.94; PSSMDEEP_AFFIN, 0.69–0.8; PSSMSPOT, 0.80–0.87; and STATIUM, 0.82–0.89.
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Fig. 4.
Prediction of binding specificity for Mcl-1 and Bcl-xL specific peptides isolated in library
screening. (a) Three scoring models can distinguish 40 Bcl-xL and 33 Mcl-1-specific tight
binders from Dutta et al.14 (b) STATIUM prediction of the most specific sequences in the
full theoretical library that was screened for binding to Bcl-xL or Mcl-1. A sequence logo
built from these sequences (bottom row) is compared to logos built from sequences
identified by experimental screening and sequencing (top rows). Logos were generated with
WebLogo.60
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Table 1

Experimental data sets used in this work and models derived from them

Data set Description
Receptor-binding models

derived from data

SPOT substitution arrays 170 one-residue variants of Bim BH3 (binding to all 5 receptors),
222 one-residue variants of Bad BH3 (binding Bcl-xL) and Noxa

BH3 (binding Mcl-1)

Bcl-xL: PSSMSPOTX_Bim, PSSMSPOTX_Bad

Mcl-1: PSSMSPOTM_Bim, PSSMSPOTM_Noxa

Bcl-2: PSSMSPOT2_Bim, Bcl-w:
PSSMSPOTW_Bim

Bfl-1: PSSMSPOTF_Bim

SPOT library arrays 359 sequences including 1–5 mutations in Bim BH3 (binding to
Mcl-1 and Bcl-xL)

N/A

Specific tight binders Conventional sequencing of individual yeast clones assessed for
binding to Bcl-xL and Mcl-1: 40 Bcl-xL and 33 Mcl-1-specific

sequences

N/A

Likely binders Illumina deep sequencing of yeast clones screened for high-affinity
binding to receptors

Bcl-xL: PSSMDEEPX_AFFIN, Mcl-1:
PSSMDEEPM_AFFIN

Bcl-2: PSSMDEEP2_AFFIN, Bcl-w:
PSSMDEEPW_AFFIN

Bfl-1: PSSMDEEPF_AFFIN

Likely specific binders Illumina deep sequencing of yeast clones screened for Mcl-1 versus
Bcl-xL specific binding and vice versa

Bcl-xL: PSSMDEEPX_SPEC, Mcl-1:
PSSMDEEPM_SPEC

Mcl-1 and Bcl-xL substitution and library SPOT array data and yeast screening experiments are from Dutta et al.14

N/A - Not applicable.
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Table 2

Predictions for Bcl-xL and Mcl-1 binding to SPOT library arrays using different models

AUC for discriminating strong
binders versus non-binders

Model Mcl-1 binding Bcl-xL binding

PSSMDEEPM_AFFIN 0.89 (0.86, 0.93) 0.8 (0.75, 0.85)

PSSMDEEPX_AFFIN 0.84 (0.79, 0.88) 0.85 (0.8, 0.89)

PSSMDEEP2_AFFIN 0.93 (0.9, 0.96) 0.93 (0.9, 0.95)

PSSMDEEPW_AFFIN 0.92 (0.89, 0.94) 0.93 (0.9, 0.96)

PSSMDEEPF_AFFIN 0.57 (0.51, 0.64) 0.56 (0.49, 0.62)

PSSMDEEPM_SPEC 0.73 (0.67, 0.79) 0.41 (0.34, 0.47)

PSSMDEEPX_SPEC 0.65 (0.58, 0.71) 0.91 (0.87, 0.94)

PSSMSPOTM_Bim 0.94 (0.91, 0.96) 0.78 (0.73, 0.83)

PSSMSPOTX_Bim 0.87 (0.83, 0.91) 1.0 (0.99, 1.00)

PSSMSPOT2_Bim 0.93 (0.9, 0.96) 1.0 (1.00, 1.00)

PSSMSPOTW_Bim 0.96 (0.94, 0.98) 1.0 (1.00, 1.00)

PSSMSPOTF_Bim 0.98 (0.97, 0.99) 0.96 (0.94, 0.98)

PSSMSPOTM_Noxa 0.99 (0.98, 1.00) 0.94 (0.92, 0.96)

PSSMSPOTX_Bad 0.91 (0.88, 0.94) 1.0 (0.99, 1.00)

STATIUMM 0.94 (0.91, 0.96) 0.81 (0.76, 0.86)

STATIUMX 0.95 (0.93, 0.97) 0.94 (0.92, 0.96)

STATIUM2 0.92 (0.89, 0.95) 0.93 (0.90, 0.96)

STATIUMW 0.9 (0.87, 0.93) 0.92 (0.89, 0.95)

STATIUMF 0.91 (0.88, 0.94) 0.85 (0.81, 0.89)

Library SPOT array sequences contained one to five mutations in Bim BH3.14 Raw fluorescence was converted to −log(SPOT/SPOTWT), where

SPOT is the intensity of the variant and SPOTWT is the average intensity of all wild-type Bim BH3 spots on the membrane. The lowest 30% of

variants were considered “binders” and the highest 30% were considered non-binders (see Methods). Bold AUC values designate predictions made
using a model that was derived for the appropriate receptor. Ninety percent confidence limits are given in parentheses.
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Table 3

Predictions for five receptors binding to SPOT substitution arrays

SPOT substitution
arraya

AUC for
discriminating
strong binders
versus non-binders

Model Receptor BH3

PSSMDEEPM_AFFIN Mcl-1 Bim   0.97 (0.91, 1.0)

Noxa 0.88b (0.76, 0.97)

PSSMDEEPX_AFFIN Bcl-xL Bim   0.99 (0.96, 1.0)

Bad     0.9b (0.78, 0.98)

PSSMDEEP2_AFFIN Bcl-2 Bim   0.82 (0.73, 0.9)

PSSMDEEPW_AFFIN Bcl-w Bim     0.7 (0.59, 0.81)

PSSMDEEPF_AFFIN Bfl-1 Bim   0.74 (0.63, 0.84)

PSSMDEEPM_SPEC Mcl-1 Bim   0.97 (0.92, 1.0)

Noxa   0.77b (0.61, 0.91)

PSSMDEEPX_SPEC Bcl-xL Bim     1.0 (1.0, 1.0)

Bad   0.75b (0.57, 0.89)

STATIUMM Mcl-1 Bim   0.71 (0.63, 0.8)

Noxa   0.69 (0.61, 0.67)

STATIUMX Bcl-xL Bim   0.72 (0.63, 0.81)

Bad   0.59 (0.51, 0.68)

STATIUM2 Bcl-2 Bim   0.79 (0.71, 0.86)

STATIUMW Bcl-w Bim   0.82 (0.74, 0.89)

STATIUMF Bfl-1 Bim   0.75 (0.67, 0.83)

Ninety percent confidence limits are given in parentheses.

a
SPOT substitution arrays contained single-residue mutations of Bim, Bad, or Noxa BH3. Data were processed as for Table 2.

b
PSSMDEEP models that predict Bcl-xL and Mcl-1 binding to Noxa or Bad BH3 were derived from screens performed on libraries derived from

Bim BH3.

J Mol Biol. Author manuscript; available in PMC 2013 September 07.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

DeBartolo et al. Page 32

Table 4

Predicted enrichment of experimental binders in top 20% of library sequences

Model Receptor Enrichment

PSSMDEEPM_AFFIN Mcl-1 0.91* (0.9, 0.91)

PSSMDEEPX_AFFIN Bcl-xL 0.96* (0.95, 0.96)

PSSMDEEP2_AFFIN Bcl-2 0.97* (0.96, 0.98)

PSSMDEEPW_AFFIN Bcl-w 0.98* (0.97, 0.98)

PSSMDEEPF_AFFIN Bfl-1 0.93* (0.93, 0.93)

PSSMDEEPM_SPEC Mcl-1 0.86 (0.85, 0.87)

PSSMDEEPX_SPEC Bcl-xL 0.85 (0.84, 0.86)

PSSMSPOTM_Bim Mcl-1 0.82 (0.81, 0.82)

PSSMSPOTX_Bim Bcl-xL 0.87 (0.86, 0.87)

PSSMSPOT2_Bim Bcl-2 0.54 (0.52, 0.56)

PSSMSPOTW_Bim Bcl-w 0.54 (0.52, 0.55)

PSSMSPOTF_Bim Bfl-1 0.21 (0.21, 0.22)

PSSMSPOTM_Noxa Mcl-1 0.81 (0.8, 0.81)

PSSMSPOTX_Bad Bcl-xL 0.62 (0.61, 0.63)

STATIUMM Mcl-1 0.58 (0.57, 0.59)

STATIUMX Bcl-xL 0.55 (0.54, 0.56)

STATIUM2 Bcl-2 0.63 (0.61, 0.65)

STATIUMW Bcl-w 0.75 (0.74, 0.77)

STATIUMF Bfl-1 0.9 (0.9, 0.91)

Likely binders were derived from yeast pools screened for BH3 peptides that bound tightly to a given receptor and were deep-sequenced using
Illumina technology (see Methods and Table S1). The value in the table is the fraction of binders below the energy threshold that covers 20% of
library sequences. Bold values designate enrichments derived from models built for the appropriate receptor. The values labeled with an asterisk
designate circular cases where the test data set was used to derive the scoring function. Ninety percent confidence limits are given in parentheses.
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Table 5

Prediction of binding specificity for natural BH3 peptides

Top-ranked receptor for highly specific BH3 peptidesa

BH3 (specific receptor) PSSMDEEP_SPEC PSSMSPOT STATIUM

Bad (Bcl-w/Bcl-2/Bcl-xL) Bcl-w Bcl-w Bcl-xL

Mule (Mcl-1) Mcl-1 Mcl-1 Mcl-1

Noxa (Mcl-1) Bfl-1 (3) Bfl-1 (2) Mcl-1

Bok (Mcl-1) Bfl-1 (4) Mcl-1 Mcl-1

STATIUM-predicted ranking of natural BH3 peptidesb

IC50 <100 nM IC50 <10 µM IC50 >100 µM

Mcl-1 Puma, Bim, Noxa Bid, Bik, Bmf, Hrk Bad

Predicted rank 3, 4, 5 1, 2, 6, 7 8

Bcl-xL Bid, Puma, Bad, Bim, Hrk, Bik, Bmf N/A Noxa

Predicted rank 1, 2, 3, 4, 5, 6, 7 N/A 8

Bcl-2 Bim, Puma, Bmf, Bad Bid, Bik, Hrk Noxa

Predicted rank 1, 4, 5, 6 2, 3, 7 8

Bcl-w Bid, Bim, Bik, Puma, Bmf, Bad, Hrk N/A Noxa

Predicted rank 1, 2, 3, 4, 5, 6, 7 N/A 8

Bfl-1 Bid, Bik, Bim, Puma, Hrk Bad, Bmf, Noxa N/A

Predicted rank 1, 2, 3, 5, 6 4, 7, 8 N/A

N/A - Not applicable.

a
Peptide binding specificities from the literature.27–29,71,72 Correct predictions are italicized. For incorrect predictions, the rank of the correct

receptor is shown in parentheses. To compare different receptors binding to a given BH3, we referenced the PSSMSPOT and PSSMDEEP
energies to the energy of Puma, which binds all receptors tightly (see the bottom half of the table).

b
IC50 values are for competition with Bim BH3.28
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