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Sharp wave-associated ∼200-Hz ripple oscillations in the hippocam-
pus have been implicated in the consolidation of memories. How-
ever, knowledge on mechanisms underlying ripples is still scarce, in
particular with respect to synaptic involvement of specific cell types.
Here, we used cell-attached and whole-cell recordings in vitro to
study activity of pyramidal cells and oriens-lacunosum-moleculare
(O-LM) interneurons during ripples. O-LM cells received ripple-
associated synaptic input that arrived delayed (3.3± 0.3 ms) with
respect to the maximum amplitude of field ripples and was
locked to the ascending phase of field oscillations (mean phase:
209 ± 6°). In line, O-LM cells episodically discharged late during
ripples (∼6.5 ms after the ripple maximum), and firingwas phase-
locked to field oscillations (mean phase: 219 ± 9°). Our data un-
veil recruitment of O-LM neurons during ripples, suggesting
a previously uncharacterized role of this cell type during sharp
wave-associated activity.

CA1 O-LM cell | CA1 pyramidal cell | sharp wave-ripples

Hippocampus-dependent memory consolidation is related to
neuronal population rhythms. In particular, oscillations of the

hippocampal local field potential (LFP) are associated with
learning-induced network reorganization (1, 2). The neuronal
representation of recently encoded items, for example the reac-
tivation of place cells after behavioral performance, can be dem-
onstrated during high-frequency ripple oscillations (∼120–250 Hz)
(2–4), which co-occur with sharp waves, a large-amplitude, low-
frequency (<10 Hz) signature in the LFP of the hippocampal CA1
region (sharp wave-ripples, SWRs) (5, 6). A contribution of SWRs
to memory consolidation is also supported by studies showing that
ripples were enhanced posttraining in rats (7–9) and after suc-
cessful learning in humans (10). In turn, spatial memory tasks
followed by the selective disruption of ripples resulted in impaired
learning (11–13). However, despite the potentially central role of
ripples in memory formation, underlying synaptic mechanisms
have not been comprehensively deciphered so far.
As a key mechanism of network oscillations, synaptic inhibition

mediated by GABAergic interneurons has been placed at center
stage. Both in vivo and in vitro, inhibitory interneurons are able to
synchronize the activity of populations of target interneurons and/
or principal cells (14–18). Furthermore, certain classes of inter-
neurons are preferentially activated at distinct phases of hippo-
campal oscillations (19–26), suggesting “division of labor” among
GABAergic cells in their contribution to oscillogenesis. Specifi-
cally, during SWRs, mainly parvalbumin containing “basket” and
“bistratified” neurons are active (20, 21, 27), whereas other types
of interneuron are only weakly coupled or silent (20, 23, 28, 29).
Within the neuronal network of the hippocampus, oriens-lacu-

nosum-moleculare (O-LM) interneurons have a peculiar anatom-
ical arrangement with respect to their somatic location and axonal
projection area (30–36). At distal apical dendrites of CA1 pyra-
midal cells, the axonal ramification of O-LM cells overlaps with the
termination area of fibers from thalamus and entorhinal cortex,

suggesting modulation of input from these brain regions (37–39).
Excitatory input onto O-LM cells is primarily local (40), and we
wondered about the possibility of sub- and suprathreshold activa-
tion of these cells during SWRs. So far, however, synaptic activa-
tion onto O-LM interneurons during ripples has not been studied.
Here, we investigated, in a targeted way, activation and activity

of cells of interest (41). In particular, we focused on O-LM
neurons and studied postsynaptic currents as well as their spiking
behavior during SWRs.

Results
We recorded from O-LM interneurons in area CA1 of the hip-
pocampus using both cell-attached and whole-cell patch-clamp
techniques. Visually identified by use of infrared-differential in-
terference contrast video microscopy, the somata of these cells
were found in stratum oriens and they typically appeared as ova-
loids whose longer axis extended in parallel with the pyramidal cell
layer. O-LM neurons fulfilled the following criteria: (i) axonal
ramification in stratum lacunosum-moleculare as identified with
post hoc staining, (ii) saw-tooth like firing pattern upon mild de-
polarization, and (iii) pronounced voltage sag following hyperpo-
larization (Fig. 1A). In the vicinity of O-LM cells (≤146 μm
electrode tip distance), we simultaneously recorded the LFP in the
stratum pyramidale (Fig. 1B). As described previously (41, 42),
ongoing SWR activity in vitro is composed of high-frequency rip-
ples (∼120–250 Hz) associated with lower-frequency (<∼10 Hz)
sharp waves. Spectral analysis revealed a distinct peak at about 200
Hz, indicating ripples (Fig. 1C). In voltage-clamp recordings, we
observed that O-LM neurons regularly received compound post-
synaptic currents (cPSCs) associated with LFP ripples (Fig. 1B).

SWR-Associated Synaptic Input onto O-LM Neurons. To characterize
contributions of excitatory and inhibitory input ontoO-LMneurons
during SWRs, we compared this input with the input in pyramidal
neurons (41, 43–48) (SI Materials and Methods, Data Analysis and
Fig. S1). We chose an intermediate holding potential for both cell
types (∼−60 mV), which allowed us to simultaneously study excit-
atory and inhibitory contributions (Fig. 1 D and E). Whereas
principal cells displayed a mixed, preferentially outward (in-
hibitory) current during ripples, O-LM neurons revealed a pre-
ponderance of inward currents, indicating stronger excitatory input.
For direct comparison, we pooled data from sevenO-LM and seven
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pyramidal cells and found a systematic bias toward excitation in
O-LM cells [15 randomly picked events per cell; P = 1.5 × 10−26,
Kolmogorov–Smirnov (K–S) test; Fig. 1F].

Timing of Synaptic Input and Spikes in O-LM Cells During Ripples.We
recently showed that excitatory input onto CA1 principal neu-
rons during ripples is phasic, coherent across cells, and phase-
locked to the LFP (48). To similarly characterize the compound
excitatory postsynaptic currents (cEPSCs) onto O-LM neurons,
we collected cEPSCs recorded close to the reversal potential of
Cl− (−74 mV; Fig. S2) and derived their corresponding con-
ductances (SI Materials and Methods, Data Analysis and Fig. S3).
Simultaneous recordings of voltage-clamp signals and the LFP
allowed us to compare the timing of excitatory input relative to
ripples. First, we juxtaposed the envelopes of conductances and
LFPs in the ripple band (127–300 Hz; Fig. 2A). Across record-
ings, the peak of excitatory input sampled from O-LM neurons
lagged 3.3 ± 0.3 ms behind the peak of the LFP (n = 27 parallel
O-LM cell and LFP recordings, 1,791 events analyzed in total;
Fig. 2B). In addition, we determined the phase-coupling of ex-
citatory input relative to ripple cycles. Across cells, phases ranged
between 152° and 284°. Input-to-ripple phase was 209 ± 6° on
average, demonstrating robust phase coupling to the ascending
part of ripple oscillations (Fig. 2C). Similarly, in 18 cells recorded
in the current-clamp configuration at resting membrane poten-
tial, we observed a coherence peak at ∼200 Hz, indicating phase-
coupling of ripple-associated postsynaptic potentials and the LFP
oscillation (Fig. S4 A and B).
Previous reports have used intracellular blockers of Cl−-medi-

ated inhibition to investigate excitatory network input at the single-
cell level (48, 49). We applied this tool to corroborate the excit-
atory nature of ripple-locked currents in O-LM neurons. In five
repatch–experiments with pharmacologically isolated, stimulus-

induced IPSCs, we first verified that perfusion of O-LM cells with
the Cl−-channel blocker disodium 4,4′-diisothiocyanatostilbene-
2,2′-disulfonate (DIDS; intracellularly applied as CsF-DIDS) sig-
nificantly reduced inhibition (IPSC reduction to 13.1 ± 3.6% of
control; P = 0.008, rank-sum test). Having established the efficacy
of intracellular CsF-DIDS application, we compared SWR-asso-
ciated currents without and after perfusion of O-LM neurons with
CsF-DIDS (seven repatch experiments with CsF-DIDS applica-
tion longer than 10 min). In either condition, cEPSC phases were
locked to LFP ripples (ranges: 158–223° in control and 157–301° in
CsF-DIDS), demonstrating phasic excitatory input (Fig. S5).
Having established ripple-coupled excitatory currents, we asked

whether this input is sufficient to recruit O-LM cells into the
spiking network. Perfusion of neurons with the patch-pipette so-
lution during whole-cell recordings changes the intracellular mi-
lieu, which might lead to alteration of the cell’s firing properties.
We therefore checked in the noninvasive cell-attached recording
configuration whether O-LM neurons expressed spikes. In accord
with ripple-locked excitatory input, we identified spiking in 13 of
22 experiments (Materials and Methods). Spikes arrived delayed
after the ripple maximum (Fig. 3A), with a peak spike probability
at 6.5 ms (SD: 5.7 ms; SI Materials andMethods, Data Analysis; 569
spikes; Fig. 3B). Action currents showed a preference for the as-
cending phase of ripple cycles (mean phase: 219 ± 9°; 350 spikes;
13 cells; range: 173° to 267°; Fig. 3C). In a subset of experiments,
we found comparable results also for current-clamp recordings
(Fig. S4). Collectively, these data demonstrate that ripple-locked
excitatory input is sufficient to drive suprathreshold activity in
O-LM neurons and spikes are tightly coupled with ripple cycles.

Network Activation Level Determines Spiking in O-LM Neurons. Al-
though all sampled O-LM cells received synaptic input, we iden-
tified spiking only in ∼59% of recorded neurons (13 of 22 cell-

Fig. 1. Ripple-associated synaptic input onto O-LM and pyramidal neurons. (A) Reconstruction of an O-LM neuron recorded in area CA1. (Right) Electrophysiological
characterization of the depicted neuron; note the characteristic “sag potential” in response to hyperpolarization and the typical “saw-tooth” shapeof action-potential
afterhyperpolarizations. De- andhyperpolarizing current steps as indicated. SO: stratumoriens; SP: stratumpyramidale; SR: stratum radiatum; SLM: stratum lacunosum-
moleculare. (B) Localfieldpotential (LFP) recording in areaCA1demonstrating spontaneousoccurrenceof sharpwaves (Top) andassociated ripples (Middle, 127–300Hz
bandpass-filtered version of the above). (Bottom) Voltage-clamp recording of an O-LM neuron (∼−60mV) demonstrating compound postsynaptic currents associated
with SWRs. (C) Power spectral density (PSD) of 57 LFP events from the recording presented in B; frequency binwidth: 10 Hz. Note the peak at∼200 Hz indicating ripple
frequency in the LFP signal. (D Left) Reconstruction of an O-LM neuron (orange) and a principal cell (green) in area CA1 from a parallel recording. (Right) Discharge
patternsof thedisplayedcells. (E) Simultaneous LFPandwhole-cell voltage-clamprecordingsat a slightlydepolarizedpotential (∼−60mV)unmasks inhibitory (outward)
currents in the pyramidal neuron, whereas currents in the O-LM cell remain largely inward (excitatory). (Right) Magnification of the indicated period. (F) Population
analysis of average synaptic input current in pyramidal and O-LM neurons (15 randomly picked events from seven pyramidal and seven O-LM neurons). On average,
O-LMneuronsdisplay consistently larger ripple-associated inward currents comparedwithpyramids (P=1.5×10−26, K–S test).Quartiles for thedistributionof inputonto
O-LM cells (orange): Median: −23.2 pA, P25: −47.6 pA, P75: +9.7 pA; for pyramidal cells (green): Median: +72.8 pA, P25: +28.8 pA, P75: +110.3 pA.
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attached experiments). We asked whether differences in intrinsic
cellular properties could account for this disparity. Neither resting
membrane potential (P = 0.68, K–S test), nor firing threshold (P =
0.98, K–S test) or input resistance (P = 0.68, K–S test) were dif-
ferent in spiking and nonspiking cells (Fig. S6). To further in-
vestigate the relation between input currents and spiking, we
analyzed O-LM cells separately with respect to spiking (or “ac-
tive”) vs. not spiking (or “silent”) behavior during ripples. Indeed,
spiking probability, i.e., the fraction of SWRs with spikes for
a given cell, was correlated with the average excitatory current
magnitude in that cell (at −74 mV; R = −0.5, P = 0.017; Fig. 4A).
Close to the inhibitory reversal potential, we found systematically
larger cEPSCs for active compared with silent cells (at −74 mV,
for spiking and silent cells: −82.7 ± 2.7 pA vs. −41.3 ± 2.1 pA;
P = 1.6 × 10−24, K–S test; Fig. 4 B, D, and E Left). In addition,
when we compared inputs at slightly depolarized voltages to un-
mask inhibitory synaptic input (−54 mV holding potential), we
found only small outward (inhibitory) components in discharging
cells in contrast to silent O-LM neurons (Fig. 4E Right). Fig. 4C
summarizes the result for −54 mV holding potential, indicating
consistently smaller inward (excitatory) currents with an addi-
tional outward current contribution in nonspiking O-LM cells
(for spiking and silent cells: −52.4 ± 2.2 pA vs. −8.7 ± 2.5 pA;
P = 4.1 × 10−33, K–S test). Together, these data demonstrate
overall larger excitatory input in spiking O-LM neurons during
ripples and more pronounced inhibitory input in silent cells.

Discussion
Here, we report on two major findings: First, O-LM interneurons
consistently receive ripple-associated phasic synaptic input; this

input comprises strong excitation, and the ratio of excitation to
inhibition in O-LM cells is larger than in CA1 principal cells.
Ripple-associated excitation in O-LM neurons lags the LFP ripple
by several milliseconds and is phase-locked with field ripples. Sec-
ond, we observed the suprathreshold recruitment of O-LM cells in
13 out of 22 recordings. Spikes occurred delayed by several milli-
seconds with respect to the peak of ripples, and they were oscilla-
tion-coherent with a preference for the ascending ripple phase.
Our finding of ripple-associated recruitment of O-LM cells is in

strong contrast to the previously held view that O-LM neurons
exhibit an abrupt drop of spiking during SWRs (20); however, this
previous study was conducted on animals anesthetized with ure-
thane and ketamine. By contrast, a recent study on head-fixed,
nonanesthetized mice (50) and a second report on freely moving
rats (51) demonstrated activation of O-LM cells during SWRs, in
line with our in vitro results. In addition to these reports, our data
unveil mechanisms that underlie ripple-coherent postsynaptic
currents/potentials in the recruitment of O-LM interneurons. To
elucidate determinants for spiking and inactivity in O-LM cells, we
performed a battery of analyses: Spiking probability was correlated
with the magnitude of the respective excitatory input, and the
magnitude of excitation was larger in activated vs. silent cells. As
factors for active participation, we ruled out resting membrane
potential, action potential threshold, and input resistance, i.e.,
intrinsic cellular properties (Fig. S6). In addition, across cells, we
found that the input magnitude and the probability of recruitment
were independent of the cell depth below the slice surface, arguing
against differences in the amount of severed inputs to influence
recruitment (Fig. S7). However, for slices in which O-LM neurons
exhibited action potentials during ripples, ripple amplitude, as well

Fig. 2. Synaptic input onto O-LM cells is coherent with ripples. (A) Illustration of the analysis. (A1) (Top) Ripple (127–300 Hz bandpass-filtered LFP, black)
overlaid with the envelope (black, bold) derived from the Hilbert transform. (Middle) Input conductance (green), its bandpass-filtered version (orange) and
the corresponding Hilbert envelope (orange, bold). (Bottom) Overlay of normalized envelopes of LFP and excitatory conductances. (A2) Magnification of the
highlighted period. (B Left) Average envelopes of ripples (black) and excitatory conductances (orange) of 27 cells. The average excitatory input conductance in
O-LM neurons lags behind the field ripples by 3.3 ± 0.3 ms. (Right) The orange dots represent the time points of conductance envelope peaks for all 27 cells
(range: 0 ms to 5.8 ms). (C) Phases of excitatory conductances with respect to LFP ripples for 27 O-LM cells; orange dots represent the strength and phase of
single-cell vectors (black circles and numbers, vector strength scaling; average vector: 208° with a vector strength of 0.51). Across cells, the analysis reveals
a strong locking to early ascending ripple phases (mean phase estimation error: 27.1 ± 1.5°; SI Materials and Methods, Data Analysis).
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as the peak amplitude and incidence of sharp waves were en-
hanced, suggesting an influence of levels of excitability (Fig. S8).
Finally, ripple-accompanied inhibition was more pronounced for
nonspiking vs. discharging cells. In sum, all these findings advocate
that the magnitude of excitatory network activity and the ratio of
excitatory and inhibitory input determine whether O-LM cells are
recruited into the active network.
The maximum of ripple-locked excitation and the peak of

O-LM cell spiking probability lagged the field ripple by several
milliseconds. Two lines of explanation are feasible: First, even
though CA1 principal cells discharge at low firing rates during
ripples (47), their activity might be sufficient to explain ripple-
locked input into anO-LM neuron if an assembly of sparsely spiking
pyramidal cells projects to the O-LM neuron and if the assembly’s
output is modulated by GABAergic interneurons (17, 52). In par-
ticular, axo-axonic cells, which target the axon initial segment of
principal neurons (35, 53), have their peak firing probability early
during ripples and are silent after the ripple maximum (20). This
behavior might account for the delayed recruitment of O-LM cells
during ripples. Second, as shown recently for gamma oscillations in
areaCA3, pyramidal cell axon spiking outnumbers firing observed at
the level of the soma (54). This experimental observation might also
be applicable to ripples in area CA1, an assumption that is sup-
ported by modeling results suggesting a network of coupled axons as
the origin of ripples (47, 55–57). In this framework, the output of the
axonal network might represent the source of field-ripple-coherent
excitatory input onto O-LM interneurons. In agreement with this
hypothesis, the delayed arrival of input could also be explained by
synaptic facilitation, a well known property of excitatory synapses
onto O-LM cells in area CA1 (30, 33, 58–60). Specifically, these
connections have a low initial release probability and therefore ex-
press robust short-term facilitation that might be regulated by neu-
romodulation (30). In support, presynaptic glutamatergic terminals
targeting onto O-LM neurons are highly equipped with metabo-

tropic glutamate receptors (20, 58, 61). In either of the above-
mentioned scenarios, the delay of synaptic input and late discharge
of O-LM cells could be accounted for. Moreover, the delayed
discharge of O-LM cells could likewise be the result of temporal
summation of synaptic input.
In area CA1, a consequence of O-LM cell recruitment during

SWRs could be the gating of cortical vs. CA3 input. In support,
Leão et al. (62) have recently shown that O-LM cell activity can
boost Schaffer collateral over entorhinal input in CA1 by in-
hibition of interneurons in stratum radiatum. By contrast, O-LM
cell activation could suppress temporoammonic feed-forward in-
hibition resulting in accentuation of the excitatory component of
entorhinal input (39, 63). Alternatively, O-LM cell-mediated
monosynaptic inhibition at distal apical dendrites of CA1 principal
cells might hyperpolarize these neurons even at the somatic level
(35), thereby reducing their excitability. In any case, in area CA1
the modulation of activity of O-LM neurons during SWRs would
serve an important strategic role in routing CA3 vs. entorhinal
input during wakeful quiescence or slow-wave sleep.
In summary, we have demonstrated reliable subthreshold ac-

tivation of O-LM neurons during ripples and the input-
dependent suprathreshold recruitment of these cells into the
active network. Our findings point to a previously uncharac-
terized role of O-LM neurons with respect to modulation of
ripple-correlated input from entorhinal afferents into CA1. Fu-
ture work will have to define the behavioral consequences of
ripple-associated recruitment of O-LM cells, or their inactivity.

Materials and Methods
Animal husbandry was done in accordance with the German animal welfare
act and the Directive 2010/63/EU of the European Parliament and of the
Council of 22 September 2010 on the protection of animals used for scien-
tific purposes. Experiments and animal maintenance were in accordance
with the guidelines of the Berlin state authorities (T0100/03).

Fig. 3. O-LM cells discharge during SWRs, and spikes are phase-locked to ripple oscillation cycles. (A Left) Reconstruction of an O-LM neuron. (Right) Overlaid
traces of 87 bandpass-filtered (127–300 Hz) ripple episodes (Top, black) and respective cell-attached signals recorded from the displayed neuron (Middle,
orange); all traces were aligned to the ripple maximum (dotted line). (Bottom) Spike time histogram of action-currents demonstrating delayed activation of
the cell and ripple-locked discharge. (B Upper Left) The 127–300 Hz bandpass-filtered LFP overlaid with its envelope. (Lower Left) Simultaneously recorded
action-currents from the recording shown in A. (Right) The spike-time histogram (orange) includes all action currents obtained from 13 cell-attached
recordings with respect to the peak of each corresponding ripple envelope (average, solid black line; arbitrary units). Overlaid histogram profile (dashed line)
represents the sum of Gaussians (σ =3.7 ms) centered on the spike times. Spikes occur late during ripples. (C) Polar phase plot indicating average firing phases
for the 13 cells recorded in the cell-attached mode (single-cell phase vector tips and vector strength, orange dots); the arrow represents the average vector
(221° with a vector strength of 0.47). Note that spike phases cluster to the early ascending phase of ripples.
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Experimental Procedures; Slice Preparation. C57BL/6 mice of age 3–6 wk were
either decapitated or decapitated following isoflurane anesthesia. Brains
were transferred to standard artificial cerebrospinal fluid (1–4 °C) con-
taining 119 mM NaCl, 2.5 mM KCl, 1.3 mM MgCl2, 2.5 mM CaCl2, 10 mM
glucose, 1.0 mM NaH2PO4, and 26 mM NaHCO3, enriched with carbogen [95%
(vol/vol) O2/5% (vol/vol) CO2; pH 7.4 at 37 °C; 290–310 mosmol/L]. Horizontal
slices (400 μm) of ventral to midhippocampus were cut on a slicer (VT1200S;
Leica) and stored in an interface chamber [32–34 °C, continuously oxygenized
with carbogen, and perfused with artificial cerebrospinal fluid (ACSF) at ∼1
mL/min]. Slices were allowed to recover for at least 1.5 h after preparation.

Electrophysiology. As described (41), recordings were performed in standard
ACSF at 31–32 °C in a submerged-type recording chamber perfused at high
rate (5–6 mL/min). For LFP recordings, glass microelectrodes (tip diameter
∼5–10 μm; resistance: 0.2–0.3 MΩ) were filled with ACSF before use. LFP
signals in the CA1 pyramidal cell layer were amplified 1,000-fold, filtered (1–
8 kHz), and sampled at 5 or 20 kHz. Whole-cell and extracellular recordings
were performed using a Multiclamp 700A amplifier (Axon Instruments). For
parallel cell-and-field recordings, a custom-made two-channel extracellular
amplifier was used. Whole-cell recordings were performed with borosilicate
glass electrodes (2–5 MΩ) filled with 120 mM K-gluconate, 10 mM Hepes,
3 mM Mg-ATP, 10 mM KCl, 5 mM EGTA, 2 mM MgSO4, 0.3 mM Na-GTP, and
14 mM phosphocreatine. For a subset of experiments (Fig. 1 D–F) another
solution was used: 135 mM K-gluconate, 10 mM Hepes, 2 mMMg-ATP, 20 mM
KCl, 0.2 mM EGTA. The pH of these intracellular solutions was adjusted
to 7.4 with KOH. To block chloride currents intracellularly, we chose a CsF-
DIDS-based solution: 120 mM Cs-fluoride, 10 mM KCI, 10 mM Hepes, 5 mM
EGTA, and 1 mM disodium 4,4′-diisothiocyanatostilbene-2,2′-disulfonate
(DIDS); pH adjusted to 7.4 with NaOH.

Cell Identification.Horizontal cells with fusiform somata were identified using
infrared differential interference contrast (IR-DIC) videomicroscopy. Depth of

cells was ≥50 μm below the slice surface (range: 50–127 μm; median: 65 μm;
37 cells; see also Fig. S7). Before rupturing the cell membrane, cells were
kept in the cell-attached configuration to record action currents, if present.
Later analysis of cell-attached data included only experiments with periods
≥60 s in this recording condition. In the whole-cell configuration, de- and
hyperpolarizing current steps (800–1,000 ms) were applied to characterize
the cell’s intrinsic properties; only cells that showed typical spiking charac-
teristics of O-LM neurons (see below) or principal cells (“regular” discharge
pattern, low or no sag potential) were considered. The series resistance, Rs,
was monitored continuously throughout experiments, and data were rejected
if Rs was >25 MΩ or varied more than ±30% during recordings. Rs com-
pensation was not used. All indicated cellular potentials are liquid junction
potential-corrected (calculated ∼14 mV, experimentally verified). The reversal
potential of chloride was experimentally determined revealing ∼ −67 mV for
pyramidal cells and ∼ −76.8 mV for O-LM cells (Fig. S2).

Applied Drugs.D-(-)-2-Amino-5-phosphonopentanoic acid (D-APV), 6-Imino-3-
(4-methoxyphenyl)-1(6H)-pyridazinebutanoic acid hydrobromide (gabazine),
and (2S)-(+)-5,5-Dimethyl-2-morpholinea cetic acid (SCH50911) were obtained
from Biotrend. 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo(f)quinoxaline-7-sulfon-
amide (NBQX), disodium 4,4′-diisothiocyanatostilbene-2,2′-disulfonate (DIDS),
and cesium fluoride were purchased from Sigma Aldrich.

A detailed layout of the procedures applied for data analyses are provided
in SI Materials and Methods.
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Fig. 4. The magnitude of input currents determines the recruitment of O-LM neurons during ripples. (A) The spiking probability of O-LM cells during SWRs is
correlated to their mean input current (R = −0.5; P = 0.017; n = 22 experiments). (B) Cumulative probability of the average input current in O-LM cells held at
−74 mV for spiking (orange) and silent cells (black). Quartiles of spiking cells: Median: −72.9 pA, P25: −93.8 pA, P75: −53.7 pA; quartiles of nonspiking cells:
Median: −33.8 pA, P25: −59.1 pA, P75: −19.3 pA. (Inset) The mean values (sp: spiking; nsp: nonspiking or silent). (C) Distributions of average input currents for
spiking (orange) and silent (black) O-LM neurons held at −54 mV. Quartiles of spiking cells: Median: −49.2 pA, P25: −66.6 pA, P75: −33.5 pA; quartiles of
nonspiking cells: Median: −8.2 pA, P25: −27.4 pA, P75: 12.1 pA. The inset shows the means values. (D Upper) Unfiltered LFP. (Middle) 127–300 Hz bandpass-
filtered LFP. (Lower) Cell-attached recording of a spiking (Upper, D1, orange) and of a nonspiking O-LM cell (Lower, D2, black). (Right) Magnifications of the
highlighted events. (E Top) Unfiltered LFP. (Middle) Bandpass-filtered LFP. (Bottom) cPSCs of a spiking (E1, orange) and a nonspiking O-LM cell (E2, black) close
to the reversal potential of Cl− (−74 mV, Left) and at −54 mV (Right).
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