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Systems level approaches to analyzing complex emergent behavior
require quantitative characterization of alterations of behavior on
both the microscale and macroscale. Here we consider the problem
of cellular organization and describe a statistical methodology for
quantitative comparison of the internal organization between
different populations of similar physical objects, such as cells. This
comparison is achieved with several steps of analysis. Starting with
three-dimensional or two-dimensional images of cells, images are
segmented to identify individual cells. Locations of internal points
of interest, such as organelles or proteins, are recorded. To define
the configuration of internal points in each cell, the individual cells
are subjected to bounded Voronoi tessellation: subdividing the
bounded volume or area of the cell into subvolumes determined by
the locations of the internal points of interest. A statistical methodol-
ogy is applied to yield a metric for similarity in degree of organization
between populations. We applied this methodology to test whether
centrioles play a role in global cellular organization, using mutants of
the green alga Chlamydomonas reinhardtii with known alterations in
centriole number, structure, and position as a model system. Compar-
ing mutant populations and wild-type populations revealed a dramatic
difference in the degree of organization in the mutant strains. These
computational and experimental results provide statistical support for
prior observational studies and support the idea that centrioles play
a role in generating or maintaining global cellular organization. Our
results confirm that this method can be used to sensitively compare the
extent and type of organization within cells.
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major outstanding problem in basic biology is how cells

generate and regulate their 3D geometry on the molecular
level (1). In addition to being an interesting fundamental science
question, there are clinical implications involved. In development,
differentiation of stem cells into distinct functional cell types is
accompanied by characteristic changes in cellular organization (2).
The disruption of cellular organization (dysplasia) is a major hall-
mark of cancer and the basis of cytopathology (3). The biochemistry
canon presupposes cell organization is mechanistically gener-
ated from molecular networks and molecular self-assembly (4).
Although entire genomes have been sequenced and genome-wide
molecular-interaction maps exist for model organisms (5), it re-
mains unclear which molecules regulate the intracellular organi-
zation or how they do it (1, 6, 7).

Traditionally, cell organization has been investigated visually by
identifying mutants or perturbations that cause gross changes in
cell appearance. However, such an approach will only identify the
most dramatic phenotypes, and it is likely that many mutations
may exist that play more subtle roles in cell organization and that
are only distinguishable statistically by considering large num-
bers of cells. Furthermore, hundreds or thousands of genes may
directly or indirectly affect the active organization of many sub-
cellular structures. Thus, connecting the vast amount of molecular
data with the complex phenomena of cell organization requires
a rapid, statistically robust, and scalable approach to discriminat-
ing between different types and levels of organization (7, 8). Fur-
ther, many structures within cells are thought to arise through self-
organization, but detecting self-organization first requires the ability
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to quantify organization so that we can ask if it is increasing during
a given process. Here, we describe a general method for quantifying
the degree of organization in cells.

Cell Organization

Cell organization is defined as the characteristic positioning of
organelles within the cell body (6). Historically, cell organization
has been approached qualitatively from two different directions:
cell polarization (6) and cell patterning (7). Polarization gener-
ally refers to asymmetries generated between two different sides
of a cell; for example, the presence of cilia and microvilli on the
apical surface of epithelial cells in a monolayer. On the other
hand, cell patterning concerns the localization of organelles to
specific subcellular locations. Although both of these concepts
about organization have revealed processes that are responsible
for intracellular organization, they are products of a mostly
qualitative framework for understanding organization and do not
allow us to compare the relative degree of organization between
cell types. A framework that allows us to compare the relative
degree of organization between cell types is critical for asking
questions, such as whether or not a particular mutation, or
alterations in a particular organelle, leads to more or less order
in the cell, with a reduction in order corresponding to the cyto-
pathology concept of dysplasia. As more and more genetic studies
identify mutations that appear to affect cell geometry (e.g.,
refs. 8, 9), we will want to know how broadly each affects cell
organization; hence, there will be an increasing need for methods
to quantify the effects that any particular mutation may have on
the level of organization. Although a small number of quantita-
tive studies have been conducted within both of these conceptual
spaces (8, 10), the use of cell-specific polarity markers to de-
termine orientation and organization have made these studies
nongeneral by their very nature.

Measuring Organization

Current methods for analyzing organization in cell biology typically
assume some frame of reference, the direction of cell migration for
example, or a landmark, such as the nucleus, and analyze the po-
sition of a particular cellular structure relative to that landmark or
reference frame. Such ad hoc approaches for testing organization
are highly cell type-specific and hard to generalize, such that a new
landmark or reference frame needs to be found for any structure one
wishes to analyze. One approach to circumvent this problem is to
impose a user-specified reference frame onto the cell by growing it
on a micropatterned substrate (11), but this approach requires cus-
tomized patterns for different cell types and is only applicable to cells
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Fig. 1. Statistical method for quantifying cell organization. (A) Voronoi
tessellation of a single cell is computed and used to calculate the variance
of the Voronoi facets within the cell. (B) Monte Carlo simulation is used
calculate the distribution of variances for the null model in a given cell. (C)
P values for each cell in the null model are calculated using the variance of
the real cells and the distribution of variances found by Monte Carlo
simulation.

that can grow on such surfaces. An alternative approach would be to
develop a metric for organization that is independent of any existing
landmarks. Condensed matter physics has long addressed physical
order in bulk by defining order parameters, such as the magnetiza-
tion vector to measure degree of organization. In several fields, or-
ganization is approached in a mathematical and systematic way as
a generalization of the concept of entropy (disorder) from statistical
thermodynamics (12). For example, in the fields of computer sci-
ence, cryptography, and even genetics, it is possible to construct
a metric of how organized a sequence of symbols is (13, 14).

We are specifically concerned with the order and disorder in the
packing of cellular components within the interior of the cell.
Techniques of information theory have been applied to the hard-
sphere packing problem (13). The hard-sphere packing problem is
concerned with understanding the configurations a set of spheres
can be packed into. A series of recent papers have explored how to
measure the relative organization of configurations of distributions
of spheres (15-17). The methods used to measure the packing of
hard spheres are fundamentally based on the conceptual frame-
work of Edwards entropy (18). Subsequent work on the hard-
sphere packing problem showed that the local volume in Edwards
entropy can be taken as equivalent to the volumes defined by the
Voronoi tessellation of the spheres (15).
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Voronoi tessellation is the subdivision of space on the basis of
the location of a set of points (17). A Voronoi tessellation is as-
sembled in three dimensions by intersecting planes normal to, and
through the midpoint of, line segments defined between local
points via Delaunay triangulation (15). These planes intersect with
one another to create closed Voronoi volumes for surrounded
points, or infinite Voronoi volumes for boundary points. If the points
are contained within the boundaries of a closed cell, the Voronoi
tessellation can simply be bounded at the surface of the cell,
leaving no infinite volumes. This has the effect of subdividing the
volume of the cell on the basis of how evenly spaced the points
are within the volume. Applying these statistical and geometric
approaches to cell organization is a logical step toward a general
“order” parameter: a parameter quantitatively measuring the level
of organization in cells.

Role of Centrioles in Cell Organization

For illustrative purposes, the experimental work described be-
low will focus on centrioles as one cellular structure involved in
generating cell organization. Centrioles are cylindrical arrays of
nine microtubule triplets that form the core of the centrosome,
the primary microtubule nucleating center in most eukaryotic
cells (19). The position of centrioles and centrosomes is cell
type-specific, being located in the center of many cells but at
polarized positions in other cell types (20). Because the position
of the centrioles and centrosomes determines the polarity of the
microtubule-based cytoskeleton, and because other cellular
structures are, in turn, organized by the microtubules (21-23),
one can speculate that the centriole positioning system plays
a functional role in determining cellular organization. Experi-
mental confirmation for this idea has come from genetic ex-
periments in the unicellular green alga Chlamydomonas
reinhardtii. In Chlamydomonas cells, a pair of centrioles is lo-
cated at one pole of the cell and these centrioles organize a set
of four microtubule rootlets that run from the anterior pole of
the cell around the cell cortex. These rootlets are known to be
important for localization of cellular structures, such as the
eyespot (24). Using a combination of genetic screening and
image analysis, we have previously identified mutants in which
centrioles lose their consistent polarized location in Chlamy-
domonas (8, 25). These mutants seem to arise from defects in
the connections between the centrioles (25), but the most ob-
vious aspect of the phenotype is that centrioles are present in
random numbers, between zero and six, rather than in normal
cells, where the copy number is always two. In addition, the
centrioles appear to have random locations on the cell cortex.
In the course of our previous analysis of these mutants, we
noted visually that overall cell geometry was abnormal; for ex-
ample, in some cases, the chloroplast, which is normally con-
fined to the posterior hemisphere of the cell, was seen to extend
over a larger region of the cell volume. In this report, we ana-

F Fig. 2. Diagram of the methodology used to com-
pare the organization between two populations of
cells. (A) Each separate population of cells is fixed,
stained, and placed on aslide. (B) Each separate slide is
imaged using standard fluorescence microscopy at 20x
magnification. (C) Software is used to segment each
cell in each population. (D) Consensus binning scheme
based on volume and organelle number is determined
for the populations to be compared; an equal number
of cells from each bin are randomly selected from each
population. (E) P values of each the selected cells are
calculated as is done in Fig. 1. (F) KG statistical distance
between the P values of the populations is calculated.
D, E, and F are iterated to bootstrap the variance and
mean of the statistical distance.
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Table 1. Number of cells in each 2D area and organelle number
bin for each cell type for the distance calculations in Figs. 6, 8, and 9

No. of No. of No. of No. of No. of
organelles cc124 cells cc125 cells asqg2 cells bld10 cells
Bin cell area in bin in bin in bin in bin in bin
0-500 px 2 14 14 14 14
0-500 px 3 7 7 7 7
0-500 px 4 9 9 9 9
0-500 px 5 1 1 1 1
0-500 px 6 2 2 2 2
0-500 px 7 0 0 0 0
0-500 px 8 0 0 0 0
500-1,000 px 2 38 38 38 38
500-1,000 px 3 30 30 30 30
500-1,000 px 4 22 22 22 22
500-1,000 px 5 19 19 19 19
500-1,000 px 6 15 15 15 15
500-1,000 px 7 17 17 17 17
500-1,000 px 8 2 2 2 2
1,000-1,500 px 2 53 53 53 53
1,000-1,500 px 3 50 50 50 50
1,000-1,500 px 4 48 48 48 48
1,000-1,500 px 5 29 29 29 29
1,000-1,500 px 6 40 40 40 40
1,000-1,500 px 7 39 39 39 39
1,000-1,500 px 8 25 25 25 25

Note that each cell type has an equal contribution of cells as all others for
each bin. px, total number of pixels occupied by cell area.

lyze cellular organization in these mutant cells compared with
WT as a test case for the efficacy of our method for quantifying
organization.
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Theory

Theoretical Framework for Measuring Cell Organization. To begin to
examine organization in a broad manner, an appropriate defini-
tion of organization must be used. In this case, we are interested in
organization at the level of organelle positioning (i.e., how a set of
organelles is placed in the body of a cell). In a randomly organized
cell, any organelle is as likely to occupy any one spot in the cell as
any other spot, and we therefore seek a definition of organization
that quantifies deviation from this minimally organized state. An
organized state can therefore be defined as a spatial bias to the
placement of organelles within the body of the cell. Thus, when we
talk about organization, what we want to understand fundamen-
tally is how nonrandom a cell’s organization is. Statistically speaking,
this is equivalent to determining a statistical distance between the
distribution of a test statistic in our null model (a cell with a uniform
random spatial distribution of organelles) and the distribution of
that test statistic in a clonal population of actual cells. Extending this
concept, differences in the degree of organization between WT and
mutant cells could be measured with the statistical distance between
the test statistic in each population.

To conduct a statistical analysis of intracellular organization with
this conceptual framework, a relevant parameter, or test statistic,
must be used to determine the organizational state of a cell. In this
case, a logical parameter is how nonuniformly the organelles are
distributed within the volume of a cell in the statistical limit (18).
We propose that one useful mathematical implementation of such
a parameter is the variance of the areas found by Voronoi tessel-
lation of the locations of the organelles (Fig. 1).

Using the assumption that the variability of the size of the
organelles can be ignored in the statistical limit, we can approximate
the organelles as points located at their centroid. Using 2D or 3D
data describing the locations of organelles and the cell boundary,
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Fig. 3. Examples of different kinds of organization and the distribution of P values that each type of organization creates with repeated simulations in
a single example cell. (A) Uniform distribution of points within the cell. The cell with the minimum interorganelle distance from among 1,000 random cells (B),
the cell with the maximum interorganelle distance from among 1,000 random cells (C), and the cell in which points are placed in pairs, with the position of the
pairs being uniformly distributed (D), are illustrated. (E) Frequency vs. Ln (P value) curves for each type of simulation. Ln, natural logarithm; NRClumpsPvals,
distribution of cells placed in a nonrandom clumped pattern; NRMaxPvals, distribution of cells placed in a nonrandom distance maximized pattern;
NRMinPVals, distribution of cells placed in a nonrandom distance minimized pattern; NRRandomPvals, distribution of cells placed in a random pattern.
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cells can be mathematically divided up into subareas (or volumes)
with Voronoi tessellation. The variance of these areas (or volumes)
within a single cell is

o? = <a2 - (a)2>. []

Unfortunately, this value changes dramatically with the size of the
cell, making it an unlikely test statistic. However, the null model is
a uniform random distribution in space; thus, it is scale-invariant.
The P value (the probability of getting a value at least as extreme as
the value obtained) of a given variance (and thus organelle config-
uration) in the null model is also scale-invariant and directly related
to how extreme the organizational state is. This makes the P value of
the variance of areas (or volumes in three dimensions) for a given
organelle configuration a reasonable choice for a test statistic.

Measuring Organization and Statistical Distance Between Populations.
Empirical results indicate that the variances of Voronoi areas in
the unbounded case are well described with a two-function gamma
distribution (26-28):

1 ~ (—_x)
@1\
BT (a)x e . [2]

Extending this to the bounded case, the parameters of the
gamma distribution for any given cell boundary and number of
organelles can be found to arbitrary precision through Monte
Carlo simulation and fitting the resulting distribution to a gamma
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distribution (Fig. S1). Given the subcellular locations of organelles
and the location of the cell boundaries for a population of real
cells, we can calculate the set of Voronoi areas for each real cell in
a population (Fig. 1). Then, for this particular set of areas, we
calculate the sample variance as a simple measure of non-
uniformity (Fig. 14). We then perform a Monte Carlo simulation
of the distribution of variances within that particular cell under the
assumption of spatially uniformly distributed points (Fig. 1B). We
then can use the results of the Monte Carlo simulation to de-
termine a P value for any particular observed variance in a given
actual cell (Fig. 1C). Once the P value of the variance of each
individual cell configuration is calculated for each cell in a pop-
ulation, the Kolmogorov-Smirnov (KS) two-sample test can be
used to calculate a measure of the statistical distance between two
populations of cells (Fig. 2). One complicating factor in this
analysis is that cell size and shape affect the expected distribution
of Voronoi cell variances under the null hypothesis. Sampling both
populations such that the number of cells with a particular size or
organelle number is equal in both samples allows for direct com-
parison between the populations (Fig. 2D and Table 1). The KS
statistic is interpreted as a measurement of the difference in or-
ganizational distribution between these different populations.
Because only a subset of values is sampled for each bin, resampling
of the dataset 1,000 times allows a bootstrap mean and variance to
be estimated. Further, examining the distance “spectra” of the
value of the statistical distance vs. cell size and organelle number
could provide insight into the type of organization observed. This
approach can be directly applied to either 3D or 2D image data,
with the only difference being whether Voronoi volumes or areas
are used to calculate the variance in each cell.

I % 3D Voronoi

I ¥ 2D Projection Voronoi

cumped

Fig. 4. Simulated results demonstrate applicability of the method in both two and three dimensions. (A) Network diagram of the distance measurements in
B. (B) Comparison of distances obtained using different organizational parameters of cells with full 3D simulations and those obtained using the 2D pro-
jections of the same 3D data. max, maximum; min, minimum; rand, random; sim, simulation.
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Results

Monte Carlo Simulation of Intracellular Organization. As discussed
above, we are defining cell organization here as a nonrandom
spatial bias to the placement of organelles within the body of a cell.
To validate this strategy, we first simulated several possible modes
of cellular organization (Fig. 3) to ask whether our method could
distinguish them. First, we simulated the completely random case,
where organelles are placed without any spatial bias (Fig. 34).
Following that, we created a spatial bias by making 1,000 random
simulations and choosing the simulation that had the minimal
average interorganelle distance to simulate organelle clustering
(Fig. 3B). Then, we created a different spatial bias by making 1,000
random simulations and choosing the simulation that had the
maximal average interorganelle distance to simulate active or-
ganelle dispersal (Fig. 3C). Finally, we created a different spatial
bias by placing points in clusters of two points to simulate paired
organelles (Fig. 3D). Simulations indicated that these different
types of nonrandom organization achieved differently shaped
curves, leading to nonzero KS distances (Fig. 3E).

Comparison of 2D and 3D Analysis. The results illustrated in Fig. 3
were based on simulated 2D images. However, the variance of
Voronoi compartments is defined for a set in # dimensions; hence,
the basic metric that we use can be equally well applied to 3D or 2D
images. However, given that this method is intended for use with
high-throughput light microscopy of cells, the 3D analysis tech-
nique has several drawbacks in data collection and analysis. First, it
is extremely difficult to get an accurate volume measurement of
cells in three dimensions because the location of the top and bot-
tom of the cell cannot be accurately determined experimentally due
to poor axial resolution of the light microscope. The volume and
size of each cell cannot be determined accurately; thus, they must
be estimated in three dimensions, as well as in two dimensions,
eliminating much of the advantage of collecting data in three
dimensions. Second, from a high-throughput imaging perspective,
3D imaging of cells is much slower then 2D imaging, meaning that
getting the images of hundreds of cells simultaneously would be
much more time-consuming, making large-scale application of the
method to large collections of mutants effectively impossible.

The drawbacks of collecting data in three dimensions can be
eliminated by collecting 2D data, and we can still apply the vari-
ance of Voronoi compartment sizes to such images. As long as the
orientation of cells within a population is random when they are
imaged, the locations of the organelles in a 2D image can be
regarded as a random 2D projection of the original distribution.
Intuitively, that means that over large populations, two different
populations of cells with different spatial distributions in three
dimensions will be projected as two different spatial distributions
in two dimensions. We verified the utility of 2D data in our method
by simulating different organizational types in three dimensions
and the projection of the simulated data in two dimensions (Fig.
4). Although the absolute distances between organizational types
are not identical, the different organizational types are still dif-
ferentiated and clustered appropriately in both the 2D and 3D
cases. A screening assay based on this method would thus be
expected to identify the same populations of cells whether 2D or
3D data were used.

It is important to note that imaging organelles in two dimen-
sions introduces the possibility of missing organelles hidden be-
hind other organelles; thus, the total number of organelles can be
miscounted. However, these types of misclassifications are equally
likely in all populations; thus, the effect should not have an impact
on our ability to recognize a population with an altered degree
of order.

Demonstration of Method Using Mutant Cells. To test whether the

above measure of difference in degree of organization can dis-
criminate cell types with biologically significant organization, we

E1010 | www.pnas.org/cgi/doi/10.1073/pnas.1212277109

performed statistical analysis on the organization of chloroplast
and mitochondrial nucleoids in C. reinhardtii (Fig. 5). Chlamydo-
monas is a unicellular green alga whose cells have a highly ste-
reotyped polarized morphology with characteristic positioning of
organelles. In a typical Chlamydomonas cell, the pair of centrioles
is docked at the cell surface at one end (referred to as the anterior
end of the cell) and the chloroplast consists of a single large cup-
shaped structure filling up the posterior half of the cell (29). The
chloroplast nucleoids are being used as a proxy for the distribution
of the chloroplast itself throughout the cell interior. We applied
our analysis to four Chlamydomonas strains: two WT strains (cc124
and ccl25), which are of opposite mating types and have slight
differences in cell size but are otherwise thought to be virtually
identical in terms of cellular structure; asg2 mutants (8), which are
defective in the protein Tbced1 (30), in which the mother-daughter
centriole linkage is abrogated, daughter centrioles move to ran-
dom positions on the cell cortex, and the total number of centrioles
is variable from cell to cell; and bld10 mutants (31), which are
defective in the protein Cep135/Bld10p that localizes in the cart-
wheel of the centriole (32), in which centrioles are reduced to small
precursors lacking defined microtubule blades and move to a more
central position in the cell, near to the cell nucleus away from the
cell surface (8). Visual observations of the two mutants strains have
revealed that cellular structures other than centrioles are mis-

Fig. 5. Cell imaging and segmentation. (A) Automatically segmented C.
reinhardtii cell. The cell boundary is indicated in red, and the locations of the
organelles, DNA-micronucleoids in this case, are indicated with white circles.
(B) Transmitted light micrograph of the same cell. (C) Florescence in the DAPI
channel, indicating the presence of DNA, in the same cell.
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Fig. 6. Analysis of organization in mutants with defects in centrioles. (A) Network diagram illustrates the comparisons shown in B and C. (B) KS statistical distance
from populations of cc125 (WT), asg2 (mutant), and bld10 (mutant) cells to a population of cc124 cells (in blue). Identically sized samples were taken from several size
and area bins for each cell line. (C) Same statistical distance measure is applied to simulated versions of the same four strains with randomly placed organelles. These
simulated cells had the same parameters as the WT cells, but the locations of their organelles were drawn from a uniform random distribution within an ellipsoid. This
result indicates that the real distance between the two WT populations, cc125 and cc124, is indistinguishable from that of statistically identical populations in the same
cells. In contrast, it appears that both mutants, asq2 and bld10, are significantly distant from WT cc124, indicating a different underlying organizational distribution.

placed in these mutants (8), making them likely candidates for
mutations that might decrease the level of organization, although
this was not possible to determine without a quantitative measure
of organization. We therefore asked whether our measure of or-
ganization would show a significant increase in disorder in these
mutant strains compared with the two WT strains, whose degrees
of order we expected to be roughly similar.

The KS distance tests, based on the distributions of P values for
deviation in variance of Voronoi tessellation areas, did, in fact,
find significant differences between WT populations and known
mutants (Fig. 6). The difference between either mutant and the
WT cells was significantly larger than the difference between the
two WT strains.

One of the major challenges to the development of an order
parameter approach for cells is that every cell in a population is

B
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unique; for example, mutants can have different cell shapes than
WT cells. Because our method employs actual measurements of
cell shapes as the starting point for Monte Carlo simulations, we
expect it to be less sensitive to such effects than would be
a method based on assumptions regarding identical cell shapes. To
rule out the possibility that systematic differences in cell shape or
organelle number between mutant and WT cells might be re-
sponsible for the apparent difference in organization, we conducted
Monte Carlo simulations using WT and mutant cells to provide the
bounding volume shape, size, and number of organelles, but with
organelles randomly placed according to the null model (Fig. 7),
and compared the results for these null model simulations for
mutants vs. WT cells with each other (Fig. 8). We also used the
same observed cell shapes and organelle numbers to repeat
simulations using three different models for organizational bias

Fig. 7. Schematic description of simulations that
test the effect of differences in real cell size and
shape on outcomes of organizational difference
tests. (A) Segmented data from real cells defining
the number of organelles and the boundary of the
cell are the starting point for creating the real cell
simulations. (B) For each cell, the number of or-
ganelle points in the real cell is replaced based on
the type of organizational distribution desired. (C)
Each real cell in the dataset is replaced with a sim-
ulated cell, with the only difference being that the
placement of the organelles is now in the simulated
pattern (placed in pairs in the case of this example).
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(as had been done previously for purely theoretical shapes in Fig.
3). We found that regardless of the organizational bias model,
there was no significant difference between results obtained in
mutant cells and results obtained in WT cells.

An opposite concern was that difference in cell shape or size
might cause enough random variation in a population so that actual
differences in organizational degree could become hard to detect.
To rule out such an effect, we compared the results of Monte Carlo
simulations with biased organization models using cells from the
WT and mutant populations, with a reference simulation of uni-
formly distributed points in the WT cc124 cell populations (Fig. 9).
In all cases, there was a significant distance between different or-
ganizational models compared with the uniform random model.
When results from different simulations were merged and ran-
domly resampled, these differences disappeared (Fig. 10). The
results show that the biased organization is clearly detectable, even
when comparing cell shapes drawn from two different mutant or
WT backgrounds. We also used this approach to test whether the
measured difference in organization between the two WT strains
(Fig. 6B) could simply be a result of difference in cell size or shape.
As plotted in Fig. 6C, simulations using cell outlines drawn from
the two WT populations, and using the simplest null model of
uniformly distributed point locations, give distances that are com-
parable to the measured results from the two WT populations,
suggesting that the small observed distance could be a simple
consequence of differences in cell shape between cc124 and cc125
WT strains.

We conclude that systematic differences in cell size, shape, or
organelle number are not significant contributors to the organi-
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zational differences observed between mutant cells and WT cells
nor can they prevent our detection of at least large differences in
order, indicating that our use of actual cell shapes for Monte Carlo
simulation combined with binning normalization (Fig. 2D) is ef-
fectively removing the effects of cell size and shape in the
comparison.

Discussion

Segmentation Methodology. This study uses a very simple image
segmentation strategy. The segmentation strategy used naively uti-
lizes intensity peaks as markers for organelles. Because inaccurate
classification of organelles introduces variation into the data, better
segmentation strategies could potentially reduce the statistical var-
iation, and thereby increase the sensitivity of the method for future
studies. Because the variation introduced by such algorithms is
consistent across different populations, it is vital to use the same
segmentation algorithm on all populations.

Comparison with Other Quantitative Analyses of Cell Structure. Past
methods that have quantitatively scored cell structure on a set of
multidimensional image parameters have managed to score cells
as normal or abnormal (33). Methods have also been described for
quantifying cell shape and comparing the shapes of different cells
(34). However, these past methods were geared toward identifying
cell populations that had distinct cell morphologies and were not
necessarily intended for the specific purpose of measuring order
vs. disorder. In this study, we have shown a relative way to quantify
the level and type of order in cells, which is a necessary first step
toward treating cells as a branch of condensed matter physics.

Distance Maximized Points
Clump Placed Points

ccl25 asq2 bild10

Fig. 8. Cell size and shape differences between mutant and WT cells do not create the observed organizational differences. (A) Network diagram illustrates
the comparisons used in generating the graph to the right. Each simulation is conducted using cell size, shape, and nucleoid numbers drawn from real cells but
with the placement of the organelles simulated according to the four hypothetical organization schemes from Fig. 3. (B) Cell shape and organelle differences
do not cause significant differences in the apparent degree of organization between mutant and WT cells. The ellipse configuration and number of
organelles from real cells were used to generate synthetic datasets (corresponding directly to each real population) using the nonbiased and biased simu-
lation methods of Fig. 3. The distance between each of the different synthetic datasets (for cc125, asq2, and b/d10) was measured against the synthetic
dataset generated using cell shape and organelle number from WT strain cc124 simulated with the same spatial model (random and three different bias
models). Results show that when comparing these populations with similar underlying distributions using different cell populations for cell shape and or-
ganelle number, the resulting KS distance is not statistically significant for all simulations. Dist, distance; Max, maximum; Min, minimum; Rand, random; Sim,
simulation.
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Fig. 9. Organizational differences can be detected despite differences in cell size and shape between different populations. (A) Network diagram of the
comparisons used in generating the graph to the right. Every simulation is compared with the “Rand sim” point placement in cc124. (B) Spatial bias can be
detected despite variation in cell size, shape, and organelle number between mutant and WT strains. Statistically significant differences are seen between all
compared groups, with the exception of the random-to-random comparisons, which are not statistically significant. The ellipse configuration and number of
organelles from each of the real cells were used to generate synthetic datasets (corresponding directly to each real population) using the nonbiased and
biased simulation methods of Fig. 3. The distance between the synthetic cc124 dataset generated with a random distribution of points and each of the
synthetic datasets was calculated. Simulations of uniform point distribution in both population pairs (dark red) contrast strongly with simulations using
uniform distribution in one population and biased distribution in the other, revealing sensitivity to changes in organizational type despite variation in cell

size, shape, or organelle number. Dist, distance; Max, maximum; Min, minimum; Rand, random; Sim, simulation.

Experimental Validation. Overall, the statistical distance tests pro-
vide good correspondence with what has been noted from obser-
vational studies. Visual examination of bld10 mutants conveys the
qualitative impression that these cells are much less organized
then all three of the other strains (32) and, similarly, that asq2 is
intermediately organized in comparison (8). The fact that our
prior visual impression has now been recapitulated in the mea-
surement of the cell organization over very large populations of
cells supports the idea that the method is discriminating a real
phenomenon (Fig. 5). When a mutation affecting an organelle
leads to other defects (in this case, decreased organization of the
whole cell), it is formally possible that the second defect is an in-
dependent side effect of the mutation and not due to the alteration
of the organelle in question. However, we note that the two
mutations analyzed, bld10 and asq2, act in very different ways at
the molecular level. BLD10 protein is involved in assembly of the
basic centriole structure, whereas ASQ2 protein is involved in
linking together the older and newer centrioles into a linked pair
(25). The fact that these two distinct mutations, acting in quite
different pathways, both have strong effects on the level of cellular
organization confirms that centrioles themselves are playing a role
in organizing the cell.

Sample Range. Samples can be used from a large range of cells and
samples, and the size of the cells is immaterial. Generally, punctate
and easily imaged organelles are easiest to use for this method.
Both populations being compared need to have a similar volume,
size, and number of organelles. Because this is a primarily statis-
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tical method, samples in which there are hundreds to thousands of
cells will have the most power. The 3D cell data can be used but
have the limitation of slower data collection. The 2D sample data
can be used as long as the whole cell can be imaged simulta-
neously. Potential sample types compatible with the same imaging
methodology include thin tissue sections, cell smears, mammalian
cells, and bacterial cells. Mammalian cells in culture generally
flatten out on microscope slides, and can thus be imaged in two
dimensions without significant loss of information.

Potential Applications. There are a number of potential applications
of this method. For instance, this method could be used to measure
degree of dysplasia in cancer cells for clinical and diagnostic pur-
poses as well as a research tool. All current cytopathology is done in
two dimensions with thin smears or thin sections, and thus could be
simply approached with this method in a high-throughput manner.
In addition, this tool could rapidly identify gene functions or drug
targets that play a role in cellular organization in a high-throughput
fashion. Many fundamental questions about cell organization over
the cell cycle remain, and this tool could give insight into time-
dependent organizational changes in populations. Furthermore,
differences in protein localization could be examined quantitatively
in superresolution microscopy techniques, such as photo-
activated localization microscopy (PALM) or stochastic optical
reconstruction microscopy (STORM). A completely different class
of applications arises in attempting to test and refine theoretical or
computational models for cellular organization and polarity. In
general, the big problem with attempting to compare real cells with
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Fig. 10. Data from the different organizational simulations in Fig. 9 were grouped and then randomly resampled into four datasets. The statistical distance
was calculated between these datasets; as expected, the resulting distances are consistent with the data being drawn from the same distribution.

simulated cells is that one has to decide which aspects of the real-
world cells to consider. This method solves that issue to some de-
gree by providing a means to benchmark theoretical models using
experimental data.

Materials and Methods

Cell Culture. Four strains of C. reinhardetii cells, cc124, cc125, asq10, and bld10,
were obtained from the Chlamydomous Genetics Center (www.chlamy.org).
Each strain was grown and maintained in Tris acetate phosphate (TAP)
media (35).

Microscopy. Cells were fixed with 1% (wt/vol) glutaraldehyde and stained
with DAPI and FITC-conjugated Concanavalin-A (FITC-ConA). After fixing,
the cells were suspended in TAP media, and 10 pL of cell media solution was
mounted on a microscope slide between a standard 22-mm square coverslip
and sealed with Vaseline. Slides were imaged using a 20x air lens on a Del-
tavision deconvolution microscope (Applied Precision). Automated 2D im-
aging in both the FITC and DAPI channels across large areas of the slide was
achieved with Softworx imaging software (Applied Precision, Inc.) and an
automated microscope stage.

Image Segmentation. Image segmentation was used with the images gen-
erated from the FITC channel of the FITC-ConA-stained cells to find the cell
outlines with custom software written for the MATLAB (MathWorks) Image
Processing Toolbox (http:/marshalllab.ucsf.edu/apte/cellorganization.html).
Each microscope image was broken into subregions to isolate each cell (Fig.
5). Image segmentation of DNA spots in the DAPI channel was achieved
using custom software written for the MATLAB Image Processing Toolbox
(http://marshalllab.ucsf.edu/apte/cellorganization.html). First, a threshold was
for each image was set using the Ridler-Calvard algorithm. Then, intensity
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peaks in the image were identified using the peaks of connected pixel
regions 1.5-fold above the threshold (Fig. 5).

Bounded Voronoi Tessellation of a Cell. In two dimensions, the boundary of the
cellisrepresented by an ellipse and each organelle in the cell is approximated by
a point. Voronoi tessellation of each point within the cell with the multi-
parametric toolbox (MPT) in MATLAB and in python (http:/marshalllab.ucsf.
edu/apte/cellorganization.html) (36) defines the region of the plane closest to
each point in the set of points. The intersection of this region with the area
inside of the ellipse defines the area within the cell that is closest to each or-
ganelle. The variance of the areas defined by the intersection of the Voronoi
facets and the ellipse is then calculated (Fig. 1A).

Null Model of Organization in a Particular Cell. A null model of the organi-
zation of each cell was constructed using Monte Carlo simulation. The same
number of points as were segmented in the real cell was randomly placed
within the cell boundary. Iterating the Monte Carlo simulation 1,000 times
and calculating the variance of the bounded Voronoi tessellation of each
generated the null model distribution of variances (Fig. 1B). This distribution
was then approximated with a two-variable gamma distribution. This was
implemented in python (http:/marshalllab.ucsf.edu/apte/cellorganization.
html) and run on the University of California, San Francisco/California In-
stitute for Quantitative Biosciences (UCSF/QB3) supercomputing cluster.

P Value of a Cell's Organization in the Null Model. Calculating the P value of
a particular cell is achieved in two parts. First, the variance of the Voronoi
areas of the real cell is calculated (as above). Then, the distribution of the
variances of the Voronoi areas is calculated (as above). The cumulative dis-
tribution function of the two-variable gamma function can be directly used
to calculate the P value (Fig. 1C). In this research, the P values found were
below the floating-point precision of normal computer architecture, such the
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natural logarithm of the P values was directly calculated instead, allowing
the computer to handle subsequent calculations. This was also implemented
in python (http://marshalllab.ucsf.edu/apte/cellorganization.html) and run
on the UCSF/QB3 supercomputing cluster.

Binning, KS Distance, and Bootstrapping Methodology. To compare two dif-
ferent populations of cells directly, it is extremely important to control for
bias that is introduced by comparing sets of cells with different area dis-
tributions or different numbers of organelles. To control this, each population is
binned into sets of P values in two dimensions: the total area of each cell and
the number of organelles in each cell (Fig. 2D). In this work, the volumes were
separated into four equally sized bins and the number of organelles within
cells was binned from three to eight. Corresponding numbers of cells were
randomly drawn from each bin from each population to create sets for each
population. The KS two-function test is then used to calculate a statistical
distance between the P value sets from each population. Because a random
subset of the values in each bin is being used to generate comparison sets, this
random selection can be iterated to generate numerous bootstrapped KS
distances. This set of bootstrapped KS distances is then used to calculate the
mean KS distance between the populations as well as the SD of that distance.
The mean KS distance obtained with 1,000 is used as our ultimate measure of
difference in degree of organization. This was implemented in MATLAB
(http://marshalllab.ucsf.edu/apte/cellorganization.html).

Control Simulations. Simulations were conducted to test if the comparison
between two populations of cells is biased by the size of the cell or the
number of organelles in the cell. For each cell in both real populations, the
parameters (size, shape, and number of organelles) were taken. Each set of
cell parameters was used to place organelles randomly within the cells. These
sets of simulated cells with real parameters are compared using the methods
discussed above. The statistical distance of the results of the comparison of
these simulated populations can be then used to set a baseline for the size of
the statistical distance between any two populations.
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Nonrandom Cell Generation. To compare simulations more closely with the real
experiments randomly, Monte Carlo simulation was used to generate random
and nonrandom datasets using the same parameters, (shape, size, and number
of organelles) as the populations of real cells (Fig. 7). The nonrandom datasets
were created by randomly placing points into an ellipsoid rotated from the
ellipse representing each cell. The nonrandom simulations were generated
similarly; each cell in the “Min” simulation represents the selection of the cell
with the minimum average interorganelle distance from a set of 1,000 ran-
domly simulated cells (Fig. 3B). Each cell in the “Max” simulation represents
the selection of the cell with the maximum average interorganelle distance
from a set of 1,000 randomly simulated cells (Fig. 3C). The organelles within
the Point Clumps simulation are placed in close point pairs at random locations
within the cell (Fig. 3D). These simulations were then analyzed in exactly the
same manner as the real cells, comparing each simulation with a simulation of
the same type with the parameters of the cc124 cells. However, the compar-
ison of different types of simulations (Fig. 9) was calculated by measuring the
distance from each nonrandom simulation type to the synthetic cc124 dataset.

Comparison of Distances Found in 2D Projections with Their Full-3D Simulations
of Cells. To compare the distances achieved between 2D projections of 3D cell
simulations with the distances found using full 3D analysis, similar methods of
simulation were used as above. The only differences were that the simulated cells
were of fixed size, all had five organelles, and the MPT (36) was used to obtain the
Voronoi volumes of the points within the 3D cells. After the volumes were
obtained, the variances of the volumes were calculated in the same way (Eq. 1)
and the rest of the distance calculation was as described above. No binning was
used because all the simulated cells were of the same size and organelle number.
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