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Abstract
Mesenchymal stem cell (MSC) therapy is entering a 
new era shifting the focus from initial feasibility study 
to optimization of therapeutic efficacy. However, how 
MSC therapy facilitates tissue regeneration remains 
incompletely characterized. Consistent with the emerg-
ing notion that secretion of multiple growth factors/cy-
tokines (trophic factors) by MSC provides the underly-
ing tissue regenerative mechanism, the recent study 
by Bai et al  demonstrated a critical therapeutic role of 
MSC-derived hepatocyte growth factor (HGF) in two 
animal models of multiple sclerosis (MS), which is a 
progressive autoimmune disorder caused by damage 
to the myelin sheath and loss of oligodendrocytes. 
Although current MS therapies are directed toward at-
tenuation of the immune response, robust repair of 
myelin sheath likely requires a regenerative approach 
focusing on long-term replacement of the lost oligo-
dendrocytes. This approach appears feasible because 
adult organs contain various populations of multipotent 
resident stem/progenitor cells that may be activated 
by MSC trophic factors as demonstrated by Bai et al  
This commentary highlights and discusses the major 
findings of their studies, emphasizing the anti-inflam-
matory function and trophic cross-talk mechanisms 
mediated by HGF and other MSC-derived trophic fac-
tors in sustaining the treatment benefits. Identification 
of multiple functionally synergistic trophic factors, such 
as HGF and vascular endothelial growth factor, can 

eventually lead to the development of efficacious cell-
free therapeutic regimens targeting a broad spectrum 
of degenerative conditions.
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COMMENTARY ON HOT TOPICS
Clinical trials of  human bone marrow mesenchymal 
stem cells (MSC) have been initiated for cardiovascular 
and immune disorders[1,2]. The therapeutic utility of  MSC 
stems in part from the recognition that MSC possess 
immunomodulatory properties that can be explored for 
non-autologous (allogeneic) stem cell therapy. Emerging 
evidence indicates that although MSC exhibit prominent 
multi-lineage potential, this cellular feature appears to 
bear little relevance to their therapeutic effects. Instead, 
the secretion of  multiple growth factors/cytokines (tro-
phic factors) by MSC provides the underlying regenera-
tive capacity[3,4]. These findings broach a novel concept 
of  stem cell trophic factor-mediated tissue repair inde-
pendent of  stemness. The work performed by Bai et al[5] 
studying the therapeutic role of  MSC-derived hepatocyte 
growth factor (HGF) in two animal models of  multiple 
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sclerosis (MS) provides yet another convincing evidence 
for this concept.

MS is a progressive autoimmune and inflammatory 
disorder caused by damage to the myelin sheath, which is 
produced by oligodendrocytes and provides the protec-
tive covering surrounding nerve cells[6]. The demyelinat-
ing process renders axons functionally impaired and sus-
ceptible to insult, contributing to physical and cognitive 
disabilities[7]. Several therapeutic modules are currently 
in use or under investigation for treating MS[8]. These in-
clude oral drugs that disrupt purine and pyrimidine me-
tabolism, modulate sphingosine-1-phosphate receptor, 
or attenuate oxidative stress. Also used are humanized 
monoclonal antibodies directed against various immune 
cell receptors such as CD20, CD25 and CD52, which are 
intended to rebalance the immune system in favor of  tis-
sue regeneration. However, many of  these new MS treat-
ments have been found to trigger serious adverse events, 
and their long-term safety data remain lacking[8]. It 
should be noted that since these MS therapies are direct-
ed toward attenuation of  the immune response, robust 
repair of  myelin sheath, which requires a regenerative 
approach focusing on long-term replacement of  the lost 
oligodendrocytes, may not be effectively achieved. Thus, 
recent cell-based therapeutic approaches for MSC treat-
ment have received much attention. These cell therapies 
have used neural stem cells, oligodendrocyte progenitors, 
and most notably MSC[5,9-11]. This therapeutic strategy 
is attractive because the adult central nervous system is 
known to harbor populations of  multipotent neural stem 
cells and oligodendrocyte precursors[12,13] that may be ac-
tivated by the administered stem cells. In the adult heart, 
indeed, MSC administration has been found to activate 
cardiac stem/progenitor cells, contributing to myocardial 
regeneration[14,15].

The MS therapeutic study demonstrated by Bai et al[5] 
is based on the use of  human MSC-conditioned medium 
(MSC-CM), which contains a myriad of  therapeutically 
relevant trophic factors. They showed that exposure of  
neurosphere cultures to MSC-CM resulted in reduced 
astrocytes and increased oligodendrocyte precursor cells, 
oligodendrocytes, and neurons. This in vitro finding is 
mirrored by intravenous infusion of  MSC-CM in their 
MS mice, which was found to reduce functional deficits 
and accelerate development of  oligodendrocytes and 
neurons in the context of  improved remyelination. Fur-
ther insights came from their biochemical fractionation 
and characterization of  MSC-CM, demonstrating that 
HGF and its receptor cMet are primarily responsible 
for the therapeutic benefits. Indeed, both MSC-derived 
HGF and exogenously supplied HGF promoted re-
generation and functional recovery. This conclusion is 
further strengthened by the use of  an HGF-neutralizing 
antibody and a cMet-blocking antibody, each of  which 
negated the therapeutic effects. Taken together, their 
studies highlight the critical role of  the HGF/cMet axis 
in MSC therapy for MS and possibly other tissue degen-
erative conditions.

MSC have long been known to provide stromal sup-

port for the growth and differentiation of  bone marrow 
hematopoietic stem cells through cell contact-dependent 
and -independent mechanisms, the latter of  which is me-
diated by MSC trophic factors[16], which include many he-
matopoietic growth factors including granulocyte/mac-
rophage colony-stimulating factor (GM/CSF), G-CSF, 
M-CSF, and interleukin (IL)-7 as well as IL-6-type cyto-
kines[4,17]. Production of  these MSC trophic factors can 
be further enhanced following exposure to Toll-like re-
ceptor (TLR) ligands such as lipopolysaccharide and the 
double-stranded RNA mimetic polyinosinic-polycytidylic 
acid [poly(I:C)][18,19]. Although TLR activation of  the im-
mune system is associated with chronic inflammation, 
Cole et al[20] demonstrated an unexpected beneficial role 
for TLR3 in the arterial wall upon systemic administra-
tion of  poly(I:C). Further, Packard et al[21] found poly(I:C) 
administration to be protective against cerebral ischemia-
reperfusion injury. Since MSC are widely present in vivo 
and their perivascular origin in multiple human organs 
appears certain[3,22,23], it is possible that these prophylactic 
benefits of  poly(I:C) may be mediated through its tro-
phic stimulatory effect on the endogenous MSC niches.

Therapeutically, MSC trophic factors can be func-
tionally redundant and synergistic, mediating immune 
regulation, cytoprotection, host stem cell activation and 
mobilization, and extracellular tissue remodeling. MSC 
also interact with cells of  both the innate and adaptive 
immune systems, leading to immunomodulation of  their 
effector functions[24]. The anti-inflammatory property of  
MSC was indeed highlighted in the study by Bai et al[5], 
showing that the therapy reduced the levels of  multiple 
inflammatory cytokines and enhanced the levels of  mul-
tiple anti-inflammatory cytokines produced by the mono-
nuclear cells from the spinal cords. Along this line, Osiris 
Therapeutics is currently conducting a Phase Ⅲ trial of  
MSC in treating several immune disorders such as graft-
versus-host disease and Crohn’s disease (www.osiris.com). 
Although how HGF might singly modulate the host 
immune response remains unclear, the authors specu-
lated that HGF might alter the balance of  pro- and anti-
inflammatory T cells possibly by influencing the function 
of  dendritic cells, which express cMet and therefore can 
be modulated by HGF. However, the immunomodula-
tory function of  MSC alone does not appear to lead to 
effective tissue repair as demonstrated in our recent MSC 
therapy for the failing hamster heart, which shows that 
while a low-dose MSC regimen suppressed myocardial 
inflammation, it failed to promote cardiac repair. On the 
other hand, the low-dose cell therapy combined with 
poly(I:C) conditioning of  MSC, which amplified HGF 
and other trophic factors, suppressed inflammation and 
stimulated myocardial regeneration[18].

Another important point regarding the therapeutic 
use of  MSC trophic factors is that these soluble media-
tors typically exhibit a short half-life. Vascular endo-
thelial growth factor (VEGF), for instance, possesses a 
half-life of  about 3 min in circulation[25]. Given a short 
half-life of  HGF[26], the authors raised the question of  
how this treatment might result in long-term therapeutic 
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benefits. It has previously been found that exogenously 
administered HGF could result in sustained elevation of  
endogenous HGF through a positive feedback loop[27]. 
This finding may not be unexpected given that the 
growth factor network often exhibits a cross-talk mecha-
nism, enabling induction and amplification of  more than 
one growth factor by another. This trophic cross-talk 
mechanism has been illustrated in our cardiac therapeu-
tic studies based on intramuscular injection of  MSC[4,15]. 
This MSC therapeutic strategy is coupled to the inherent 
ability of  skeletal muscle to produce beneficial trophic 
factors in response to exercise and injury[28,29]. Although 
the injected MSC are trapped in the hamstrings, their 
trophic actions induce mobilization of  bone marrow 
progenitor cells (BMPC) through the SDF-1/CXCR4 
axis and promote increased growth factor levels in the 
quadriceps, liver, and brain[4,15]. We further demonstrate 
that the mobilized BMPC are also capable of  trophic ac-
tions[30], contributing to the systemic increase in trophic 
factors, which may be explored for MS therapy (Figure 
1). Consistent with these preclinical findings, the clinical 
trials with MS patients revealed similar benefits medi-
ated by either intrathecal or intravenous MSC with no 

consensus on the best cell delivery route[31]. Note that 
intravenous infusion of  MSC has been adopted for clini-
cal trials of  neurodegenerative and heart diseases[2,32]. 
Although the intravenously infused MSC are largely 
distributed to the lungs, their trophic actions underlie 
the observed therapeutic benefits independent of  MSC 
stemness. These findings illustrate the significance of  
formulating a minimally invasive stem cell delivery ap-
proach for patient care. 

HGF, like VEGF, also possesses a potent angiogenic 
function[33]. Administration of  HGF, either as a recombi-
nant protein or DNA vector, has been shown to promote 
angiogenesis without increased vascular permeability or 
inflammation[34]. Further, HGF can decrease VEGF-
mediated leukocyte activation and co-administration of  
HGF and VEGF more potently promotes angiogenesis 
than either growth factor alone[35], suggesting that explor-
ing interactions of  MSC trophic factors for therapeutic 
application may be warranted. Coordinated induction of  
HGF and VEGF following intramuscular administration 
of  MSC is observed in our stem cell and growth factor 
therapeutic trials for hamster heart failure[4,15,30,36]. This 
cross activation mechanism may explain why intramus-
cular injection of  VEGF or HGF alone also repairs the 
failing heart[36,37]. Thus, the beneficial effects observed 
in the HGF therapy for MS[5] are likely mediated and 
coordinated by HGF and the many downstream trophic 
factors induced by HGF. This trophic cascade can also 
be initiated by MSC-derived IL-6-type cytokines, which 
signaling through JAK/STAT3 induce HGF, VEGF and 
many other trophic factors as demonstrated in our MSC 
therapeutic study[4]. 

A cautionary note is warranted here because the po-
tent angiogenic function of  HGF and VEGF may be 
associated with a risk of  cancer. Indeed, MSC are known 
to express cancer/testis antigen[38], and MSC-derived 
VEGF has been reported to promote breast cancer cell 
migration[39]. However, as noted in a recent review, MSC 
can also have the potential of  diminishing tumor growth, 
and may be used as “Trojan horses” to deliver anti-cancer 
therapeutics into the tumor stroma[40]. This controversy 
may be due to the heterogeneity nature of  MSC prepared 
from differences tissue sources and the use of  various 
experimental models. Interestingly, MSC have been found 
to be differentially primed by TLR4 and TLR3 ligands to 
adopt a pro-inflammatory [mesenchymal stem cell (MSC) 
1] and anti-inflammatory (MSC2) status, respectively[41]. 
The MSC1 and MSC2 phenotypes attenuate and promote 
tumor growth/metastasis, respectively[42]. Along this line, 
we recently demonstrated that MSC TLR3 activation 
prominently suppressed tissue inflammation caused by 
myocyte cell death and promoted myocardial regenera-
tion[18]. These studies thus indicate that the cytokine se-
cretion profile of  MSC plays a decisive role in dictating 
the therapeutic potency and outcome.

In summary, despite encouraging results from nu-
merous preclinical studies, ongoing clinical trials of  
stem cell therapy have thus far demonstrated moderate 
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Figure 1  Current model of mesenchymal stem cell therapy for brain and 
heart regeneration. Mesenchymal stem cell (MSC) therapies for brain and heart 
repairs have been conducted using either MSC or MSC-derived trophic factors. 
Successful trials have been obtained based on multiple injection regimens, such 
as intravenous (for brain and heart), intrathecal (for brain), and intramuscular (for 
heart) administration routes. Major MSC trophic factors that have been found 
to be critical in mediating tissue regeneration include hepatocyte growth factor 
(HGF), vascular endothelial growth factor (VEGF), stromal cell derived factor 
(SDF)-1, and interleukin (IL)-6-type cytokines. The SDF-1/CXCR4 axis has been 
found to mobilize bone marrow progenitor cells (BMPC). These heterogeneous 
BMPC populations are also capable of producing trophic factors, which likely act 
in concert with MSC trophic factors in suppressing tissue inflammation, normal-
izing extracellular matrix remodeling, promoting cell survival, activating local 
stem cell niches, and directing progenitor cell differentiation. In addition, myocar-
dial recruitment of BMPC after MSC therapy has been documented.
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and inconsistent benefits[43-45], indicating an urgent need 
to optimize the therapeutic platform. Identification of  
multiple functionally synergistic trophic factors, such as 
HGF and VEGF, can eventually lead to the development 
of  an efficacious cell-free therapeutic regimen. The study 
by Bai et al[5] paved the way for this logistically attractive 
approach.
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