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Background Family-based designs enable assessment of genetic associations with-
out bias from population stratification. When parents are not readily
available — especially for diseases with onset later in life — the case-
sibling design, where each case is matched with one or more unaf-
fected siblings, is useful. Analysis typically accounts for within-family
dependencies by using conditional logistic regression (CLR).

Methods We consider an alternative to CLR that treats each case-sibling set
as a nuclear family with both parents missing by design. One can
carry out maximum likelihood analysis by using the Expectation-
Maximization (EM) algorithm to account for missing parental gen-
otypes. We compare conditional logistic regression and the missing-
parents approach under several risk scenarios.

Results We show that the missing-parents approach improves power when
some families have more than one unaffected sibling and that under
weak assumptions the approach permits the incorporation of supple-
mental cases who have no sibling available and supplemental controls
whose case sibling is unavailable (e.g., due to disability or death).

Conclusion The missing-parents approach offers both improved statistical effi-
ciency and asymptotically unbiased estimation for genotype relative
risks and genotype-by-exposure interaction parameters.

Keywords Genetic association, case-sibling, missing parents, expectation-max-
imization algorithm, conditional logistic regression

Introduction
Nuclear families can be used to study contributions
of genetic variants to complex diseases. One can
estimate genotype-relative risks by using cases and
their parents and be protected against biases caused
by population stratification1–3 and self-selection.
One can also use nuclear families to probe for mater-
nally mediated genetic effects4 and parent-of-origin
effects.3 Case-parent studies, however, are inappropri-
ate for diseases with onset in later life when parents
are selectively available.

For late-onset diseases, siblings can serve instead of
parents. Case–sibling studies are typically analyzed
through conditional logistic regression (CLR), using
cases with at least one participating unaffected sib-
ling. We describe an alternative approach that treats
case-sibling data as nuclear family data with parents
missing by design. This basic idea has been used for
studying genetic main effects5–10 and is implemented
in some software.9,10 However, it has remained uncer-
tain whether the missing-parents approach is more
efficient than traditional CLR. We assess the relative
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efficiency of the case–sibling and missing-parent
approaches and propose that another advantage of
the missing-parents approach is that it can allow
both the inclusion of cases that lack a sibling control
and sets of sibling controls that had a sibling case but
cannot provide it, e.g. because of disability, death, or
therapeutic abortion. We explore implications for
power and unbiased estimation of including those un-
matched subjects. We also extend the missing-parents
approach to testing exposure effects and multiplica-
tive gene-by-exposure interaction.

Methods
Determination of likelihoods
Suppose we ascertain sibships that consist of a single
case subject with genotype GC and a set of k control
(unaffected) siblings with genotypes G0i (i¼ 1, 2, . . . k)
at a diallelic locus of interest. The variant under study
could either be causative itself or be a marker in linkage
disequilibrium with a causative variant. Further sup-
pose that a logistic model describes the association of
risk with genotype. (For a marker related to risk only
through linkage disequilibrium with a causative vari-
ant, this model, although mis-specified in general, is
correct under the null hypothesis, so that hypothesis
testing is valid.) For scenarios without exposure effects
or multiplicative gene-by-exposure interaction effects,
the sibship’s contribution to the CLR likelihood is:

Pr½case has genotype GCjsibship has genotypes

G ¼ fGC, G01, . . . , G0kg�

¼
exp �1IðGC¼1Þ þ �2IðGC¼2Þ

� �
P

g2G exp �1Iðg¼1Þ þ �2Iðg¼2Þ

� �
ð1Þ

Here, �i represents the logarithm of the odds ratio for
carriers of i copies of the variant allele (i.e. GC¼ i) as
compared with carriers of zero copies.

If, instead of data from control siblings, we had data
from parents, we could fit either a log-linear model3 or,
equivalently, a ‘pseudo-sibling’ model11 that imposes
Mendelian inheritance and considers all offspring that
a given parental pair could have produced. Under the
pseudo-sibling approach, the likelihood contribution
from a nuclear family in which the mother’s genotype
is GM and father’s genotype GF is:

Pr½case has genotype GC parents havegenotype fGM,GFg
�� �

¼
Pr ðGc GMj ,GFÞ expð�1IðGc¼1Þ þ �2IðGc¼2ÞÞP

g2G GM,GFj Prðg GM,GFÞ expð�1Iðg¼1Þ þ �2Iðg¼2ÞÞ
��

ð2Þ

Here, �i represents the logarithm of the relative risk for
carriers of i copies of the variant allele (i.e. GC¼ i) as
compared with the risk for carriers of zero copies,
G GM,GFj denotes the set of possible offspring from par-
ents with genotypes GM and GM, and the Mendelian
genotype probabilities, Pr(gjGM,GF), are known.

Inference on �1 and �2 using this likelihood is equiva-
lent to that based on a log-linear Poisson model.3 For a
rare disease, �i in model 1 approximates �i in model 2.

If, in addition to genotypes, exposure data are avail-
able, one can test for exposure effects and gene-by-
exposure interaction (making the assumption that the
genetic variant is causative when specifically testing
gene-by-exposure interaction12). We used the ap-
proach proposed by Chatterjee et al.,13 which enhances
power by enforcing within-family gene-by-exposure
independence in the conditional likelihood. Let EC

denote the exposure of the case and E0i (i¼ 1,
2, . . . k) denote the exposures of the control siblings.
The likelihood contribution of a single sibship under
the CLR model is:

Pr½case has genotype GC and exposure ECjsibship

has genotypes G ¼ fGC,G01, . . . ,G0kg

and exposures E ¼ fEC,E01, . . . ,E0kg�

¼

expð�IðEC¼1Þ þ �1IðGC¼1Þ þ �2IðGC¼2Þ

þ �1EcIðGC¼1Þ þ �2EcIðGC¼2ÞÞ

( )
X
e2E

X
g2G

expð�Iðe¼1Þ þ �1Iðg¼1Þ þ �2Iðg¼2Þ

þ�1eIðg¼1Þ þ �2eIðg¼2ÞÞ

8><
>:

9>=
>;

ð3Þ

Here, � represents the logarithm of the odds ratio for
the exposed as compared with the unexposed state,
and �1, �2 represent odds-ratio–based multiplicative
interaction parameters.

Imagine that we had genotypes from parents, geno-
type and exposure data from the case, and exposures
(but no genotypes) from siblings (under a rare-
disease assumption, genotypes of siblings provide no
extra information once parental genotypes are
known). We could then fit a pseudo-sibling model11

that considers all possible offspring that a given pair
of parents could have produced and all possible as-
signments of the observed exposures to those off-
spring. The likelihood contribution from a nuclear
family under that pseudo-sibling model is:

Pr½case has genotype GC and exposure ECjParents

have genotype fGM,GFg

and sibship has exposures E ¼ fEC,E01, . . . ,E0kg�

¼

PrðGC GM,GFj Þ expð�IðEC¼1Þ þ �1IðGC¼1Þþ

�2IðGC¼2Þ þ �1ECIðGC¼1Þ þ �2ECIðGC¼2ÞÞ

( )
X

e2E

X
g2G GM,GFj

Prðg GM,GFj Þ expð�Iðe¼1Þþ

�1Iðg¼1Þ þ �2Iðg¼2Þ þ �1eIðg¼1Þ þ �2eIðg¼2ÞÞ

8<
:

9=
;
ð4Þ

Here, � represents the logarithm of the exposure rela-
tive risk and �1,�2 represent relative-risk-based inter-
action parameters. The derivation of this likelihood
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that includes unaffected control siblings requires a
rare-disease assumption.8 For a rare disease, the par-
ameters in model 3 correspond to the parameters in
model 4.

The likelihood in model 4 differs from the
pseudo-sibling likelihood described by Cordell et al.14

for examining multiplicative gene-by-exposure inter-
actions with case–parents triads because it uses the
exposures of unaffected siblings. This extra informa-
tion allows estimation/testing of exposure effects,
which cannot be done with case–parents triads
alone. For case–parents triads, however, a log-linear
model including multiplicative gene-by-exposure
interactions15 provides a likelihood equivalent to the
pseudo-sibling likelihood of Cordell et al.14

Consequently, under a rare-disease assumption,
there is a log-linear model that provides a likelihood
equivalent to the pseudo-sibling likelihood in model
4, provided exposure is categorical.

When parents are missing but unaffected siblings are
genotyped, each family’s contribution to the
observed-data pseudo-sibling log-likelihood is a
weighted average of model 2 or of model 4 over pos-
sible families with parental genotypes compatible with
those of the observed offspring genotypes. Even when
all parents are missing by design, as in a case-sibling
design, the family-based likelihood can be maximized
by using the EM algorithm.16 Under such a design, a
complete-data log-linear model, equivalent to the cor-
responding pseudo-sibling model, makes implementa-
tion of the EM algorithm17 straightforward.

Assumptions
We ascertain sibships known to have exactly one case
sibling. Our analyses make the usual assumption for
fine-matched case–control studies: given that a family
has been sampled, we assume that any missing values
of genotype and exposure (e.g. non-participation of
siblings) are missing at random. For example, if the
allele under study were causally related to survival
(and hence participation) among cases, estimates of
genetic effects would be biased. When the number of
participants varies across families, the missing-
parents approach, but not CLR, requires that the
number of participating cases and control siblings,
given that that family is sampled, provides no infor-
mation about the unobserved parental genotypes.
Without this assumption, inference could be biased
when genetic population structure is present if, for
example, allele frequency in subpopulations is related
to the size of participating sibships from those sub-
populations. For assessment of gene-by-environment
interaction, both the missing-parents approach and
the Chatterjee version of the CLR approach13 assume
that genotype and exposure are independent within
sibships. When exposure-related population stratifica-
tion is present and interactions are assessed, both the
missing-parents approach and CLR require either ef-
fective genomic control or that the single-nucleotide

polymorphism (SNP) be itself causative and not in
linkage disequilibrium with another causative SNP.12

Under the assumptions made above, the missing-
parents approach can validly incorporate data from
unmatched subjects into the likelihood, whereas
CLR typically cannot.

Missing-indicator approach
For data containing unmatched subjects, we com-
pared the performance of the missing-parents ap-
proach with that of the missing-indicator method
proposed by Huberman and Langholz.18 The miss-
ing-indicator method is a clever strategy that enables
one to apply conditional logistic regression to analyze
data that include matched pairs together with both
some unmatched cases and some unmatched controls.
Briefly, the analyzed data set is augmented by includ-
ing pseudo-subjects that provide matched counter-
parts having opposite disease status for any
unmatched actual subjects. Thus, for each unmatched
case, the analyst constructs a pseudo-control, and for
each unmatched set of control siblings the analyst
constructs a pseudo-case. All covariates (genotype
and exposure in our context) for these pseudo-
subjects are set to zero, i.e. the referent coding. An
indicator variable (0 for pseudo-subjects, 1 otherwise)
is included as one of the covariates in the CLR model.
This construction makes the contribution by the un-
matched individuals to the conditional likelihood the
same as their contribution to the likelihood for an
unmatched analysis, thereby allowing the use of
standard software for conditional logistic regression
for analysis of all subjects together. One subtle prob-
lem with this approach was pointed out by Huberman
and Langholz: the parameter being estimated is nei-
ther the stratum-specific sibling-based odds ratio nor
the (typically somewhat attenuated) marginal popula-
tion-based parameter. Under our proposed missing
parents approach, the usual sibling-based odds ratio
is estimated, so that the inference has a more
straightforward parameter interpretation.

Type I error rate and power calculations
We studied type I error rate and power by calculating
the non-centrality parameter (NCP) for the distribu-
tion of a chi-squared likelihood ratio test statistic
(two-degree-of-freedom (df) tests for genetic or inter-
action effects, one-df tests for exposure effects). An
NCP of 0 under the null hypothesis means that the
test statistic approximately follows a central
chi-squared distribution, which ensures the nominal
type I error rate. Non-zero NCPs can be translated to
statistical power as the tail probability for the corres-
ponding non-central chi-squared distribution. The ef-
ficiency of the missing-parents approach relative to
CLR is given by the ratio of their NCPs (which
equals the reciprocal of the ratio of the sample sizes
required to achieve any particular power). For one-df
tests, the square root of that same ratio corresponds

300 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY



to the large sample ratio of the standard errors for the
corresponding parameter estimates (i.e. the relative
lengths of confidence intervals), so that relative effi-
ciency also measures relative precision.

Calculation of the NCP begins by specifying a popu-
lation structure including allele frequency and expos-
ure prevalence, and a risk model. This information is
used to calculate expected counts, i.e., the expected
number of sibships with each possible configuration
of genotypes and exposures. The relevant models are
fitted by using the expected counts as data. The
change in deviance (twice the maximized log likeli-
hood) between the full and reduced models fitted to
the expected counts gives the NCP for the correspond-
ing likelihood ratio test.19 We fitted our models with
LEM20 software (LEM scripts available at http://www.
niehs.nih.gov/research/resources/software/biostatistics/
lem_scripts/index.cfm)

In calculating the expected counts, we assumed a
rare disease and a log-linear model for risk. We con-
sidered a study of 300 sibships, each with one case
sibling and one (or more) control sibling(s). To cal-
culate the statistical power for any number of sib-
ships, e.g. n, one can multiply our NCPs by n/300
and look up the corresponding tail probabilities for
a non-central chi-squared distribution.

For tests of genetic effects, we considered a null
scenario with (R1, R2)¼ (e�1, e�2) set at (1, 1). To ex-
plore robustness to genetic population stratification,
we assumed a population with two subpopulations
of equal size. The ratio of baseline disease risks (risk
in population members with no copies of the allele
under study) in the two subpopulations was 3:1,
and the allele frequency in one population was p
and in the other was 1� p, with p ranging from 0.1
to 0.7. For tests of gene-by-exposure interaction, we
assumed that the SNP was causative and simulated
exposure-related population stratification12: both
allele frequency and exposure frequency were p in
one population and 1� p in the other, with p ranging
from 0.1 to 0.7. We considered an interaction-null
scenario with (R1, R2) set at (1, 2), RE¼ ea set at 1.5
and (I1, I2)¼ (e�1, e�2) set at (1, 1).

When studying power, we assumed that the SNP
under study was in Hardy–Weinberg equilibrium in
the population (which is convenient for calculating
expected counts but not needed for validity). For
tests of genetic effects, the allele frequency ranged
from 0.1 to 0.7. We examined three risk scenarios,
with (R1, R2) set at (2, 2), (1, 3), and (1.5, 2.25),
respectively. For tests of gene-by-exposure inter-
actions, we allowed either the allele frequency or
the exposure frequency to range from 0.1 to 0.7,
with the other frequency set at 0.3. We modified
our interaction-null scenario by setting (I1, I2) to
(2, 2). For tests of exposure effects, we used the
interaction-null scenario, assigned exposure status to
siblings independently, and fitted a model with gen-
etic and exposure effects only.

We evaluated the power gains provided by including
supplemental singleton cases or supplemental sets of
controls in the following scenarios: (i) 150 supple-
mental cases; (ii) 150 supplemental sets of controls
(control siblings whose case sibling was unavailable;
for a 1:k matched design, we added sets of k controls
without a matched case); and (iii) 75 supplemental
cases and 75 supplemental sets of controls. Both
genotypes and exposures were ascertained for supple-
mental subjects.

Results
As with CLR, the missing-parents analysis maintained
the correct type I error rates both for tests of genetic
effect and for tests of gene-by-exposure interaction
under population stratification with or without sup-
plemental subjects. In all scenarios, the NCPs were 0,
implying a correct type I error rate.

The power of the missing-parents approach and that
of the sibship-based CLR were almost identical for
both the genetic-effect test (Figure 1A and Supplemen-
tary figures S1A and S2A, available as Supplementary
data at IJE online) and the interaction test (Figure 2A
and Supplementary figure S3A, available as Supple-
mentary data at IJE online) when each case had one
matched control. The missing-parents approach
showed a power advantage over CLR (i.e. the relative
efficiency with the missing-parents approach always
exceeded 1.0) when two or more control siblings
were available, although the power advantage was
higher for testing genetic effects (Figure 1B and
Supplementary figures S1B and S2B, available as Sup-
plementary data at IJE online) than for testing
gene-by-exposure interactions (Figure 2B and Supple-
mentary figure S3B, available as Supplementary data
at IJE online). For tests of exposure effects without
supplemental subjects, the CLR and missing-parents
approaches provided the same power regardless of
the number of unaffected siblings in each approach
(data not shown).

The ability of the missing-parents approach, unlike
CLR, to make use of data from unmatched partici-
pants, and thereby incorporate a larger sample size,
provides an increase in efficiency for assessing gen-
etic, environmental, and interaction effects in a
sibship-based design. With additional supplemental
subjects included, the power of the missing-parents
approach improves over that of the CLR approach
for genetic-effects tests (Figure 1 and Supplementary
figures S1 and S2, available as Supplementary data at
IJE online), interaction tests (Figure 2 and Supple-
mentary figure S3, available as Supplementary data
at IJE online), and exposure-effect tests (Figure 3).
With 150 supplemental singleton cases, the maximum
relative efficiency for genetic effects was 122% and
134% for designs with one (Figure 1A) and two con-
trol siblings (Figure 1B), respectively. The correspond-
ing maximum relative efficiency was 115% and 115%
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with 150 additional supplemental sets of controls, and
122% and 126% with 75 singleton cases and 75 sets of
controls. The missing-parents approach was more
powerful than the missing-indicator method, with
maximum relative efficiency of 110% and 114% for
designs with one and two control siblings, respect-
ively. Additionally the missing-parents method can
provide unbiased relative-risk estimates, whereas es-
timates under the missing-indicator method are
known to be biased18 and were biased in our study
(data not shown).

For gene-by-exposure interactions, inclusion of 150
supplemental cases in scenarios with one (Figure 2A)
or two (Figure 2B) control siblings markedly increased
relative efficiency. The power advantage gained by the
inclusion of 150 supplemental sets of controls was
modest regardless of the number of control siblings
per case. The power improvement by supplementing
with 75 singleton cases and 75 sets of controls was
between those for the design that included 150 supple-
mental cases and the design that included 150 supple-
mental sets of controls.

For exposure effects, the inclusion of supplemental
subjects always increased power (Figure 3). When
the matched design had one control sibling per case,
the inclusion of 75 case singletons and 75 control
singletons provided a greater power advantage than
the inclusion of either 150 case singletons or 150 con-
trol singletons. When the matched design had two or
more control siblings per case, the inclusion only of
case singletons provided greater power than the inclu-
sion only of sets of controls or of equal numbers of
supplemental cases and sets of controls. The relative
efficiency of including 150 supplemental sets of con-
trols decreased as the number of matched controls per
case increased.

Example: Association between rs680331 and
oral clefts
To construct an illustrative example, we used data
from a candidate-gene study of the birth defect of
oral clefts.21 The original study recruited case-parents
triads from two Scandinavian populations, those of
Denmark and Norway, respectively, to investigate

Figure 1 Non-centrality parameter and power for tests of genetic effects as a function of allele frequency. All designs used
300 sibships with one (panel A) or two control siblings (panel B); some designs included supplemental unmatched subjects.
The relative risks are R1¼ 1.5 and R2¼ 2.25. Vertical axes: left, the chi-squared non-centrality parameter for a 2-df
likelihood-ratio test; right, power at a¼ .05 (horizontal lines mark selected power levels). The 1 and 2 before the abbre-
viations represent 1 and 2 control siblings per case, respectively. Curves: solid (CLR), with or without supplemental subjects
analyzed with conditional logistic regression (CLR does not use unmatched subjects and the power is therefore the same for
scenarios with or without supplemental subjects); dash-dot (MP.C), 150 supplemental cases analyzed with the
missing-parents approach; long-dash (MP.S), 150 supplemental sets of controls analyzed with the missing-parents ap-
proach; short-dash (MP.CS) (concealed under the dash-dot curve in panel A), 75 supplemental cases and 75 supplemental
sets of controls analyzed with the missing-parents approach; dash-dot-dot (Huberman), 75 supplemental cases and 75
supplemental sets of controls analyzed with the missing-indicator method proposed by Huberman and Langholz18; and
dash-dash-dot (MP.0), no supplemental subjects analyzed with the missing-parents approach (concealed under the solid
curve in panel A)
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the association between SNPs in 375 candidate genes
and oral clefts. We focus here on the association be-
tween rs680331 in the 3’ untranslated region (3’UTR)
of the gene for interferon regulatory factor 6 (IRF6), a
top hit in the original study,21 and oral clefts. For
each of the 696 complete triad families, we generated
genotypes for two hypothetical siblings, both un-
affected, on the basis of the family’s observed paren-
tal genotypes by assuming Mendelian inheritance and
a rare phenotype, thereby creating 696 sibships with
one case and two controls. We randomly selected 522
(75%) of these sibships to serve as the core data. We
also augmented this core data by including in turn
174 cases, or 174 control-sibling pairs, or 87 cases
plus 87 unrelated control-sibling pairs. We analyzed
the last scenario by using the missing-indicator ap-
proach and all four data sets with CLR and the
missing-parents approach. Each of these data sets
and approaches revealed an association of clefts
with rs680331 (Table 1). In addition, the comparisons
seen in our NCP calculations are largely recapitulated
in this example: the missing-parents approach yielded
a larger chi-squared statistic than did CLR with the
core data, and the inclusion of unmatched subjects

further enhanced the power and precision of this
approach.

Discussion
In case–mother/control–mother studies,22 accounting
for the actual family relationship markedly improves
statistical power as compared with accounting
for dependencies generically. We wanted to see
whether it would be possible to analogously
strengthen the analysis of case–sibling studies of a
rare disease while retaining robustness to population
structure by assuming Mendelianism in the popula-
tion and maximizing the missing-parents likelihood
via the expectation-maximization (EM) algorithm.16

Our power calculations showed that such a
missing-parents analysis, although having the same
power as CLR for disease-discordant sib pairs, does
increase the power for testing for genetic effects
when using two or more unaffected siblings and no
supplemental subjects. By contrast, the increase in
power from using two unaffected siblings instead of
one was negligible for testing gene-by-exposure

Figure 2 Non-centrality parameter and power for tests of multiplicative genetic-by-exposure interaction effects as a
function of allele frequency. All designs used 300 sibships with one (panel A) or two control siblings (panel B); some
designs included supplemental unmatched subjects. The risk parameters are: R1¼ 1, R2¼ 2, RE¼ 1.5, I2¼ 2, and I2¼ 2.
Exposure prevalence was 0.3. Vertical axes: left, the chi-squared non-centrality parameter for a 2-df likelihood-ratio test;
right, power at a¼ 0.05 (horizontal lines mark selected power levels). The 1 and 2 before the abbreviations represent 1 and
2 control siblings per case, respectively. Curves: solid (CLR), with or without supplemental subjects analyzed with condi-
tional logistic regression (CLR does not use unmatched subjects and the power is therefore the same for scenarios with or
without supplemental subjects); dash-dot (MP.C), 150 supplemental cases analyzed with the missing-parents approach;
long-dash (MP.S), 150 supplemental sets of controls analyzed with the missing-parents approach; short-dash (MP.CS), 75
supplemental cases and 75 supplemental sets of controls analyzed with the missing-parents approach; and dash-dash-dot
(MP.0), no supplemental subjects analyzed with the missing-parents approach (concealed under the solid curve in panel A)
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interaction, and there was no increase in power for
testing exposure effects.

Although our power calculations assumed Hardy–
Weinberg equilibrium, the missing-parents approach
will show similar power advantages more generally
because the method exploits two sources of added
information unavailable to CLR: Mendelian inherit-
ance and the possible inclusion of unmatched sub-
jects. We show power for scenarios in which
exposure-related population stratification is present

in an online supplement (Supplementary figure S4,
available as Supplementary data at IJE online).

The missing-parents approach also allows straight-
forward incorporation of unrelated singleton
cases (for which a sibling may not be available) and
sets of sibling controls into a case–sibling analysis
while retaining unbiased estimation of genotype
relative-risk and interaction parameters. The inclu-
sion of supplemental subjects, with each providing
genotype and exposure data, increases the power of

Figure 3 Non-centrality parameter and power for tests of exposure effects as a function of exposure prevalence. All designs
used 300 sibships one (panel A) or two control siblings (panel B); some designs included supplemental subjects. The risk
scenario is: R1¼ 1, R2¼ 2, RE¼ 1.5, I2¼ 1, and I2¼ 1. Allele frequency was 0.3. Vertical axes: left, the chi-squared
non-centrality parameter for a 1-df likelihood-ratio test; right, power at a¼ 0.05 (horizontal lines mark common power
levels). The 1 and 2 before the abbreviations of the designs in each figure represent 1 and 2 control siblings per case,
respectively. Curves: solid (CLR), analyzed with conditional logistic regression (CLR does not use unmatched subjects and
the power is therefore the same for scenarios with or without supplemental subjects); dash-dot (MP.C), 150 supplemental
cases analyzed with the missing-parents approach; long-dash (MP.S), 150 supplemental sets of controls analyzed with the
missing-parents approach; and short-dash(MP.CS), 75 supplemental cases and 75 supplemental sets of controls analyzed
with the missing-parents approach. In panel (A), the dash-dot and long-dash curves coincide

Table 1 Association of SNP rs680331 with oral clefts in a Scandanavian samplea

Sample Analysis R1 (95% CI) R2 (95% CI) �2

522 complete triads Log-linear 1.42 (1.12, 1.82) 1.70 (1.08, 2.70) 9.72

522 sibships CLR 1.52 (1.12, 2.06) 2.00 (1.12, 3.59) 9.41

522 sibships Missing-parents 1.52 (1.14, 2.03) 2.05 (1.17, 3.61) 10.40

522 sibshipsþ 174 cases Missing-parents 1.58 (1.20, 2.07) 1.97 (1.14, 3.39) 12.27

522 sibshipsþ 174 control sibpairs Missing-parents 1.50 (1.13, 1.99) 2.04 (1.17, 3.57) 10.16

522 sibshipsþ 87 casesþ 87 control sibpairs Missing-parents 1.53 (1.16, 2.02) 2.07 (1.20, 3.55) 11.50

522 sibshipsþ 87 casesþ 87 control sibpairs Missing-Indicator 1.45 (1.11, 1.90) 1.83 (1.11, 3.03) 9.69

aThe additional cases and additional control sibpairs are unmatched. CI, confidence interval.
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this approach for all parameters of interest. Analysis
that includes supplemental subjects retains robust-
ness to bias from population stratification, under the
assumption that among families in the sample, the oc-
currence of an unmatched case or of an unmatched
set of unaffected siblings has no relationship to the
unobserved parental genotypes. Ideally, as with other
family-based analyses that use unrelated cases or con-
trols (e.g. Epstein et al.23), this assumption should be
verified. Unfortunately, we see no powerful way to
check this assumption formally with the data at
hand and suggest reliance on informal checks instead.
For example, one could compare relative risk esti-
mates for analyses with and without the supplemen-
tal subjects, or compare the joint genotype/exposure
distribution of unmatched cases and that of cases
with siblings.

Occasionally, multiple control siblings are available
with little added effort, such as when families af-
fected by a condition have contributed deoxyribo-
nucleic acid (DNA) to a biorepository. As the
number of unaffected siblings per family grows, the
relative efficiency of the missing-parents analysis will
increase and approach what would have been
achieved with a case-parents design.24 In fact, under
a rare-disease assumption and Mendelian inherit-
ance, a case–parents design should be equivalent to
a case–sibling study with infinitely many siblings, so
that genotyping unaffected siblings confers benefit
only when one or both parental genotypes are
unknown.

When the number of participating siblings differs
among families in a structured population, the
missing-parents approach is unbiased only if the
size of available sibships is non-informative about
parental genotypes. To determine whether this is the
case, one could conduct a missing-parents analysis
allowing separate sets of parental mating-type param-
eters for sibships of different sizes. This approach,
however, faces practical difficulties in model fitting
as the number of mating-type parameters increases.
Alternatively, one could fall back on CLR, which does
not require that assumption.

The missing-data methods that we have described
are well suited to the typical diverse array of family
structures in a population. In practice, some families
will contribute only an affected individual, others may
have only an unaffected sibling (e.g. if the affected
sibling did not survive), others may have the case and
one or more unaffected siblings as well, and still
others have one or both parents. Genotyping parents
is often cost-effective, especially for conditions with
an onset early in life. Parents offer both improvement
in study efficiency and the opportunity to examine
mechanisms such as effects of the maternal genotype
that act before birth4 and parent-of-origin effects.25 In
families in which parents are genotyped, the genotyp-
ing of unaffected siblings adds no information about
genetic effects, but knowing these siblings’ exposures

contributes information about exposure and inter-
action effects.12,26

The use of multiple unaffected siblings raises some
issues related to linkage-induced correlations if one
regards CLR, like the sib-transmission/disequilibrium
test (sib-TDT),27 as assessing association in the pres-
ence of possible linkage. In this context inference is
strictly valid only for sibships with one case and one
control, because when linkage is present, siblings
with the same disease status will tend to share
marker alleles, inducing dependency. Strictly speak-
ing, such dependency invalidates both the missing-
parents method and CLR. Various approaches that ac-
commodate multiple affected and unaffected siblings
are available.8,28,29 In principle, as proposed by
Siegmund et al.,30 linkage-induced correlation can
also be addressed by using a robust sandwich vari-
ance estimator in Wald tests of genetic effects. A
re-sampling method could also be used.29 The simula-
tions of Siegmund et al. indicated, however, that the
standard test performed adequately in most
situations.30

Alternately, most epidemiologists would probably
consider the null hypothesis of interest to be no link-
age and no association, i.e., a null hypothesis in
which, conditional on the parents, the allele under
consideration is completely unrelated to risk of the
outcome. For that null hypothesis, either the
missing-parents approach or CLR is valid with mul-
tiple siblings. However, after that null hypothesis has
been rejected at a particular locus and one desires to
estimate the relative risk of the non-null genotype
and its standard error, those two methods do not
yield strictly valid estimation if the association de-
tected is due not to the SNP itself, but to its linkage
with some unmeasured causative SNP. In such a situ-
ation, one of the alternative methods already men-
tioned could be used.

Both the case–sibling and the case–parents designs
test and estimate gene-exposure interactions validly if
the SNP under study is a disease-causing mutation
that is not in linkage disequilibrium with another
causative locus. If, instead, a marker in linkage dis-
equilibrium with the risk-inducing variant is studied,
an analysis of interaction effects that is robust to bias
from exposure-related population stratification re-
quires an approach that differs from the usual
approaches.12,26 A robust analysis of interaction,
known as a sibling-augmented case-only (SACO) ana-
lysis, uses case and sibling exposures but only case
genotypes.26 Because it does not use parental or sib-
ling genotypes, the SACO approach cannot be im-
proved by enforcing Mendelian inheritance as the
missing-parents approach does. On the other hand,
testing genetic-effects and gene-by-exposure inter-
actions jointly, as advocated by Kraft et al.,31 is
robust even for marker SNPs without a SACO ana-
lysis, provided the corresponding null model (expos-
ure effects only) is correctly specified.
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The strategy that regards parental genotypes as
missing when analyzing sibship data works well for
single causative SNPs but becomes computationally
daunting if applied to haplotype analyses of unphased
multiple-marker data. In this latter case the chief
problem is that phase ambiguity vastly increases the
number of possible paired parental diplotypes that
must be taken into account. Recently, Dudbridge
et al.10 proposed an alternative to conditioning on par-
ental diplotypes; this instead involves conditioning
only on alleles transmitted into the sibship, greatly
reducing the computational burden of such
missing-data analyses while incurring little cost in
power.

In conclusion, analyses of case–sibling studies that
regard each sibship as a nuclear family with missing
parental genotypes and use appropriate missing-data
techniques to derive maximum-likelihood estimates
for risk parameters offer power advantages for testing
genetic-effects or gene-by-exposure interactions.
These advantages accrue when some families have
more than one unaffected sibling or when supple-
mental subjects can be included.
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KEY MESSAGES

� Genetic studies using a case-sibling design can be analyzed using different approaches: one is con-
ditional logistic regression (CLR) using unaffected siblings as controls; another treats sibships as
nuclear families with parents missing by design.

� The missing-parents approach makes explicit use of the sibling relationship and improves statistical
efficiency compared to CLR when some sibships contribute more than one unaffected sibling.

� Under weak assumptions, the missing-parents approach also permits inclusion, unlike CLR, of
unmatched cases and controls – further enhancing power and precision.
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