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for monitoring health programmes. Although LQAS ensures accept-
able Producer and Consumer risks, the literature alleges that the
method suffers from poor specificity and positive predictive values
(PPVs). We suggest that poor LQAS performance is due, in part, to
variation in the true underlying distribution. However, until now
the role of the underlying distribution in expected performance has
not been adequately examined.

We present Bayesian-LQAS (B-LQAS), an approach to incorporating
prior information into the choice of the LQAS sample size and de-
cision rule, and explore its properties through a numerical study.
Additionally, we analyse vaccination coverage data from UNICEF’s
State of the World’s Children in 1968-1989 and 2008 to exemplify
the performance of LQAS and B-LQAS.

Results of our numerical study show that the choice of LQAS
sample size and decision rule is sensitive to the distribution of
prior information, as well as to individual beliefs about the import-
ance of correct classification. Application of the B-LQAS approach
to the UNICEF data improves specificity and PPV in both time
periods (1968-1989 and 2008) with minimal reductions in sensitiv-
ity and negative predictive value.

LQAS is shown to be a robust tool that is not necessarily prone to
poor specificity and PPV as previously alleged. In situations where
prior or historical data are available, B-LQAS can lead to improve-
ments in expected performance.

LQAS, specificity, PPV, vaccination coverage, Bayesian

LQAS is a classification procedure designed for deci-

Lot quality assurance sampling (LQAS) is a useful sion-making; for taking action.? The goal is to clas.sify
component of the health programme evaluation tool- a partially measured group. For example, we might
kit with an ever expanding range of applicability." wish to classify the vaccination coverage in a given
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Figure 1 Operating Characteristic (dashed grey) and Risk (solid black) Curves assuming p*=0.80 for n=18 and d=13

population (defined as the lot) as either acceptable or
unacceptable, with respect to some desired program-
matic threshold, p*.*> A traditional LQAS design com-
prises a sample size, n, and a decision rule, d, denoted
(n, d). If in a random sample of n individuals the
number of vaccinated individuals is greater than or
equal to d, we classify the population as acceptable
(p = p* to place a number to our label). Otherwise,
we classify it as unacceptable (p < p*).

The design parameters determine the statistical
properties of the LQAS procedure. They are chosen
to achieve pre-specified levels of misclassification
risk at upper and lower thresholds, py and p;, re-
spectively. Namely, we choose the design so that the
risk of incorrectly classifying a population as un-
acceptable when the coverage is at the upper thresh-
old (p=puy), or higher, is no greater than o (Producer
risk), and the risk of incorrectly classifying a popula-
tion as acceptable when the coverage is at the lower
threshold (p=p:), or lower, is no greater than [
(Consumer risk). The programmatic threshold, p*,
does not explicitly enter into the specification of the
LQAS design, although ordinarily we implicitly
assume that pp < p* < pu.

The two thresholds and their risks are a priori char-
acteristics of the design. Traditionally, these

characteristics are read from the Operating
Characteristic (OC) curve, which plots the probability
of classification as acceptable as a function of the
underlying coverage. Figure 1 depicts the OC curve
for an (18,13) design (with p;y=0.50 and py=0.80).
It is clear, from the OC curve, that values of p lying
between p;, and py, a region known as the ‘grey area’,
are subject to relatively high risks of misclassification.
Presumably, this region also represents that part of
the parameter space where a misclassification error
is of less consequence.

The programmatic threshold plays an important role
when evaluating the design attributes a posteriori.
Sandiford in 1993 explored the a posteriori properties
of LQAS using UNICEF measles vaccination data from
1968-1989 in 126 countries.*” Ultimately, Sandiford
asserted that LQAS ‘is a sensitive test for poor per-
formance but in most settings probably not a particu-
larly specific one’. This has unfortunately led to
confusion in the literature, where in some cases re-
searchers have inferred that LQAS in general is prone
to poor specificity and, relatedly, to poor positive pre-
dicted value (PPV).°® Sandiford’s findings were based
on the assumed coverage distribution found in the
UNICEF data and are not generalizable to ‘most set-
tings’. This distribution is subject to change with
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time, for example, and to aptly assess the perform-
ance of the LQAS method we must consider other
distributional contexts too.

Sandiford’s study raises the interesting question of
how to address LQAS design in the presence of prior
knowledge. When historical data are available, an in-
tuitively appealing strategy is to choose a design that
reduces the number of historical data points that lie
in the grey region where the misclassification risk is
high. Olives and Pagano formalize this notion using
Bayesian-LQAS (B-LQAS), a Bayesian approach to
choosing the decision rule when there is prior know-
ledge about the underlying coverage distribution.’
They use the decision rule for a fixed sample size
that maximizes the figure of merit (FOM),

PL
FOM(n,d) = / Pr(Unacceptable|p)m(p)dp
0

1

+ / Pr(Acceptable|p)n(p)dp.
pPu

where m(-) is the prior distribution of vaccination
coverage. The FOM is thus the average, or expected,
probability of correctly classifying coverage in the ex-
tremes, i.e. beyond the lower and upper thresholds.
The resulting LQAS designs benefit from the optimal-
ity implied by the FOM and result in optimal classi-
fications with respect to p* at the extremes.

The just-described approach ignores the grey area
by putting zero weight there. In reality, even though
the consequences of misclassification in this re-
gion may not be as serious as in the extremes, pro-
gramme managers may feel that this region is
important. Further, the original B-LQAS proposal did
not include a provision for choosing the optimal
sample size.

We now propose a generalization of B-LQAS that
allows managers to incorporate the assumed program-
matic threshold, p*, as well as p; and py, and to
weight various coverage regions differently, including
the grey area, so as to choose both sample size and
decision rule accordingly. We explore the properties of
this generalized B-LQAS in a numerical study.
Additionally, we revisit the Sandiford analysis to
demonstrate how the performance of LQAS varies de-
pending on the underlying distribution of vaccination
coverage. To this end, we repeat Sandiford’s study but
with more up-to-date measles vaccination data from
UNICEE.'” We show that whereas the Consumer and
Producer risks are preserved even with varying under-
lying distributions, other metrics such as sensitivity,
specificity, PPV and negative predictive value (NPV)
do change. Finally, we show that the use of general-
ized B-LQAS to choose sample sizes and decision rules
improves the expected performance of classical LQAS
for the UNICEF data.

Methods

Generalizing B-LQAS

Consider a new concept, the Risk Curve (RC), which
displays the probability of an incorrect classification
as a function of the true coverage:

| Pr(Acceptable|p) if p < p*,
RC(p) = { Pr(Unacceptable|p) else.

The RC for LQAS design (18,13) is shown in Figure 1.
The OC curve and RC convey similar information.
However, the latter makes explicit the distinction
between acceptable and unacceptable coverage with
respect to p*, and also makes it easier to explain that
ideally we wish to minimize the value of this function
throughout its domain. With this notation in place, we
propose a more general form of the FOM,

1

GFOM(n,d) = /W(p)(l — RC(p))r(p)dp
0

where w(-) is a non-negative weighting function
that, over its range, reflects the relative importance
of correct classification. The GFOM is a weighted
average of correct classification and 1is closely
related to the Bayes Risk in the decision-making
literature."' Although we do not explore this connec-
tion further, we direct interested readers to.'? Designs
resulting from maximizing the GFOM benefit from
the optimality implied by the GFOM and result in
optimal classifications with respect to p* given the
prior distribution and the chosen weighting function.

The weighting function w(-) reflects beliefs about
the relative importance of classification for different
coverages and incorporates information about the
upper and lower thresholds. We consider the class
of weight functions of the form

w(p) = wip1(p) + wap(p)

where p;(p) and p,(p) are known functions of the
true coverage that do not depend on n or d, and w;,
and w, are weights for combining these two func-
tions. A feature of this class of weighting functions
is that the GFOM optimal decision rule relies on the
relative value of the weights w; and w,, but not on
their absolute values (see Supplementary Appendix,
available at IJE online).

A weighting function that simply contrasts the two
extremes is,

wi lf p < le
W](}?):{Wz 1fp2pU,
0 else,

a generalization of the FOM when w;=w,=1. An
alternative, and more appealing, set of weights,

wy if p <p*,
wy else,

wa(p) = {


http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dys230/-/DC1

makes explicit the role of p*, and the relative magni-
tude of w; to w, reflects the importance of classifica-
tion below and above this target, respectively.
Although w,(-) is an improvement over w;(-), it still
gives all coverage above or below p* equal weight,
whereas the consequence of misclassification might
be related to the distance from p*. To incorporate
these concerns, consider

w1 if p <pL,
k__ .
wi =L if pp <p <p”,
ws(p) = ’
i A U
Wa o= if p* <p <pu,
ws else,

where the importance of correct classification of the
extremes is constant, but the importance of correctly
classifying moderate coverage diminishes linearly as
the prevalence approaches p*.

Selecting the sample size by B-LQAS

The above formulation is for fixed sample sizes. To
additionally calculate the optimal sample size in the
B-LQAS framework, consider the normalized weight-
ing function, w*(-), where

[ w(u)m(u)du
0

Using w*(-) results in the same optimal decision
rule for a given sample size [denoted d*(n)], and
scales the GFOM to lie between zero and one, result-
ing in the more interpretable quantity, GFOM* (see
Supplementary Appendix, available at IJE online).
The optimal sample size can be chosen by finding
the smallest n such that GFOM*(n, d*(n)) >k,
where k is the investigator-chosen minimum probabil-
ity of correct classification. Here, we assume k =0.95.

Numerical study of B-LQAS

To study the GFOM under varying assumptions about
the underlying distribution of vaccination coverage,
assume that the distribution of coverage follows a
beta distribution with parameters s; and s,. The
beta family includes sufficiently varied shapes to pro-
vide a broad offering of prior distributions, and the
integration in the GFOM can be solved analytically for
each of the weighting functions considered (see
Supplementary Appendix, available at IJE online).
We consider six different underlying Beta distribu-
tions obtained by permuting the expected proportion
of Poor (p < 0.50), Mediocre (0.50 <p < 0.80), and
Good (p>0.80) countries, starting with a uniform
distribution (50% Poor, 30% Mediocre, and 20%
Good). For example, the beta distribution that yields
expected proportions of Poor, Mediocre and Good
equal to 0.20, 0.30, and 0.50, respectively, has
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parameters s; =1.6035 and s, =0.6028. The resulting
six beta distributions are shown in Figure 3 (left).
For each of the three weighting functions, we
choose the input parameters w; and w, to be propor-
tional to one minus the Producer and Consumer
risks associated with the (18,13) LQAS design used
by Sandiford (¢=0.133 and p=0.048).° That is, we
let w;=(1-0.048)/(1—0.048 +1—0.133) =0.52 and
wy,=1-—w;=0.48, placing slightly higher emphasis
on correct classification of low coverage areas than
high coverage ones. Lastly, we allow the program-
matic threshold p* to equal either p;=0.50 or

Application to UNICEF 1969-1989 and 2008
measles vaccination data

For our study of the UNICEF data, we first performed
the identical analyses Sandiford performed but with
the more recent vaccination data from 2008 and com-
pared our results with Sandiford’s original findings.'®
Table 1 contains the formulae for the quantities used
in this analysis.

We calculate the sensitivity, specificity, PPV and
NPV for the 2008 distribution of measles vaccination
coverage for LQAS considered as a test first for poor
(p=pr) and second for good (p=py) performance.
These formulae are also given in Table 1.

Additionally, we apply B-LQAS to both the 1968-89
and the 2008 UNICEF data, employing as a weighting
function ws(-) with weights w, =0.52 and w,=0.48
(as before). Parameters for the assumed underlying
beta distribution are fit via empirical Bayes.'' We con-
sider the case when p* is equal to 0.50 and 0.80.
Based on the optimal decision rules identified by
using B-LQAS, we re-calculate the expected sensitiv-
ity, specificity, PPV and NPV of the LQAS design and
compare them with the same calculations using the
(18, 13) design.

Lastly, we apply our proposed approach to choosing
the optimal sample size and decision rule to the
UNICEF data from both time periods assuming p* is
equal to 0.50 or 0.80. We compare the implied OC
curves from the resulting designs with the OC curve
under traditional LQAS.

Results

Results of numerical study of B-LQAS

The GFOM* under various distributions and weight-
ing schemes are presented in Figure 2 (right). When
p*=0.5, the optimal decision rules are uniformly 13
or less. As might be expected, in the case of weighting
function w,(-), which ignores the grey or Mediocre
region, we see that an assumed uniform prior distri-
bution leads to a decision rule of 13, the same rule
used by Sandiford. In most other cases, when more
than 20% of the prior mass is above the upper thresh-
old, the optimal decision rule shifts to 12. Of course,
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Table 1 Possible outcomes of an LQAS test and metrics for design performance, contingent upon programmatic

threshold, p*

Actual Performance

Poor p < 0.50

Mediocre 0.50 <p < 0.80 Good p = 0.80

LQAS Test  Unacceptable a=E[OC(p) | p < 0.50] b=E[1-OC(p) | 0.50 <p <0.80] c=E[1-OC(p) | p = 0.80]
Outcome  pcceptable  d=E[OC(p) | p < 0.50] e=E[OC(p) | 0.50<p<0.80] f=E[OC(p) | p > 0.80]
Target Threshold
For Detecting Poor (p*=py) For Detecting Good (p*=puy)
Sensitivity a/(a+d) f/(c+ 1)
Performance Specificity (e+f)/(b+c+e+f) (a+b)/(a+b+d+e)
Metrics PPV a/(a+b+c) f/(d+e+1)
NPV (e+f)/(d+e+1) (a+b)/(a+b+c)

the results are identical when p*=0.80, because this
weighting function does not consider the program-
matic threshold.

These findings contrast with the results obtained
when using w;(-); here the optimal decision rules re-
flect the programmatic thresholds. Namely, when
p*=0.50, the resultant optimal decision rules cluster
near d =9, which is unsurprisingly half of the sample
size. Likewise, when p*=0.80, the optimal decision
rules are nearly all equal to 15.

Finally, with the weighting function ws(-), the re-
sulting decision rules when p*=0.50 fall at either
d=11 or 12. When p*=0.80, the optimal decision
rule is uniformly equal to 14.

Results of application to UNICEF 1969-1989
and 2008 measles vaccination data

Expected classifications and performance metrics of
the (18,13) LQAS design and the 1968-1989 and
2008 UNICEF measles vaccination distributions are
presented in Table 2. The resulting values for specifi-
city and PPV according to the 1968-89 distribution
are low, with respective values 69.8% and 51.6%
when p*=p;, and 73.6% and 69.2% when p*=py.
According to the 2008 distribution, the specificity in-
creases to 86.8% and the PPV decreases to 10.6%
when p*=p;. The specificity decreases to 54.1% and
the PPV increases to 86.4% when p* =py. Across time
periods and irrespective of the choice of p*, the sen-
sitivity and NPV are high, greater than 95% in most
cases (NPV=94.4% when p*=py in 2008 vaccination
setting).

Table 3 presents the resulting performance met-
rics when B-LQAS is used to choose the decision
rule with a sample size fixed at n =18 employing em-
pirical Bayes estimates of s;=2.54 and s,=1.19 in
1968-1989 and s;=5.13 and s,=0.82 in 2008.
When p* is equal to 0.50, GFOM is maximized at
d=10 for the 1968-1989 data, and at d=9 for the

2008 data. For both time periods, the expected speci-
ficity increases to greater than 90%. PPV also in-
creases, to 76.8% (from 51.6%) in 1968-89 and to
43.8% (from 10.6%) in 2008. When p*is equal to
0.80, GFOM is maximized at a decision rule of
d=14 and 13 in 1968-89 and 2008, respectively,
which increases the specificity in the 1968-1989
period to 93.4% (from 73.6%) and PPV to 77.0%
(from 69.2%). In all cases, the increase in specificity
and PPV is at the expense of reduced sensitivity, par-
ticularly when p*=p;. Across time periods and speci-
fications of p* the sensitivity never drops below
82.3%. To a lesser extent, we see a corresponding
drop in NPV.

Table 4 shows the resulting performance metrics
when both sample size and decision rules are
chosen via B-LQAS. In order to achieve at least
k=0.95 expected probability of correct classification
in the 1968-1989 data setting, the B-LQAS procedure
recommends at least 25 observations with a decision
rule of 14 when p*=0.50 and at least 33 observations
with a decision rule of 25 when p*=0.80. In the 2008
data setting, only two observations with a decision
rule of one are required when p*=0.50. When
p*=0.80, the B-LQAS procedure selects the trad-
itional design as optimal. OC curves for the B-LQAS
optimal design are shown in Figure 3.

Discussion

The results of our numerical study suggest that the
choice of decision rule is quite sensitive to the under-
lying distribution of vaccination coverage. As we see
in Table 3, even a small deviation in the decision rule
can result in significant differences in the expected
performance of the procedure. Likewise, the role of
p* in choosing an optimal design is marked, resulting
in wide variation in the recommended design. Yet,
designs that favour correct classification of countries
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Table 2 Distribution of measles vaccinations in 1968-89 and 2008, expected LQAS Classifications with n=18 and d=13,
and expected performance metrics

World Measles Vaccination Coverage

1968-1989 2008
Poor Mediocre Good Poor Mediocre Good
p <0.50 050<p<0.80 p3=0.80 p <0.50 050<p<0.80 p=>0.80

LQAS Test Unacceptable 30.5 26.9 1.8 3.0 23.6 1.6

Outcome A ¢ceptable 0.5 20.1 46.2 0 224 143.4
For Detecting For Detecting For Detecting For Detecting

Poor (p*=py) Good (p*=puy) Poor (p*=py) Good (p*=puy)
Sensitivity 98.5% 96.2% 99.4% 98.9%
Performance  Specificity 69.8% 73.6% 86.8% 54.1%
Metric PPV 51.6% 69.2% 10.6% 86.4%
NPV 99.3% 96.9% 100% 94.4%

Table 3 Expected LQAS performance metrics where decision rules are chosen to maximize GFOM with weighting function
ws(.) and weights w; =0.52, w,=0.48 for detecting both poor (p*=p.) and good (p* =py) performance for a fixed sample
size of n=18

World Measles Vaccination Coverage

1968-1989 2008
For Detecting Poor For Detecting Good For Detecting Poor For Detecting Good
(p*=pr, d=10) (p*=puy, d=14) (p*=pr, d=9) (p*=puy, d=13)
Sensitivity 82.3% 90.6% 85.1% 98.9%
Performance Specificity 91.9% 93.4% 98.2% 54.1%
Metric PPV 76.8% 77.0% 43.8% 86.4%
NPV 94.1% 93.5% 99.8% 94.4%

Table 4 Expected LQAS performance metrics decision rules and sample sizes are chosen via B-LQAS with minimum
threshold k=0.95, weighting function ws(.) and weights w;, =0.52, w,=0.48 for detecting both poor where (p*=p;)and
good (p*=py) performance

World Measles Vaccination Coverage
1968-1989

2008

For Detecting Poor For Detecting Good For Detecting Poor For Detecting Good
(p*=pL n=25,d=14) (p*=py, n=33, d=25) (p*=p, n=2,d=1) (p*=py, n=18, d=13)

Sensitivity 86.8% 94.9% 49.1% 98.9%

Performance Specificity 91.9% 84.7% 96.8% 54.1%
Metric PPV 77.8% 79.2% 19.8% 86.4%
NPV 95.5% 96.4% 99.2% 94.4%

with high coverage are often chosen despite the fact
that we weight low coverage classification more
heavily (Figure 3). This is precisely the trade-off
that one should make when there is prior knowledge
suggesting that few countries have Poor coverage.

Our simple analysis of more recent measles vaccin-
ation data illustrates the importance of the distribu-
tional context on expected LQAS performance. The
world made significant progress in child vaccination
between 1989 and 2008."° For this reason, when
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employing the same design in a different setting, we
observe different performance characteristics. So had
Sandiford used these more recent data, LQAS might
have acquired a very different reputation. This nuance
was clearly not lost on Sandiford, although it does not
seem to have been clearly emphasized.

Using B-LQAS increases the expected specificity and
PPV of the LQAS procedure for the UNICEF data, al-
though in 2008, when p*=0.50, the PPV remains low
(43.8%). This result reflects observed distribution of
the measles data in 2008, where only 1.5% of the
countries had Poor coverage. In general, increases in
specificity and PPV were accompanied by minimal,
and in all cases probably acceptable, decreases in sen-
sitivity and NPV.

The outlined approach to choosing the optimal
sample size is generally conservative, resulting in rec-
ommended sample sizes greater than or equal to 18,
except in 2008 when p*=0.50. In this case, the rec-
ommended sample size is n=2, a result that may
seem questionable but is consistent with the low pro-
portion of Poor countries in this dataset. We note,
however, that we are limited in our ability to reflect
all sources of variability in these data, such as survey
sample size in each country and complex survey
design. Appropriately characterizing these sources
might result in more prior variability and likely an
increase in the recommended sample sizes.

Two constraints of our work are the assumption that
the target threshold, p* is fixed, and its arbitrary
identification with either the upper or the lower
threshold. In practice this may not be realistic. For
example, when LQAS is used as a tool to determine
appropriate treatment strategy based on the preva-
lence of schistosomiasis infection, the choice of p* is
driven by informed policy.'*'® When used as a tool to
evaluate neonatal tetanus eradication, p* represents

the eradication threshold.'” Finally, when used
in the context of a baseline survey, often neither p*
nor the lower and upper thresholds are known before
data are collected.'®*"” The choice of p*, as well as p;.
and py, may well incorporate prior information to be
optimally chosen, and not be fixed, as we assume
here, but we leave that investigation to future work.

As is evident from the RC, LQAS is not a tool de-
signed to distinguish well between Poor and Mediocre
populations, for example. Rather, LQAS ensures that
those populations with coverage at the extremes from
the lower and upper thresholds are correctly identified
with high probability. Incorporating prior information
can inform LQAS design and improve its overall clas-
sification properties. Although some degree of tuning
is always possible by relaxing constraints on Producer
and Consumer risks or shifting the decision rule and/
or sample size, the B-LQAS procedure is a valuable
approach to incorporating prior information that can
dramatically improve the aggregate performance of
LQAS.
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Supplementary data are available at IJE online.
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KEY MESSAGES

e Expected performance is dependent upon the underlying distribution.
e Using all available information when designing an LQAS study can help to improve performance.

e Bayesian LQAS is a valuable approach to incorporating available information into LQAS design.

References

! Robertson SE, Valadez JJ. Global review of health care
surveys using lot quality assurance sampling (LQAS),
1984-2004. Soc Sci Med 2006;63:1648-60.

2 Pagano M, Valadez JJ. Commentary: Understanding prac-
tical lot quality assurance sampling. Int J Epidemiol 2010;
39:69-71.

® Valadez JJ. Assessing Child Survival Programmes in Developing
Countries: Testing Lot Quality Assurance Sampling. Boston:
Harvard University Press, 1991.

* Grant JP. The State of the World’s Children 1991. Oxford:
Oxford University Press, 1991.

> Sandiford P. Lot quality assurance sampling for monitor-
ing immunization programmes: cost-efficient or quick
and dirty? Health Policy Plan 1993;8:217-23.

¢ Hutin YJF, Legros D, Owini V et al. Trypanosoma brucei
gambiense trypanosomiasis in Terego county, northern
Uganda, 1996: a lot quality assurance sampling survey.
Am J Trop Med Hyg 2004;70:390-94.

7 piot B, Mukherjee A, Navin D ef al. Lot quality assurance
sampling for monitoring coverage and quality of a tar-
geted condom social marketing programme in traditional
and non-traditional outlets in India. Sex Transm Infect
2010;86(Suppl 1):156-61.


http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dys230/-/DC1

8 Stewart JC, Schroeder DG, Marsh DR, Allhasane S,
Kone D. Assessing a computerized routine health infor-
mation system in Mali using LQAS. Health Policy Plan
2001;16:248-55.

? Olives C, Pagano M. Bayes-LQAS: classifying the preva-
lence of global acute malnutrition. Emerg Themes Epidemiol
2010;7:3.

9 The State of the World’s Children 2008: Child Survival. New
York: UNICEF, 2008.

" Berger J. Statistical Decision Theory. New York: Springer,
1980.

12 Olives C. Improving LQAS for monitoring and evaluation
of health programmes in resource-poor settings. Ph.D.
dissertation, Harvard School of Public Health, 2010.

> world Health Organization. World Health Statistics Quarterly
2011. Geneva: World Health Organization, 2011. Available
from: http://www.who.int/whosis/whostat/EN_WHS2011
Full.pdf (29 January 2013, date last accessed).

4 Brooker S, Kabatereine NB, Gyapong JO, Stothard JR,
Utzinger J. Rapid mapping of schistosomiasis and
other neglected tropical diseases in the context of inte-
grated control programmes in Africa. Parasitology 2009;
136:1707-18.

15

CHOOSING A DESIGN USING BAYESIAN LQAS 355

Brooker S, Kabatereine NB, Myatt M, Russell Stothard J,
Fenwick A. Rapid assessment of Schistosoma mansoni:
the validity, applicability and cost-effectiveness of the
Lot Quality Assurance Sampling method in Uganda.
Trop Med Int Health 2005;10:647-58.

Olives C, Valadez JJ, Brooker SJ, Pagano M. Multiple
Category-Lot Quality Assurance Sampling: A New Classi-
fication System with Application to Schistosomiasis
Control. PLoS Negl Trop Dis 2012;6:1806

Stroh G, Birmingham M. Profocol for assessing neonatal teta-
nus mortality in the community using a combination of cluster
and lot quality assurance sampling. Document WHO/V&B/
02.05. Geneva: World Health Organization, Department
of Vaccines and Biologicals, 2002. Available from:
http://whqlibdoc.who.int/hq/2002/WHO_V&B_02.05.pdf
(29 January 2013, date last accessed).

Valadez JJ, Weiss W, Leburg C, Davis R. Assessing commu-
nity health programs: Using LQAS for baseline surveys and reqular
monitoring. St. Albans: Teaching-aids at Low Cost, 2003.
Valadez JJ, Devkota BR. Decentralized Supervision of
Community Health Programmes Using LQAS in Two Districts
in Southern Nepal. Boston: Management Sciences for
Health, 2003.


http://www.who.int/whosis/whostat/EN_WHS2011_Full.pdf
http://www.who.int/whosis/whostat/EN_WHS2011_Full.pdf
http://whqlibdoc.who.int/hq/2002/WHO_V&B_02.05.pdf

