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Abstract

Transformation is a complex process, involving many changes in the cell. In this work, we investigated the transcriptional
changes that arose during the development of squamous cell carcinoma (SCC) in mice. Using microarray analysis, we looked
at gene expression during different stages in cancer progression in 31 mice. By analyzing tumor progression in each mouse
separately, we were able to define the global changes that were common to all 31 mice, as well as significant changes that
occurred in fewer individuals. We found that different genes can contribute to the tumorigenic process in different mice,
and that there are many ways to acquire the malignant properties defined by Hanahan and Weinberg as ‘‘hallmarks of
cancer’’. Eventually, however, all these changes lead to a very similar cancerous phenotype. The finding that gene
expression is strongly heterogeneous in tumors that were induced by a standardized protocol in closely related mice
underscores the need for molecular characterization of human tumors and personalized therapy.
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Introduction

Cancer is a collection of more than 100 different diseases, and

each of these diseases consists of several variants that can develop

differently in different individuals. Tumorigenesis occurs due to

changes in the biochemical networks and signaling networks that

drive the normal cell. With time the cell accumulates mutations

and epigenetic changes, which alter the signaling and biochemical

networks, and can lead to cell transformation and cancer [1].

Although there are a few cases in which a disease can be linked to

one major signaling event (e.g. Bcr-Abl in CML [2]), in most

tumors this is not the case. Genetic, epigenetic and environmental

perturbations occur throughout tumor development. Usually, the

tumor is dependent on several oncogenic signals. Furthermore, the

intrinsic genomic instability of cancer cells leads to continual

evolution and to intra-tumor heterogeneity [3].

The microarray technology has become a popular and common

strategy to study gene regulation in cancer [4–7]. Although gene

expression can also be regulated at the level of DNA, by mutation

or epigenetic modifications, as well as post-transcriptionally,

mRNA levels are considered a legitimate measure of gene

expression, and analysis of expression microarrays is a valid

method for analysis of changes in cellular functions. There are

several ways to analyze microarray data, as described in [8–10].

One of the main hurdles in microarray analysis is the heteroge-

neity between biological replicates. In most cases, the analyst

attempts to smooth over the heterogeneity, and looks at averaged

expression changes that are significant in most or all of the

replicates [11,12]. Cluster analysis then delineates groups with

significant differences. Although for many purposes this average

analysis is appropriate, heterogenic data reflect real differences

between biological replicates. These differences, which are

minimized when looking at average expression, can have profound

phenotypic effects.

In recent years, the concept of personalized therapy has gained

popularity [13–15]. Two fundamental principles that underlie the

concept of personalized cancer therapy are that significant

genomic heterogeneity exists among tumors, even those derived

from the same tissue of origin, and that these differences can play

an important role in determining the likelihood of a clinical

response to treatment with particular agents. Such genomic

heterogeneity can involve differences in the spectrum of coding

sequence mutations, as well as focal gene amplifications, deletions,

or translocations. It might also involve epigenetic changes in the

expression profile of a tumor cell, although the sources of

epigenetic variation among tumors remain poorly understood

[16].

In this study, we have looked at tumor heterogeneity in mice of

similar genetic background. These mice shared the same living

conditions and were treated with the same carcinogens, and all

developed squamous cell carcinoma. We compared the results of

averaging microarray data with the results of analyzing each tumor on a

case-by-case basis. The case-by-case analysis highlighted the surprising

degree of heterogeneity of oncogenic signaling between the mice.
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Materials and Methods

As described by Quigley et al., male SPRET/Ei mice were mated

with female FVB/N mice, and the female F1 hybrids were back-

crossed to FVB/N males. Skin tumors were induced on dorsal back

skin of the resulting FVBBX mice by treatment with dimethyl

benzanthracene (DMBA) and tetradecanoyl-phorbol acetate (TPA).

Multiple benign papillomas and malignant squamous cell carcinomas

(SCC) developed. Normal tail skin, papillomas and carcinomas were

harvested when mice were sacrificed due to presence of a carcinoma

and microarray analysis was performed. Microarray data used in the

current analysis were from GEO (GSE21264). 31 mice were analyzed;

for each of these mice we have data for all 3 progression steps (normal,

papilloma, and carcinoma). The mouse ID numbers were the same

IDs as in Quigley et al. [17] Genes were selected for analysis based on

detection and fold change. The starting data set represented 45,101

probe sets. The expression value of every gene in papilloma (P) and

carcinoma (C) was normalized to the average expression value of the

same gene in normal (N), and the resulting ratios were transformed to

log2. For the average analysis, T-test was then invoked, comparing

each of P and C cells to N, and only genes with p value,0.05 were

analyzed further (significant genes). Genes showing greater than 4-fold

change were assigned to functional groups using DAVID software and

KEGG database. Overrepresented gene categories were identified

using DAVID software. Results were filtered to remove categories with

EASE score (a conservative variant of the one-tailed Fisher’s exact

probability) more than 0.001 and FDR.0.

Pathways showing greater than 4-fold change according to

DAVID were detected by the KEGG database.

Data were analyzed in 2 ways:

1. ‘‘Average analysis’’: For each transcript on the microarray, the

expression over all 31 mice at each stage (normal, papilloma and

carcinoma) was averaged. Ratios of expression between the stages,

i.e. papilloma/normal (P/N), carcinoma/papilloma (C/P), carci-

noma/normal (C/N) were calculated and filtered to select

transcripts that showed at least a 4-fold change and had a P-

value#0.05 in a T-test, to get a list of transcripts with significant

changes.

2. ‘‘Heterogeneity analysis’’: To compare the changes in gene

expression during cancer progression between different indi-

viduals, we analyzed each mouse separately, using the

expression data for normal skin, papilloma and carcinoma

from that specific mouse. For each transcript, P/N, C/P and

C/N were calculated and those transcripts that had at least a 4-

fold change were chosen for further analysis.

Figure 1. Analysis of individual mice reveals diversity in transcript number that changed during carcinogenesis. The number of
transcripts that were up-regulated (left panel) or down-regulated (right panel) at least 4-fold in each mouse during the transition from: A. normal skin
to carcinoma (C/N); B. papilloma to carcinoma (C/P); and C. normal skin to papilloma (P/N). Mouse IDs refer to the IDs in the original data [17].
doi:10.1371/journal.pone.0057748.g001

Heterogeneous Gene Expression in SCC Development
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DAVID analysis
The lists of genes with 4-fold change were inserted into DAVID

for annotation analysis. Only DAVID annotations that had P-

values equal to or less than 0.001 were considered further. The

annotations lists for the individual mice were analyzed using an

algorithm that enabled us to examine which annotations were

common to two or more mice and which were unique.

KEGG analysis
For each mouse, we fed into KEGG a list of all the transcripts

that were significantly changed between carcinoma and normal

and searched for pathways that were altered in all or many of the

mice. We then looked at the gene list in each category and asked

which genes appeared in all of the mice.

Results

Heterogeneity in transcriptional regulation among
carcinomas from different mice

Quigley et al. [17] induced skin tumors on dorsal back skin of

mice from a Mus spretus/Mus musculus backcross ([SPRET/

Ei6FVB/N]6FVB/N) using dimethyl benzanthracene (DMBA)

and tetradecanoyl-phorbol acetate (TPA). This treatment induced

Figure 2. Heterogeneity in DAVID analysis of individual mice. The Y axis represents the number of mice in the group, and the X axis
represents the number of significant annotations that were increased (left panel) or decreased (right panel) in each group. The annotations were
examined in: (A) carcinomas vs. normal skin (C/N); (B) carcinomas vs. papillomas (C/P), and (C) papillomas vs. normal skin (P/N). Only 4 annotations
were increased in C/N in all 31 mice, while 126 annotations were each increased in only one mouse.
doi:10.1371/journal.pone.0057748.g002

Figure 3. Differential regulation of specific annotations in
DAVID. Selected annotations were analyzed to examine the manner in
which the specific pathway is regulated. Venn diagrams show the
number of mice in which the pathway showed negative (cyan), positive
(pink), or both negative and positive regulation (purple).
doi:10.1371/journal.pone.0057748.g003
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multiple benign papillomas as well as malignant squamous cell

carcinomas (SCC) and spindle cell carcinomas. Quigley et al.

deposited Affymetrix Mouse Genome 430 2.0 array data from

normal tail, papilloma and carcinoma for 31 mice. To obtain an

overall picture of transcription variation among these 31 mice, we

first asked how many transcripts were induced or repressed 4-fold

in each mouse. A 4-fold (rather than the more usual 2-fold) cutoff

was chosen, in order to minimize heterogeneity between mice.

Even so, there was a marked variation between the mice in the

numbers of transcripts that were up-regulated/down-regulated at

each progression step (Figure 1).

DAVID annotations vary among mice
We asked whether this mouse-to-mouse variation in transcrip-

tion reflects the pathways that change during carcinogenesis in

each mouse. To this end, significant genes were annotated using

DAVID, and we examined which annotations were common to

multiple mice and which were unique.

Few annotations were significant in all 31 mice: only four

annotations were up-regulated at least four-fold in all 31

carcinomas compared to normal skin (C/N) and two annotations

were down-regulated (Figure 2 and Table S1A and S1B). The

categories of cell migration and cell motility (as well as the near-

synonymous terms cell localization and cell motion) were up-

regulated between C/N in all 31 mice. Increased migration and

motility are characteristic of epithelial to mesenchymal transition

(EMT) and increased invasiveness [18,19]. We note that in some

mice the categories of cell migration and cell motility were induced

by the papilloma stage (P/N), whereas in others they were

significantly induced upon progression from papilloma to carci-

noma (C/P). As expected for categories that were over-represented

in all 31 mice, these categories were also over-represented in the

average analysis. Taken together, the data suggest that carcinoma

development in all of the mice was dependent on EMT-like

processes.

The annotations ‘‘fatty acid metabolic process’’ and ‘‘oxidation

reduction’’ showed at least a four-fold decrease in all 31 mice (C/

N). Upon more careful analysis, we found that the fatty acid

processes that were decreased were mainly catabolic processes,

presumably reflecting the fact that proliferating cells require fatty

Figure 4. Heatmaps reveal heterogeneity between all 31 mice. Transcripts that were changed at least four-fold according to the average
analysis are displayed with their expression level in each mouse separately. Although the mice can be clustered into closely related groups, no two
mice show exactly the same expression pattern.
doi:10.1371/journal.pone.0057748.g004
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acids for membrane assembly. Indeed, the annotation ‘‘fatty acid

catabolic processes’’ was down-regulated in most of the mice,

albeit with a P-value that did not reach our stringent cutoff of

0.001.

Most of the DAVID categories appeared in only a minority of

mice. In the comparison of carcinoma to normal skin, 126

categories were increased in expression at least four-fold in one

mouse only, and 47 were decreased. Eighty-two percent of the

categories that were increased at least four-fold were significant in

less than half of the mice: 381 categories were increased in 15 or

fewer mice, out of 466 categories that were increased in any

number of mice. Eighty-eight percent of the categories that were

decreased at least four-fold were significant in less than half of the

mice: 151 categories were decreased, out of 172 categories in any

number of mice (Figure 2). The variability in significant pathways

identified by DAVID implies that different mechanisms can

contribute to cancer progression in these mice, and that the

features that characterize a cancer cell can arise from different

molecular events.

Heterogeneity in regulation within DAVID annotations
To further investigate the differences between the mice, we

focused on a few specific annotations. Even when looking only at

those mice in which DAVID designated a pathway as significant,

the mode of regulation of the given category was different for

different mice.

Cell death. In the average analysis, programmed cell death

was not over-represented in DAVID. In the analysis of the

individual mice, the category ‘‘regulation of programmed cell

death’’ (which includes both positive and negative regulation) was

over-represented in 18 mice. The category ‘‘negative regulation of

cell death’’ was over-represented in DAVID, but only in 6 mice.

(In two of these mice, the category ‘‘positive regulation of cell

death’’ was also increased (see below)). The complementary

category, ‘‘positive regulation of cell death’’, was not down-

regulated in any of the mice. These data imply that decreased

apoptosis is not a prerequisite for SCC formation in this model.

Surprisingly, the category ‘‘positive regulation of cell death’’ was

up-regulated in 10 carcinomas; in two of these, ‘‘negative

Table 1. ‘‘Average analysis’’ and ‘‘heterogeneity analysis’’ of
cell death regulation reveal different genes.

Gene name Number of mice Gene name Number of mice

Il1b 14 Bid 4

Casp3 13 Casp12 4

Apaf1 13 Ripk1 3

Xiap 12 Akt2 3

Casp6 12 Ngf 3

Cflar 11 Bax 3

Akt1 10 Ikbkb 3

Ppp3r1 10 Pik3cg 2

Ppp3cb 10 Tradd 2

Bcl2l1 10 Fadd 2

Prkacb 9 Csf2rb2 2

Csf2rb 8 Prkar1a 2

Traf2 7 Casp9 1

Il1rap 7 Atm 1

Pik3cd 6 Birc2 1

Capn1 6 Birc3 1

Il1a 6 Irak4 1

Prkar2b 5 Capn2 1

Trp53 5 Bad 1

Akt3 5 Casp7 1

Casp8 4

Analysis of gene lists (KEGG) from all 14 mice in which the DAVID annotation
‘‘regulation of programmed cell death’’ was significant. Highlighted genes were
also significant according to the average analysis of all 31 mice.
doi:10.1371/journal.pone.0057748.t001

Table 2. ‘‘Average analysis’’ and ‘‘heterogeneity analysis’’ of
cell cycle reveal different genes.

Gene name Number of mice Gene name Number of mice

Ccnb1 16 Cdkn1a 5

Ywhag 16 Wee1 5

Ccnd1 16 Mcm6 4

Tgfb1 16 Smc1a 4

Gm5593 16 Mcm4 4

Cdk1 16 Mad1l1 4

Bub1 16 Cdc25b 4

Cdc6 15 Ywhaz 4

Mcm2 14 Cdc45 3

Ccna2 13 Cdc25a 3

Stag1 13 Sfn 3

Mad2l1 13 Trp53 3

Cdk4 13 Smad3 3

Mcm5 13 Chek2 3

Plk1 12 E2f1 2

Bub1b 12 Ywhah 2

Cdkn2a 12 Cdc23 2

Ccnb2 12 Pttg1 2

Anapc10 11 Ccne2 2

Cdc25c 10 Gadd45a 2

Cdc20 10 Rbl2 1

Rad21 10 Mdm2 1

Mcm7 8 Cdkn1c 1

Rbl1 8 Fzr1 1

Bub3 7 Atm 1

Ywhaq 7 Anapc1 1

Ccne1 7 Espl1 1

Skp2 7 Gadd45b 1

Tgfb3 7 Tfdp1 1

Ywhab 6 Anapc4 1

Chek1 6 Pkmyt1 1

Mcm3 6 Cdc26 1

Ttk 6 Cdc16 1

Ccnd2 6 Cdc27 1

Dbf4 5 Cdkn2d 1

Cdk6 5

Analysis of gene lists (KEGG) from all 16 mice in which the DAVID annotation
‘‘cell cycle’’ was significant. Highlighted genes were also significant according to
the average analysis of all 31 mice.
doi:10.1371/journal.pone.0057748.t002
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regulation of cell death’’ was also up-regulated, so these processes

may have balanced each other out. Similarly, in four mice, the

DAVID annotation ‘‘regulation of programmed cell death’’ was

significant, but neither ‘‘negative regulation of cell death’’ nor

‘‘positive regulation of cell death’’ was displayed, because a small

number of genes of either type was induced, and the P-values for

the subclasses ‘‘negative regulation of cell death’’ and ‘‘positive

regulation of cell death’’ were greater than 0.001.

In 8 mice there was a clear increase in ‘‘positive regulation of

cell death’’. In these 8 mice, the apoptosis signal was apparently

turned on in the developing tumors, and nonetheless the tumors

progressed into carcinomas. This finding implies that other

cancer-promoting pathways were dominant, overcoming the

increased apoptotic potential of these tumor (Figure 3).

Signal transduction. Regulation of signal transduction was

significant in 22 mice. (Actually, DAVID does not have a category

‘‘regulation of signal transduction’’; rather there are two annota-

tions ‘‘positive regulation of signal transduction’’ and ‘‘negative

regulation of signal transduction’’.) In 55% (12/22) of the mice the

category ‘‘positive regulation of signal transduction’’ was signifi-

cant; in 9% (2/22) the category ‘‘negative regulation of signal

transduction’’ was significant, and in 36% (8/22) of the mice both

categories were significant, meaning that the regulation of signal

transduction was both positive and negative. These data are not

unexpected, since signal transduction includes oncogenic and

tumor suppressive processes.

In summary, in the analysis of the individual mice, it became

clear that even annotations with a clear relevance to cancer were

significant in only some of the mice. Moreover, even among the

mice for which a given annotation was significant, some mice

showed overall positive regulation of the annotation, whereas

others showed negative regulation of the same annotation. This

compounds further the finding of heterogeneity between individ-

ual mice with the same tumors.

Differences between ‘‘average analysis’’ and
‘‘heterogeneity analysis’’

In the ‘‘average analysis’’ we took into account all the biological

replicates of the same time point (e.g. carcinoma) and averaged

them to get one value. We then examined the changes in gene

expression level between the averaged value of carcinoma and

normal, to get the most prominent changes. Figure 4 shows

heatmaps for all 31 mice, of all of the transcripts that showed at

least a four-fold change in the ‘‘average analysis’’. It can clearly be

seen that each of the mice has a unique pattern of transcriptional

changes between C/N.

In the ‘‘heterogeneity analysis’’, for each annotation, we looked

at the ratios between the expression value of each transcript in

carcinoma and normal in each mouse separately. This analysis

emphasizes the differences between the mice (see below).

We compared the annotations from the two analyses that were

denoted as significant. There were pronounced, biologically

relevant differences between the analyses (Table 1 and 2). At

the gene level, there were several cancer-related genes that were

identified in a majority of the mice according to the heterogeneity

analysis, but were not identified by the ‘‘average analysis’’

(Table 1 and 2). For example AKT1, a major anti-apoptotic

gene, was not identified in the average analysis. In the

heterogeneity analysis, AKT1 was prominent: it was induced in

10 mice, out of the 14 mice in which the DAVID annotation

‘‘regulation of programmed cell death’’ was significant. On the

other hand, TP53 was identified in the average analysis, but was

only altered in 5 of 14 mice in which ‘‘regulation of programmed

cell death’’ was significant (Table 1). Similarly, for the annotation

‘‘cell cycle’’, 8 genes that were significantly increased between C/

N in more than half of the mice were not identified by the average

analysis. Three genes that were significant in the average analysis

were significantly induced in less than half of the mice (Table 2).

These data demonstrate that small effects in a large number of

samples can be ignored by the average analysis, whereas extreme

changes in a minority of samples can have an undue effect on the

average analysis. The mouse-by-mouse analysis gives a more

informative picture of the significant changes, although it is of

course much more tedious than the average analysis.

Heterogeneity in cancer hallmarks: Comparison of two
mice

In order to examine the role of heterogeneity in tumor

progression in the individual mice, we looked at the specific

transcripts that were significantly up-regulated or down-regulated

between carcinoma and normal skin. For this purpose, we inserted

a list of the significant genes for each mouse into the KEGG

Table 3. Heterogeneity in cancer hallmarks - Comparison of Mouse ID7 and Mouse ID12.

Hallmark Mouse ID 7 Mouse ID 12 Common

Sustaining Proliferative Signaling FGF7, FGFR1, HGF, IGF2R, PDGFRA,
PDGFRB

PGF, VEGFA, CCNB1, CCNE1, CDC25A,
CDC6

IGF2BP2, HBEGF, CCNA2, CDK1

Evading Growth Suppressors TGFBR1 TGFB1, TGFBR2

Resisting Cell Death BCL11A, BCL2L11, AKT3, BCL2A1 XIAP, BCL2L15, MCL1 BCL3, IKBKE,

Inducing Angiogenesis FGF7, PDGFRA, PDGFRB, CCL2, NRP1 VEGFA, TGFBR1 TGFB1, TGFBR2, TNFAIP2

Activating Invasion and Metastasis CDH2, FOXC2, GNG11, MSN, SNAI1,
VCAN, VPS13A,

SNAI3, SPARC, AHNAK, BMP1, CALD1, COL1A2, CLO5A2,
FN1, ITGA5, MMP3, MMP9, SERPINE1,
STEAP1, WNT5A

Genome Instability and Mutation BUB1B, BUB3 BUB1

Tumor-Promoting Inflammation TLR4, TRAF1,TRAF2, IFNAR2 IL1A, IL1RAP, TNFRSF12A, TNFSF9 IL1B, IL18RAP, IL6, TNFAIP2, TGFB1, SPP1,
CXCL1, CXCL16, CXCL2, CXCL3

Reprogramming Energy Metabolism ENO1, ENO3, PGAM2 PFKL HK3

Evading Immune Destruction IL10, PTGS1 VEGFA TGFB1, PTGS2

The table displays central cancer hallmark genes [20] for which the expression level increased at least four-fold in one of the mice (Mouse ID7 or Mouse ID12) or in both
mice.
doi:10.1371/journal.pone.0057748.t003
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database. Only 49 genes were up-regulated and 37 genes were

down-regulated in carcinoma vs. normal in all 31 mice. In each

KEGG pathway, there were genes that were common to most or

all of the mice, but most of the genes were significant in a minority

of the mice.

To assess the role of heterogeneity in cancer, we examined the

contribution to the cancer phenotype of the genes that were

regulated in all the mice and of the genes that were regulated in

only one or a few mice. To this end, we analyzed in depth the

microarray data from two mice: Mouse ID7 and Mouse ID12.

These mice were moderately, but not extremely, distant from one

another in the heatmap shown in Figure 4. Both mice had

developed papillomas by 10 weeks following treatment. The

carcinomas from both mice were well differentiated, although

mouse 7 had a class 1 tumor and mouse 12 had a class 2 tumor

[see: GEO (GSE21264)]. The transcription of 417 genes was

significantly enhanced, and the transcription of 375 genes

significantly reduced, in the carcinomas from both mice relative

to normal tail skin. The induced genes that were common to both

mice included many genes that are important in the context of

cancer (Table 3 and Table S2). Yet, many more genes were

induced in only one of the mice than were induced in both. 727

genes were up-regulated in Mouse ID7 but not in Mouse ID12,

and 523 genes were up-regulated in Mouse ID12 but not in Mouse

ID7 (Table 3 and Table S2). 361 genes were significantly

reduced between carcinoma and normal skin in Mouse ID7 but

not in Mouse ID12, and 224 genes were reduced in Mouse ID12

but not in Mouse ID7. Like the common genes, many of the

‘‘mouse-specific’’ genes have a known involvement in cancer.

We asked how the genes that were significantly altered in

carcinoma in these two mice were related to the squamous cell

carcinomas that the mice developed. Hanahan and Weinberg

[20,21] have defined several ‘‘hallmarks of cancer’’. We therefore

looked at genes involved in these hallmarks, and assessed genes

with altered transcription in both mice and genes that were altered

in only one of the mice (Table 3).

Sustained proliferative signaling is a central hallmark of cancer.

Several central growth factors and cell cycle genes were

transcriptionally induced in the carcinomas of both Mouse ID7

and Mouse ID12 (Table 3). With respect to the mouse-specific

genes, in Mouse ID7 the growth factors PDGFRa, PDGFRb,

IGF2R and PDGFC were induced, whereas in mouse ID12 the

growth factors TGFBR, PGF and VEGFA were induced. Further,

in mouse ID12 cell cycle promoting genes, including CYCLIN B1,

CYCLIN E1, CDC6 and CDC25a, were induced. Thus, in the

carcinomas from both mice there is evidence for induction of

sustained proliferative signaling, engendered by both shared and

mouse-specific factors.

A related concept to sustained proliferation is the hallmark of

enabling replicative immortality. There was no evidence for

altered transcription of genes involved in telomere maintenance in

either of the mice. Telomere maintenance may be affected by

epigenetic mechanisms, which cannot be detected in expression

microarrays.

Another hallmark of cancer is resisting cell death. Several anti-

apoptotic genes were induced in both Mouse ID7 and Mouse

ID12. In addition, several anti-apoptotic genes were induced in

either Mouse ID7 or Mouse ID12. In mouse ID7, there was

decreased transcription of phosphatidylinositol 3 kinase C

(PIK3C), but there was a compensatory increase in transcription

of AKT3. Thus, although some of the pathways were different,

overall, there was an apparent increase in anti-apoptotic function

in the carcinomas of both mice.

The transcription of several key inflammatory factors, including

IL1b, IL6 and TGFb1, was induced in the carcinomas of both

mice. Nonetheless, extensive heterogeneity was observed between

the two mice in other genes connected with inflammation (Table
S3). In the carcinoma from Mouse ID7, there was strong induction

at the level of transcription of numerous cytokines, chemokines

and related genes. Mouse ID12 had induction of fewer genes, but

these included major pro-inflammatory genes, such as IL1a and

members of the TNF and TNFR families. A related hallmark,

which also involves cytokines, is evasion of immune destruction of

the tumor. IL10 is overexpressed in Mouse ID7, whereas VEGFA

is overexpressed in Mouse ID12. Both of these can lead to immune

suppression.

In addition to their roles in tumor-promoting inflammation, the

pro-inflammatory genes also activate invasion and metastasis.

Many additional genes that are characterized as promoting

invasion and metastasis were transcriptionally induced in the

carcinomas from both or either of the mice. FN1, BMP1,

COL1A2, COL5A2, MMP3 and MMP9 were induced in tumors

Figure 5. Heatmap of Mouse ID7 and Mouse ID12. A. Heatmap showing all transcripts that showed $4-fold change between carcinoma and
normal skin in Mouse ID7 and their corresponding fold-change in Mouse ID12. B. Heatmap showing all transcripts that showed $4-fold change
between carcinoma and normal skin in Mouse ID12 and their corresponding fold-change in Mouse ID12. C. Heatmap showing the fold-change of the
transcripts that were significant in the average analysis, in Mouse ID7 and Mouse ID12.
doi:10.1371/journal.pone.0057748.g005
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from both mice. Presumably, the fibronectins and collagens were

induced in the tumor stroma. Thus, the tumors from both mice

showed evidence of shared and mouse-specific transcriptional

induction of genes promoting inflammation, invasiveness and

metastasis.

The TGFb pathway appears to be transcriptionally enhanced in

both Mouse ID7 and ID12, which would be expected to lead to

angiogenesis, another hallmark of cancer. It is notable that Mouse

ID7 had increased PDGFR, whereas Mouse ID12 had an increase

in VEGFR. These parallel pathways would both encourage

angiogenesis. Overexpression of TGFb could also lead to EMT

and changes in cell-cell contacts, which could cause another

hallmark, namely, evasion of growth suppression [22].

An important hallmark of cancer is reprogramming energy

metabolism. Many metabolic genes were induced or repressed in

both mice, and in each mouse separately (Table S4). As an

example of how the cancers in Mouse ID7 and ID12 could evolve

due to both shared and specific changes in metabolism, we looked

at enzymes involved in glycolysis. Hexokinase 3 (HK3) was

induced in both mice. Enolase (ENO1 and ENO3) and

phosphoglycerate mutase 2 (PGAM2) were induced only in

Mouse ID7, whereas phosphofructokinase (PFKL) was induced

only in Mouse ID12. There was a decrease in transcription of

several members of the Cytochrome P450 family in both mice,

which was even more striking in Mouse ID7. This decrease would

be expected to result in a decrease in aerobic respiration (Table
S5).

In the article by Quigley et al. [23], the authors analyzed copy

number changes in the tumors and showed evidence of genome

instability, another hallmark of cancer. In our analysis of gene

transcription, we found an increase in transcription of BUB1B and

BUB3 in Mouse ID7, and a parallel increase in BUB1

transcription in Mouse ID12. Thus, the two mice had similar

but different changes in transcription that could lead to genome

instability. Although both p53 and pRB are considered to be

essential ‘‘guardians of the genome’’, they are frequently

overexpressed in human tumors, and overexpression of p53 or

pRB is often associated with poor prognosis [24,25]. We note that

Mouse ID7 had increased transcription of p53, whereas Mouse

ID12 had increased transcription of pRBL1.

To summarize, the tumors from both Mouse ID7 and Mouse

ID12 showed changes that were consistent with the hallmarks of

cancer. Some of the transcriptional changes were shared, but

many were specific to the individual mice.

Discussion

The process of tumorigenesis is often highly heterogeneous, and

a similar phenotype may arise from different molecular aberra-

tions. Several recent studies have analyzed intra-tumor and inter-

tumor heterogeneity in vivo and in vitro [26–30]. Accordingly, it

should be taken into account that changes in gene expression

during tumor development are inherently highly variable. When

analyzing microarray data using the standard approaches, effects

that are unique to only one or few of the animals may be

overlooked. Contrarily, an exceptionally significant change in a

single sample may shift the average and thus results may be

misleading. Here, we examined the heterogeneity between

different tumors, in an attempt to understand how different

transcriptional alterations can lead to the same cancer phenotype.

In each developing tumor there are many signals that can lead to

many outcomes, and the most dominant ones will determine the

tumor’s fate.

In looking at the overall transcriptional patterns in the tumor,

we are looking at a snapshot of the transcriptional activity at a

given time (normal tail, papilloma or carcinoma). Although it is

believed that tumor development is driven by a small number of

‘‘driver’’ mutations, thousands of ‘‘passenger’’ mutations are found

by the time a tumor is detected. In the microarray analysis, we

looked at overall changes in cellular activity, whether these were

caused by drivers or by passengers. We saw extensive differences

between all 31 mice, both in overall transcriptional changes and in

the cellular functions that were significantly changed in each

mouse.

Mouse ID7 and Mouse ID12 showed very different overall

patterns of transcriptional change between carcinoma and normal

skin (Figure 5). Yet, the detailed analysis of Mouse ID7 and

Mouse ID12 provided a rational explanation for their shared

cancer phenotype. When we analyzed the hallmarks of cancer

[20,21] we found that these were enhanced in both mice, both via

shared pathways and via pathways that were unique to each

mouse.

These findings are all the more surprising when one considers

that the mice analyzed were extremely closely related to one

another, and that the cancers were all caused by an identical

treatment regime. In humans, of course, neither of these

conditions pertains. Therefore, the degree of heterogeneity

between human tumors is expected to be much greater. Our data

emphasize the need for individualized cancer therapy. Individu-

alized therapy requires appropriate tumor characterization, and

the ability to choose tailored treatment that is appropriate to the

molecular aberrations in the specific tumor.

To summarize, we found that mice sharing very similar genetic

background, living in the same environment and treated with the

same carcinogens develop the same kind of cancer, squamous cell

carcinoma, but via different molecular mechanisms. We show that

in each mouse different genes can participate in the hallmarks that

lead to the tumorigenic phenotype, such that each tumor has a

unique pattern of gene expression.
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