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Abstract

Plant functional traits capture important variation in plant strategy and function. Recent literature has revealed that within-
species variation in traits is greater than previously supposed. However, we still have a poor understanding of how
intraspecific variation is coordinated among different traits, and how it is driven by environment. We quantified intraspecific
variation in wood density and five leaf traits underpinning the leaf economics spectrum (leaf dry matter content, leaf mass
per unit area, size, thickness and density) within and among four widespread Nothofagus tree species in southern New
Zealand. We tested whether intraspecific relationships between wood density and leaf traits followed widely reported
interspecific relationships, and whether variation in these traits was coordinated through shared responses to
environmental factors. Sample sites varied widely in environmental variables, including soil fertility (25–900 mg kg–1 total
P), precipitation (668–4875 mm yr–1), temperature (5.2–12.4 uC mean annual temperature) and latitude (41–46 uS). Leaf traits
were strongly correlated with one another within species, but not with wood density. There was some evidence for a
positive relationship between wood density and leaf tissue density and dry matter content, but no evidence that leaf mass
or leaf size were correlated with wood density; this highlights that leaf mass per unit area cannot be used as a surrogate for
component leaf traits such as tissue density. Trait variation was predicted by environmental factors, but not consistently
among different traits; e.g., only leaf thickness and leaf density responded to the same environmental cues as wood density.
We conclude that although intraspecific variation in wood density and leaf traits is strongly driven by environmental factors,
these responses are not strongly coordinated among functional traits even across co-occurring, closely-related plant
species.
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Introduction

Consistent correlations among plant traits, and between plant

traits and environment, are the basis for defining and interpreting

plant strategies [1–3]. Interspecific correlations among leaf traits

and their relationships with the environment have been thor-

oughly documented [4–6] especially those contributing to the ‘leaf

economics spectrum’ [2]. Although there is clear evidence for

consistent trait correlations and trait syndromes among species,

these have not been rigorously tested within species. Recent studies

have revealed that intraspecific variation is a major component of

trait variation, both within and among communities, more so than

previously supposed [7–12]. Intraspecific and intrageneric studies

are a strong test of the functional link between traits [13,14]

because they avoid the problem of trait associations derived from

shared ancestry and fortuitous trait divergences [15]. Further, as

different mechanisms may constrain trait–trait combinations

within species to those widely observed among species [16,17],

studies of both inter- and intraspecific variation are valuable for

gaining a comprehensive view of the drivers of trait variation.

Similarly, intraspecific studies of trait–environment relationships

complement studies of trait variation among communities as these

are confounded by species turnover along environmental gradients

[18–20]. Intraspecific correlations among plant traits and with

environment have great promise for revealing functional associ-

ations among traits, and between traits and the environment

[19,21].

Leaf mass per unit area (LMA) forms the backbone of the leaf

economics spectrum because it integrates several aspects of leaf

construction including leaf dry matter content (LDMC), tissue

density and leaf thickness [4,5,22]. LMA is also closely linked to

leaf-level processes such as photosynthetic rate, as well as whole-

plant performance [23]. Although LMA and its component traits

are typically intercorrelated, the individual components of LMA

can also vary somewhat independently, reflecting their specific

functions and responses to the environment [4,24–26]. LMA is

strongly linked to photosynthetic rates through the influence of leaf

thickness and leaf density on leaf volume and intercellular

resistance to CO2 conductance, respectively [4]. LDMC and leaf
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density have been advocated as better predictors of plant

performance along resource gradients than LMA, because they

are more direct measures of leaf construction and allocation

[5,24,26]. Given the unique functions of each component trait, we

propose that the relationships between each leaf trait and other

plant functional traits (e.g., stem and root traits) cannot be

generalised from LMA alone. Further, leaf trait responses to

environment are likely to vary according to the specific function of

each component trait of LMA. In this study, we test the

consistency of relationships between leaf traits and wood density

– a key stem trait – within species using several component traits of

the leaf economic spectrum rather than solely LMA.

Interspecific leaf trait variation has been linked to variation in

roots [15,27] and stems [28] in an attempt to define whole-plant

axes of trait variation [3]. Wood density is one of the more widely

studied stem traits [29,30] as it is an easily measured estimate of

resource allocation to structural support. Despite the expectation

that leaf and wood traits should be closely coupled along a

spectrum of plant strategies from fast-growing, resource-acquiring

species with low investment in leaf and wood tissues to slow-

growing, resource-conserving species with high investment

[28,29], relationships between wood density and leaf traits are

complex and often point to orthogonal rather than parallel axes of

variation. However, many studies report that species having dense

wood also have relatively small leaves [31–34]. This has been

interpreted as an adaptation to water limitation, with smaller

leaves and higher wood density both promoting greater water use

efficiency [35,36]. Hence, traits are correlated through a shared

link to an environmental factor. Shared responses to environment

drive correlations between traits, leading to shifts in trait

syndromes along environmental gradients. High LMA is some-

times associated with high wood density [37–39], but non-

significant relationships have also been reported [36,40,41].

Correlations between wood density and the component traits

underpinning LMA (i.e., LDMC, leaf size, leaf thickness and leaf

density) have received relatively little attention but indicate that

species with a high wood density also have high LDMC [37,42]

while relationships with leaf density and thickness are less clear.

The two studies linking intraspecific variation in wood density

and LMA have reached contradictory conclusions. There was no

relationship between LMA and wood density for Pinus sylvestris

sampled across Europe [19], whereas LMA and wood density of

Nothofagus pumilio were correlated across sites, but not within

individual sites along elevation gradients [21]. Intraspecific

relationships between wood density and other component leaf

traits of LMA have not been investigated either within commu-

nities or across wide environmental gradients.

We quantified intraspecific variation in wood density and five

leaf traits that underpin the leaf economics spectrum within four

species of Nothofagus throughout the South Island of New Zealand.

Our sampling quantified intraspecific trait variation of Nothofagus

species both within and among 30 sites, and encompassed wide

environmental variation along both latitudinal and altitudinal

gradients. Nothofagus is the most abundant tree genus in New

Zealand forests, is common throughout the Southern Hemisphere

and is ideal for evaluating the extent of intraspecific variation

under natural conditions at large (i.e., .700 km) spatial scales. We

first test whether LMA and the component leaf traits contributing

to LMA show consistent relationships with wood density within

each species. We specifically test whether the widely reported

interspecific relationships between wood density and leaf traits are

upheld within species. We then examine whether wood density

and each of the five leaf traits share common responses to

environmental variation. Finally, these data are used to evaluate

whether LMA is a functional surrogate for the underpinning

component traits, or whether each leaf trait exhibited distinctive

functional responses to variation in wood density and the

environment.

Methods

Site and species selection
We sampled the four evergreen Nothofagus species found in New

Zealand – N. menziesii (Hook.f.) Oerst., N. fusca (Hook.f.) Oerst., N.

solandri (Hook.f.) Oerst. and N. truncata (Colenso) Cockayne. N.

solandri is treated here as a single species without distinction

between its two commonly recognised varieties (N. solandri var.

solandri and N. solandri var. cliffortioides (Hook.f.) Poole), as these

hybridise abundantly [43] and many intermediate forms were

sampled here. All species are common and widespread [44], long-

lived (250–600 years), and often dominate forest communities

[45]. N. truncata has the narrowest environmental niche, being

confined to low fertility soils and sites with a mean annual

temperature (MAT) of $ c. 9 uC [45,46]. N. fusca is widespread

and excluded only from the coolest (, c. 6.5 uC) and driest (, c.

600 mm mean annual rainfall, MAR) sites. N. menziesii and N.

solandri have wide environmental niches and occur from sea level

to treeline (MAT c. 5 uC) [45,46]. We sampled Nothofagus at 30 sites

throughout the environmental diversity of southern New Zealand

(Fig. 1; Table S1). Sites were selected to capture the full range of

environments encountered by each Nothofagus species. Sites were

visited during March–April 2010 (late austral summer) to sample

stem wood, canopy leaves and mineral soil. We sampled 9–11

canopy trees of each Nothofagus species at each site, ranging in

diameter at breast height from 51 to 785 mm. Sampled areas were

,1000 m2 (c. 30630 m) and were selected to be homogeneous,

with minimal local variation in soil fertility due to microtopo-

graphy.

Plant traits
All individuals sampled were canopy trees with fully illuminated

foliage. All trait measurements followed standard protocols [47].

For foliar traits we used 8–12 leaves from each individual of each

species at each site to measure: leaf dry matter content (LDMC,

mg g–1) as the ratio of oven-dried (at 60 uC for 48 h) leaf mass to

fully saturated leaf mass (leaves were removed from branches,

placed between moist tissue paper and stored in sealed plastic bags

in a fridge overnight); leaf thickness (mm) of the lamina (avoiding

the midrib) measured using a Measumax digital micrometer; fresh

leaf area (mm2), using Winfolia and an Epson flatbed scanner

(Epson Corporation, Nagano, Japan); leaf mass per unit area

(LMA, g m–2) as the ratio of dry mass to fresh leaf area; and leaf

density (mg mm–3) as the ratio of dry mass to fresh leaf volume

(fresh leaf area 6 thickness). Canopy leaves were sampled using a

shotgun. We used the mean of the 8–12 leaves from each

individual in all analyses. One wood density (oven-dry mass

divided by green volume, kg m–3) sample was taken at breast

height (1.35 m). For stems with dbh $ 120 mm, we used a 21-mm

auger to sample each individual through to the stem centre. The

depth of the augured hole was measured to the nearest millimetre

and the volume of the hole calculated as a cylinder. Wood density

of stems with dbh of 51–120 mm was measured on stem discs that

were kept moist prior to cutting a regular volume in the laboratory

using a bandsaw. All wood samples were air-dried (up to 2 months)

and then oven-dried (70 uC) over several weeks until a stable mass

was obtained. A small number of stems of two species in the dbh

range of 80 to 120 mm were measured using the auger and these

were compared to samples collected using discs to assess whether

Intraspecific Trait Variation in Nothofagus
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Figure 1. Distribution of four Nothofagus spp. in New Zealand and sampling locations for six functional traits. Sampling locations (filled
circles) are shown relative to modelled distributions [71] in grey shading for (a) N. solandri (b) N. menziesii (c) N. fusca and (d) N. truncata.
doi:10.1371/journal.pone.0058878.g001
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the sampling method affected estimates of wood density, while

accounting for stem dbh. There was no statistical evidence that

sampling method affected wood density in N. menziesii (General

Linear Model, F1,8 = 0.01, P = 0.948) or N. solandri (General Linear

Model, F1,13 = 2.32, P = 0.152).

Climate and soil chemistry
MAT and MAR for each site were modelled using thin-plate

splines fitted to data from nearby meteorological stations [48].

Elevation was taken from a topographic map. Soil nutrient

availability (total P) was estimated from a pooled mineral soil

sample at each site. Five mineral soil (0–100 mm) subsamples were

collected systematically from each site with a corer of 65-mm

internal diameter. These subsamples were pooled per site and air-

dried, sieved through 2-mm mesh, and used for measurement of

gravimetric soil water content and total P (ignition and dissolution

in 0.5 M sulphuric acid). Results are expressed on an oven-dry-soil

(105 uC) basis. Soil total P is used as a single measure of soil

nutrient availability as it has demonstrated relationships in New

Zealand with forest community composition [49], plant nutrient

use efficiency [50] and functional trait spectra [15].

Statistical analyses
Plant traits can vary with ontogeny [51] and to remove size-

related variation in each trait before testing for trait-trait and trait-

environment correlations, we used a general linear model to

determine the relationship between tree diameter at breast height

and each trait within each species. The residuals from these

models were used in all subsequent analyses. Pearson’s correlations

were run for each trait-trait and trait-environment relationship

within each species. Statistical significance of each correlation was

assessed after Holm-Bonferroni correction tests for multiple

comparisons. All traits were log-transformed prior to analysis, to

meet assumptions of normality and to linearise trait–trait and

trait–environment relationships. In addition to MAT, MAR and

soil P, we included elevation and latitude as indirect measures of

environmental variation as they commonly emerge as strong

predictors of trait variation and are widely-explored ecological

gradients [20,23,52]. Given that our five environmental predictors

are necessarily correlated to some extent (Table S2), we used

correlations of each environmental variable and each trait within

species to identify consistent signals across species and traits.

Additionally, we used multiple regression to predict intraspecific

variation in each trait from the five environmental variables, for

each species. The goal was to identify whether consistent

combinations of environmental variables predicted intraspecific

variation in each trait in each of the four species. We used linear

regression models and backwards selection to remove non-

significant terms from a full model using all five environmental

variables.

Results

The amount of intraspecific variation differed widely across the

six plant traits (Table S3). LDMC and wood density both varied

less than two-fold and values were conserved within species,

resulting in low coefficients of variation (mean CVs across species

of 5.2% for LDMC and 8.6% for wood density; Table S3). Leaf

thickness, leaf density and LMA varied around two-fold within

species, with mean CVs across species of 14.0%, 13.7% and

16.1%, respectively. Leaf size varied widely within species with a

mean coefficient of variation across the four species of 30.0%

(Table S3).

Intraspecific correlations between wood density and leaf
traits

Leaf traits were only correlated with wood density in some

species, and for some traits (Table 1; Fig. 2). Leaf size did not

decrease with increasing wood density within any of the four

species, despite this being the most consistently reported pattern of

interspecific covariation between wood density and a leaf trait

(Table 1; Fig. 2). Similarly, there was no evidence for an

intraspecific relationship between wood density and LMA. There

was weak intraspecific evidence that LDMC and leaf density both

increased with wood density, pointing to coordinated investment

in dry matter allocation to both leaves and wood within species.

Intraspecific correlations between leaf traits
Leaf traits were generally correlated with one another within

species, and these correlations were often consistent across the four

Nothofagus species (Table 1). Measures of leaf structural investment

(LMA, LDMC, thickness and density) were usually negatively

correlated with leaf size, and positively correlated with one

another except for leaf density and leaf thickness, which were

negatively correlated in two of the four species.

Environmental correlates of intraspecific trait variation
There was some evidence for consistent trait–environment

relationships across species, but the most common signal from the

data was for species- and trait-specific responses to environment

(Tables 2 & 3; Figs. 3 & S1, S2, S3, S4). There were no trait–

environment relationships that were consistent across the four

species, i.e., statistically significant and in the same direction

(Table 2). There were only two trait–environment relationships

that shared a consistent direction across all four species and were

significant for at least two of the four species. LDMC declined with

soil P and this was significant for N. solandri and N. fusca, and wood

density increased with MAR and this was significant for N. menziesii

and N. truncata (Table 2). There was little evidence from multiple

regressions that consistent combinations of environmental vari-

ables predicted intraspecific variation in a trait in all four species

(Table 3). The strongest evidence came from consistently non-

significant variables. For example, in three of the four species,

MAR was not retained in the final multiple regression models for

wood density, LMA, LDMC or leaf density. However, the

variables retained in models differed among those species for

those traits (Table 3).

We plotted the correlation coefficients in Table 2 to test whether

the responses within species to environment by wood density were

similar to those responses by leaf traits (Fig. 4). There was no

evidence that LMA, leaf size or LDMC shared responses to

environment with wood density (Fig. 4A–C). However, leaf

thickness and leaf density shared responses to environment with

wood density (Fig. 4D–E). Leaf thickness–environment correla-

tions were negatively correlated with wood density–environment

correlations (Fig. 4D) whereas leaf density–environment correla-

tions were positively correlated with wood density–environment

correlations (Fig. 4E). This indicates that the environmental

drivers of dense wood also drive thinner, denser leaves. This is

confirmed by the negative relationships between leaf thickness and

leaf density (Table 1).

We used a similar approach to evaluate whether LMA–

environment correlations were shared with the component leaf

traits that underpin LMA (Fig. 5). There was very strong evidence

that LDMC–environment correlations and leaf density–environ-

ment correlations were both similar to LMA–environment

correlations (Fig. 5A, D). This was also true for leaf thickness

Intraspecific Trait Variation in Nothofagus
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Figure 2. Nothofagus spp. wood density and leaf trait relationships in New Zealand. Relationships between wood density and five leaf
structural traits are given for four species of Nothofagus in New Zealand. See Table 1 for correlation tests. LDMC = leaf dry matter content; LMA =
leaf mass per unit area.
doi:10.1371/journal.pone.0058878.g002

Intraspecific Trait Variation in Nothofagus

PLOS ONE | www.plosone.org 5 March 2013 | Volume 8 | Issue 3 | e58878



(Fig. 5C) but the association was weaker. Leaf size – environment

correlations were weakly and negatively associated with LMA–

environment correlations (Fig. 5B). The environmental conditions

promoting higher LMA within species also tend towards smaller

leaves, but the relationship is weak.

Discussion

Intraspecific correlations between wood density and leaf
traits, and among leaf traits

Interspecific studies suggest that trait variation is coordinated

among tissues, leading to the emergence of trait syndromes and

economic spectra that reflect whole-plant strategies. Our data

clearly demonstrate that intraspecific leaf-trait variation is strongly

correlated among traits, confirming that the leaf economics

spectrum applies within species. However, we found limited

evidence for close coordination between leaf traits and wood

density. In contrast to most interspecific trait studies [31,34,39],

we found no evidence that leaf size and LMA were correlated with

wood density for Nothofagus species. However, we found weak

evidence that both LDMC and leaf density were positively

correlated with wood density within species, a result concordant

with interspecific studies [37,42] that points to shared responses of

leaves and wood for dry matter allocation relative to leaf or stem

volume. These findings support the hypothesis that LMA is not a

surrogate for measuring the component traits underpinning it.

Two of the component traits (LDMC and leaf density) correlated

with wood density while the integrated trait (LMA) did not. This

highlights the need to measure the components of LMA in order

to determine how leaf construction covaries with other plant traits

[26]. Trait-specific coupling of leaf and wood traits within species

questions the general applicability of a whole-plant trait economics

spectrum [3] and supports the view that leaf and stem trait

variation is largely uncoupled [34].

Why aren’t leaf traits and wood density correlated within
species?

Traits may be uncoordinated within species because the

constraints driving each trait operate over different parts of the

same environmental gradient [16]. Alternatively it may be because

of contrasting, non-linear responses by traits to environment [53].

For example, the relationship between wood density and leaf size

might represent a strategy to avoid water loss, but leaf size may

only decline with increasing wood density in large-leaved species

exposed to seasonal water stress. The absence of a relationship

between wood density and leaf size in any of the four evergreen

Nothofagus species assessed here may reflect low moisture stress in

New Zealand’s temperate rainforests or the limited influence of

moisture stress on leaf size in evergreen species having relatively

small (,700 mm2) leaves (Table S3). Lastly, variation in wood

density will reflect interannual variation in tree growth rate

throughout the sampled core spanning many years, while traits of

current-year leaves will be responding more directly to the

environment in that year, to optimise resource acquisition and

expenditure.

Sources of intraspecific variation
An unresolved question is whether intraspecific variation reflects

genetic polymorphism, phenotypic plasticity, or a combination of

the two. Widespread species might be inherently more variable

because they are more numerous, and therefore support greater

Table 1. Intraspecific variation in wood density and five component leaf traits for four Nothofagus species.

Trait 1 Trait 2 N. solandri (n = 127) N. menziesii (n = 119) N. fusca (n = 65) N. truncate (n = 65)

Wood density Leaf size –0.03 –0.08 –0.11 –0.20

LMA 0.00 0.07 0.12 0.18

LDMC 0.22 0.29 0.10 0.02

Leaf thickness –0.22 –0.13 –0.03 –0.17

Leaf density 0.29 0.22 0.16 0.40

LMA LDMC 0.80 0.68 0.77 0.73

Leaf size –0.60 –0.43 –0.24 –0.17

Leaf density 0.50 0.61 0.53 0.72

Leaf thickness 0.76 0.58 0.50 0.65

LDMC Leaf size –0.65 –0.42 –0.12 –0.31

Leaf thickness 0.45 0.01 0.23 0.37

Leaf density 0.61 0.79 0.57 0.61

Leaf density Leaf size –0.48 –0.46 –0.27 –0.38

Leaf thickness –0.18 –0.29 –0.46 –0.07

Leaf thickness Leaf size –0.32 –0.05 0.03 0.17

*LMA = leaf mass per unit area.
{LDMC = leaf dry matter content.
Values are Pearson correlation coefficients. All trait data were corrected for variation in tree size (see Methods) and log10-transformed before analysis. Correlations in
bold are significant at a= 0.05 after Bonferroni-Holm correction for the number of tests.
doi:10.1371/journal.pone.0058878.t001
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genetic polymorphism, or alternatively, because they encounter a

wider diversity of environments. Common garden experiments

can be used to minimise the effects of phenotypic plasticity and

isolate those of genetic polymorphism. A provenance trial to

examine genetic polymorphism in New Zealand Nothofagus species

sampled elevational and latitudinal gradients and demonstrated

Figure 3. Intraspecific variation in functional traits of Nothofagus solandri along environmental gradients in New Zealand. Intraspecific
variation in six functional traits along key environmental gradients is shown for the widespread tree species Nothofagus solandri throughout the
South Island of New Zealand. Relationships are shown for each trait and the environmental variable with the highest Pearson correlation coefficient
(Table 2). This species is illustrated as an example and all trait-environment relationships for all four species are shown in Figures S1, S2, S3, S4.
doi:10.1371/journal.pone.0058878.g003
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substantial genetic polymorphism in seedling growth rate, leaf size

and leaf shape in the two most widespread species (N. solandri and

N. menziesii), and moderate polymorphism in the less widespread N.

fusca [54]. In order to generalise beyond empirical studies, we need

to establish whether large intraspecific variation is driven by

environmental heterogeneity or simply by population size and

demographic history [8]. Both of these factors should increase with

geographic range size, and are not easily partitioned out.

However, a controlled experiment to compare intraspecific trait

variation of Australian tree species with contrasting range sizes

found no evidence that widespread species had higher intraspecific

variation [55]. Although it is clear that there is substantial

intraspecific variation in plant functional traits among sites that

differs among species, further work is needed to better understand

the sources and drivers of this variation, specifically the

contributions by environment and genetic variation to trait

variation.

Intraspecific trait–environment relationships
Variation in a trait was not usually driven by the same

environmental variable across all four Nothofagus species. There

were only two trait–environment relationships that shared a

consistent direction within each of the four species, while being

statistically significant in at least two species. Results from

individual species were often concordant with models of trait

variation developed using interspecific relationships between the

six traits and five environmental variables examined here.

Interspecific studies of wood density variation and environment

suggest that wood density should be greatest at high temperatures

(i.e., low latitude and low elevation) [29,56,57], on relatively dry

sites [58–60], and on infertile soils [61–63]. Wood density of two

species (N. menziesii and N. solandri) increased with temperature (or

more accurately, decreasing latitude and increasing MAT).

However, wood density of N. truncata increased with latitude,

contrary to expectation. Wood density of two species increased

with mean annual rainfall (MAR), counter to predictions from

interspecific studies. Rainfall gradients in southern New Zealand

range from 668 to 4875 mm yr–1 (Table S1) with only six sites

receiving less than 1000 mm yr21. We propose that the

relationship between moisture availability and wood density is

strongly non-linear with both moisture-limited and excessively wet

sites favouring dense wood. High rainfall is associated with two

factors that limit tree growth rates and hence increase wood

density. The first is nutrient leaching and reduced soil fertility. For

example, in our study MAR and soil total P were negatively

correlated (Table S2), providing strong support for this mecha-

nism. The second is low solar radiation that would limit canopy

photosynthesis and hence tree growth. Relatively few studies

explicitly model the effect of measured soil fertility yet we

demonstrate how this can determine variation in leaf structural

traits such as LMA and LDMC [64], as well as wood density.

Across all four species, models using indirect measures of

Table 2. Intraspecific variation in six plant functional traits for five environmental variables in four Nothofagus species.

Predictor Species Wood density LMA Leaf size LDMC Leaf thickness Leaf density

MAT N. solandri 0.45 –0.34 0.17 –0.14 –0.42 0.05

N. menziesii 0.23 –0.45 0.26 –0.23 –0.26 –0.27

N. fusca –0.12 0.19 0.06 0.15 0.34 –0.13

N. truncata –0.06 0.43 0.16 0.50 0.38 0.22

Elevation N. solandri –0.37 0.47 –0.27 0.32 0.47 0.08

N. menziesii –0.06 0.54 –0.32 0.38 0.23 0.41

N. fusca 0.11 –0.11 0.17 0.07 –0.39 0.27

N. truncata –0.19 –0.53 0.12 –0.54 –0.20 –0.51

Latitude N. solandri –0.37 –0.42 0.42 –0.57 –0.06 –0.55

N. menziesii –0.56 0.04 0.07 –0.19 0.27 –0.21

N. fusca –0.01 –0.17 –0.54 –0.39 0.04 –0.21

N. truncata 0.42 0.22 –0.43 0.14 –0.27 0.54

MAR N. solandri 0.10 0.58 –0.38 0.54 0.39 0.36

N. menziesii 0.30 0.19 –0.28 0.08 0.21 0.02

N. fusca 0.25 0.20 0.21 0.27 –0.01 0.21

N. truncata 0.41 0.17 –0.04 –0.08 –0.11 0.33

Soil P N. solandri –0.19 –0.38 0.35 –0.40 –0.08 –0.46

N. menziesii –0.43 –0.06 0.08 –0.10 –0.17 0.10

N. fusca –0.07 –0.31 –0.22 –0.49 0.12 –0.44

N. truncata –0.32 –0.21 0.29 –0.05 0.01 –0.29

Values are Pearson correlation coefficients. All trait data were corrected for variation in tree size (see Methods) and log10-transformed before analysis. Correlations in
bold are significant at a= 0.05 after Bonferroni-Holm correction for the number of tests. Number of individuals per species follows Table 1.
doi:10.1371/journal.pone.0058878.t002
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environmental variation (elevation and latitude) were commonly

stronger predictors of trait variation than direct measures (MAT

and MAR, and also solar radiation (not shown)), suggesting that

indirect gradients capture aspects of growing season length and

photosynthetic potential that are crucial for determining trait

variation in addition to the direct effects of temperature and

rainfall.

Leaf thickness declined with MAT in the two small-leaved

species (N. menziesii and N. solandri) but increased with MAT in the

two large-leaved species (N. fusca and N. truncata), suggesting that

allocation to leaf thickness within a species is contingent on leaf

size and the predominant environmental niche of a species (cool

for the first pair, and warmer for the second). Intriguingly, there is

no consensus on how leaf thickness varies among species at a

global scale with temperature – both positive [65] and negative

[66] relationships have been reported. Thick leaves clearly arise

across a range of climatic situations through allocation to

photosynthetically-active mesophyll cells [65], protective epider-

mal layers [67], or both, and these allocation patterns are not in-

common across species.

Our data provide some support to the hypothesis that suites of

traits are correlated within species because of shared responses to

strong environmental gradients [33,68] but see [69]. There were

several instances where four of the six traits were significantly

correlated with a single environmental factor within a species (e.g.,

elevation in N. solandri and N. menziesii). This was particularly

strong for leaf traits (Fig. 5) where the environmental drivers of

variation were shared between LMA and LDMC, leaf density and

leaf thickness. By and large, however, the environmental drivers of

variation in wood density were not shared with leaf traits (Fig. 4).

The exception to this was the link between wood density, and leaf

density and leaf thickness. Environments generating dense wood

also selected for denser, thinner leaves, but not higher LMA,

LDMC or smaller leaves. The strongest environmental drivers of

high wood density, broadly speaking, were cooler and wetter

climates and less fertile soils. Such conditions are known to

promote thinner leaves, particularly when associated with low

Table 3. Multiple regressions predicting intraspecific variation in six plant functional traits from five environmental variables in
four Nothofagus species.

Trait Species MAT Elevation Latitude MAR Soil P

Wood density N. solandri –ve –ve –ve NS NS

N. menziesii NS NS –ve NS NS

N. fusca NS NS NS +ve NS

N. truncata +ve +ve +ve NS –ve

Leaf size N. solandri +ve +ve +ve NS NS

N. menziesii +ve NS NS –ve NS

N. fusca NS NS –ve NS +ve

N. truncata –ve –ve –ve +ve +ve

LMA N. solandri –ve NS –ve +ve NS

N. menziesii NS +ve NS NS –ve

N. fusca NS NS NS NS –ve

N. truncata +ve NS +ve NS NS

LDMC N. solandri –ve NS –ve +ve NS

N. menziesii NS +ve –ve NS NS

N. fusca NS NS NS NS –ve

N. truncata +ve NS +ve NS NS

Leaf thickness N. solandri NS +ve NS +ve +ve

N. menziesii +ve +ve +ve NS –ve

N. fusca –ve –ve –ve –ve –ve

N. truncata NS –ve –ve NS NS

Leaf density N. solandri –ve –ve –ve NS –ve

N. menziesii –ve NS –ve NS +ve

N. fusca +ve +ve +ve +ve NS

N. truncata +ve +ve +ve NS NS

A full regression model with all five environmental variables was run for each trait and species. This model was reduced to significant terms through backwards
selection. The direction of significant terms in each model is shown. Non-significant terms, removed from each model, are shown with NS. All trait data were corrected
for variation in tree size (see Methods) and log10-transformed
doi:10.1371/journal.pone.0058878.t003
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Figure 4. Correlation coefficients of environmental variables with wood density and leaf traits. Biplots show correlation coefficients
between wood density and five environmental variables (x-axis), and correlation coefficients between leaf traits and environmental variables (y-axis).
Each data point is a pair of correlation coefficients for a species. In each panel, the correlations between wood density and an environmental variable
are plotted against the correlation coefficients for a leaf trait and the same environmental variable. There are four points representing each species,
for each environmental variable. Open circles are correlations with MAR; filled circles are correlations with Latitude; open triangles are correlations
with MAT; filled triangles are correlations with Elevation; open squares are correlations with soil P. Dashed line shows the 1:1 relationship expected
from interspecific trait correlations e.g., that wood density and LMA are positively correlated [37–39] and therefore so should their relationships with
environment.
doi:10.1371/journal.pone.0058878.g004
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solar radiation [25,65] and low soil fertility, which reduces the

fraction of intercellular space in leaves and hence increases leaf

density [70].

Intraspecific covariation in wood density and leaf traits among

sites and with environment did not mirror results reported among

species from large-scale studies encompassing larger global

environmental gradients [2,56]. Large-scale studies tend to

capture the ‘end-points’ of trait variation; e.g., at large latitudinal

scales, large leaves and dense wood from the wet tropics are

compared with needle leaves and low density softwoods from

boreal conifer forests. Trait covariation with environment is an

almost inevitable consequence at such large spatial scales. At

smaller spatial scales, such as those in this study, trait covariation

with environment may not be observed if one or either trait only

responds over a portion of the environmental gradient. Optimal

combinations of traits may vary along complex environmental

gradients and thus traits may be somewhat decoupled within a

species throughout their range. The probability of detecting

Figure 5. Correlation coefficients of environmental variables with leaf mass per unit area (LMA) and leaf traits. Biplots show
correlation coefficients between LMA and five environmental variables (x-axis), and correlation coefficients between leaf traits and environmental
variables (y-axis). Each data point is a pair of correlation coefficients for a species. In each panel, the correlations between LMA and an environmental
variable are plotted against the correlation coefficients for a second leaf trait and the same environmental variable. There are four points representing
each species, for each environmental variable. Open circles are correlations with MAR; filled circles are correlations with Latitude; open triangles are
correlations with MAT; filled triangles are correlations with Elevation; open squares are correlations with soil P. Dashed line shows the 1:1 relationship
expected from interspecific traits correlations, e.g., that LMA and leaf size are negatively correlated [31] and therefore so should their relationships
with environment.
doi:10.1371/journal.pone.0058878.g005
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relationships between multiple traits and environment will vary

according to where species occur and are sampled [68]. In this

study, some traits varied little within species (Table S3), while for

others, the amount of intraspecific trait variation was comparable

with interspecific variation at similar spatial scales, in similar

environments. For example, wood density of N. solandri varied 1.8-

fold from 448 kg m23 to 811 kg m23 (Table S3) spanning much of

the range of this trait across New Zealand forests (2.9–fold from

326 kg m23 to 930 kg m23, N = 130 species, unpublished data of

the authors), and indeed globally [30]. These observations point to

different mechanisms driving trait variation: for global compari-

sons, this is species turnover of plants having markedly different

strategies or trait syndromes whereas for intraspecific variation, the

mechanism is the coordinated response within a species along

environmental gradients throughout its range. Our findings

contribute to the growing understanding of how different

mechanisms drive variation in plant functional traits at local

(within community), regional (among communities within a biome)

and global scales. Lastly, our study was confined to four closely-

related tree species over spatial scales of ,1000 km. Our data may

not be representative of the amount of intraspecific variation

typical of all species, across different plant growth forms, and at

contrasting locations along global environmental gradients.

Further studies of widely distributed species, particularly those

spanning biomes will provide a valuable contrast with our data

[19].
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