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Pericytes on the Tumor Vasculature: Jekyll or Hyde?
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Abstract The induction of tumor vasculature, known as the
‘angiogenic switch’, is a rate-limiting step in tumor progres-
sion. Normal blood vessels are composed of two distinct cell
types: endothelial cells which form the channel through
which blood flows, and mural cells, the pericytes and
smooth muscle cells which serve to support and stabilize
the endothelium. Most functional studies have focused on
the responses of endothelial cells to pro-angiogenic stimuli;
however, there is mounting evidence that the supporting
mural cells, particularly pericytes, may play key regulatory
roles in both promoting vessel growth as well as terminating
vessel growth to generate a mature, quiescent vasculature.
Tumor vessels are characterized by numerous structural and

functional abnormalities, including altered association be-
tween endothelial cells and pericytes. These dysfunctional,
unstable vessels contribute to hypoxia, interstitial fluid pres-
sure, and enhanced susceptibility to metastatic invasion.
Increasing evidence points to the pericyte as a critical reg-
ulator of endothelial activation and subsequent vessel de-
velopment, stability, and function. Here we discuss both the
stimulatory and inhibitory effects of pericytes on the vascu-
lature and the possible utilization of vessel normalization as
a therapeutic strategy to combat cancer.
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Introduction

Angiogenesis is a dynamic process that requires coordinated
interactions between vascular cells and the extracellular
matrix (ECM) to properly regulate the processes of capillary
sprouting, lumen formation, and vessel stabilization. Unlike
vasculogenesis, where blood vessels form de novo, new
blood vessels are formed in angiogenesis by sprouting from
the existing vasculature, a process which requires transient
phenotypic plasticity of its participating cells. Mature nor-
mal vessels are composed of quiescent and stationary endo-
thelial cells (EC), which form the inner vessel wall and
conducting tubule of blood vessels, and perivascular mural
cells, the pericytes and smooth muscle cells which cover the
endothelial tubule and perform support functions necessary
to maintain vascular stability and tissue homeostasis. Peri-
cytes are embedded in the basement membrane of arterioles,
capillaries, and postcapillary venules, as either single cells
or as a discontinuous single cell layer surrounding the
endothelial tubule, and coordinate signaling with endothelial
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cells and other vascular components to help maintain vessel
stability. In contrast, vascular smooth muscle cells (vSMC)
form multiple concentric layers in association with arteries
and veins and mediate vascular tone and contractility.

During the initiation of angiogenesis, the stable associa-
tion between endothelial cells and pericytes in mature, nor-
mal vessels is disrupted, allowing transient phenotypic
changes to occur in each cell type [1]. The pericyte coating
of the vessel dissociates, followed by matrix degradation,
vessel dilation and extracellular deposition of fibrin, to
effectively abolish pericyte suppression of endothelial pro-
liferation and migration in response to angiogenic signals.
Assembly of a functional vascular sprout requires the selec-
tion of endothelial cells, with distinct phenotypic specifica-
tions (reviewed in [2] and [3]). Pro-angiogenic signals, such
as vascular endothelial growth factor (VEGF), initiate a
signaling cascade that enables an endothelial cell to become
a tip cell, which guides the leading edge of the emerging
sprout, whereas lateral inhibition via Dll4/Notch signaling
instructs neighboring cells to become stalk cells, which
follow the tip cell and proliferate to form the emerging
stalk. The polarization of tip cells enables directed move-
ment, so that the leading edge of the cell extends lamelli-
podia and filopodia to probe the microenvironment and
detect guidance cues and repulsive signals, while the trail-
ing edge maintains contact with stalk cells [3]. During
physiological angiogenesis, mural cell precursors are then
recruited to the newly developed sprout (discussed in detail
below), where contact with endothelial cells results in their
differentiation into mature mural cells. In this ‘maturation
phase’, cell-cell junctions are established and basement
membrane is reconstituted, resulting in quiescence of both
cell types.

The Angiogenic Switch

It is well established that tumors must acquire the ability to
stimulate capillary formation to progress from a small local-
ized growth with a limited oxygen and nutrient supply to a
well-vascularized enlarged tumor [4]. This conversion of the
tumor from an avascular state to a vascular state has been
termed the ‘angiogenic switch’ and occurs by local alter-
ation of the balance of pro-angiogenic factors and the
inhibitor molecules that maintain the quiescence of the
vasculature [5]. This dogma has led to numerous investiga-
tions which have focused on the endothelial cell, as the main
component of the vessel, and targeted its inhibition as a
means to prevent pathological angiogenesis. However, the
role of the mural cell, the other main component of the
blood vessel, has received less attention. The importance
of the initial pericyte dissociation step is underscored by the
ability of breast cancer cells to increase initiation of angio-
genesis without accelerating neovessel growth rate [6].

Hypoxia is thought to be an important early driver of the
angiogenic switch (recently reviewed in [7]), likely by its
ability to upregulate the vessel destabilizing factors VEGF
[8] and Angiopoietin-2 (Ang2) [9]. Interestingly, macro-
phages have been demonstrated to contribute to the angio-
genic switch in tumors [10]; this may result from both the
ability of macrophages to produce VEGF [11] and/or Ang2
[12], as well as directly facilitate pericyte detachment from
the vessel wall [1].

Abnormalities of Tumor-Associated Vasculature

Tumor-associated blood vessels exhibit structural and func-
tional abnormalities which severely impact disease progres-
sion and the efficacies of therapies. Unlike the normal
mature vasculature, which has a structural hierarchy of
vessels with a characteristic size, shape and vessel wall
structure, tumor vasculatures are frequently irregular and
disorganized networks lacking conventional hierarchies,
with abnormal branching and uneven basement membranes
[13, 14]. These vessels are highly dysfunctional and pro-
mote the development of a microenvironment that stimu-
lates non-productive angiogenesis and metabolic
adaptations by tumor cells that favor metastasis. Oncogenic
mutations in tumor cells that stimulate the production of
angiogenic factors [15] and tumor co-option of macro-
phages to facilitate ECM breakdown and angiogenesis [16]
can promote hyperactive vessel growth that lacks sufficient
functionality to maintain tissue homeostasis. Inadequate or
intermittent perfusion and oxygenation of these vessels ren-
ders the tumor hypoxic and acidic, which elicits additional
pro-angiogenic adaptations, and creates a potentially self-
perpetuating cycle of non-productive angiogenesis [17].

The defective normalization, or “abnormalization”
(reviewed in [17]) observed in tumor vessels reflects altered
associations and functions of both endothelial and mural
cells. The endothelial cells of the vessel tubule are often
gapped or have loosened junctions, along with increased
vascular permeability and significant plasma extravasation
(reviewed in [18]), resulting in both the formation of a pro-
angiogenic fibrin/fibrinogen provisional matrix [19, 20] and
increased interstitial fluid pressure in the tumor microenvi-
ronment [21–23]. Interstitial hypertension may cause sever-
al problems relating to the progression and treatment of
tumors, including 1) the enforced flow of interstitial fluid
bearing angiogenic growth factors and possibly metastasiz-
ing tumor cells into the surrounding microenvironment; and
2) compromised delivery of therapeutic agents across the
vessel wall and into the tumor interstitium [14].

The immature functional state of tumor vasculature is
further exemplified by the abnormal mural cell coverage
and investment observed on tumor-associated blood vessels.
Analysis of vascular morphogenesis and pathological
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angiogenesis suggest that disruption of pericyte contact is
required for initiation of angiogenesis. Studies analyzing
mural cell investment of tumor vasculature suggest a de-
creased detection of pericytes [24]; however, this finding
may partially reflect the choice of mural cell markers, as
expression of differentiation markers may be altered in
tumor-associated pericytes [25]. Studies using confocal or
electron microscopy show that mural cells may be present
on tumor-associated vessels but exhibit abnormal associa-
tion with underlying endothelial cells (Fig. 1). In contrast to
the tight association observed between pericytes and endo-
thelial cells on normal capillaries, pericytes on tumor capil-
laries are loosely associated with endothelial cells and
exhibit an abnormal shape, sometimes extending their pro-
cesses away from the endothelium toward the tumor [25–27],

as if the tumor is exerting a chemotactic effect that outcom-
petes physiological pericyte-endothelial interactions. As a
result, the overall functional immaturity of these vessels
allows for continued angiogenesis.

Little is known about the cause of the pericyte investment
defect of tumor vessels. Co-injection of mouse embryo
fibroblasts (MEF) with tumor cells results in MEF investi-
ture of tumor vessels, suggesting that tumor endothelial cells
may retain the ability to recruit mural cell precursors [26].
Thus, the defect may therefore lie in an inhibitory effect on
mural cell proliferation or differentiation. It is interesting to
note that the presence of the mural cell precursor C3H 10T1/
2 can either stimulate endothelial tubule formation in re-
sponse to VEGF-A, or inhibit tubule formation induced by
bFGF [28], whereas differentiated vSMC inhibit endothelial
sprouting in response to VEGF-A [29]. Interestingly,
VEGF-A downregulates the expression of the differentiation
marker smooth muscle actin (α-SMA) on vSMC in vivo
[30]. Immature mural cells lacking the differentiation
markers calponin and caldesmon do not confer vessel sta-
bility in vivo [31], and the mural cells on some tumor
vasculature lack calponin expression [32–34]. It is pos-
sible that maintenance of mural cells in a less differen-
tiated state may be a means by which tumors not only
prevent mural cell-mediated vessel quiescence, but also fa-
cilitate angiogenesis.

As outlined below, many of the abnormalities of the
tumor vasculature may result, either directly or indirectly,
from the loss of the inhibitory, stabilizing properties of
differentiated pericytes and/or the tumor-induced activation
of pericytes (Fig. 2).

Modulators of Pericyte Recruitment and Investiture

Mural cell recruitment and blood vessel stabilization rely on
multiple pathways including Angiopoietin/Tie2, Eph-
Ephrin, PDGF/PDGFR, and S1P/S1P1/2 signaling, both as
independent pathways and modulation via crosstalk be-
tween the pathways. The angiopoietin family of growth
factors are ligands for the Tie2 receptor. Angiopoietin-1
(Ang1) binds to Tie2, resulting in receptor phosphorylation
and downstream signaling [35]. Although Ang2 can also
bind Tie2, its canonical role is disruption of Ang1/Tie2
signaling in endothelial cells. However, Ang2 has been
shown to stimulate Tie2 activation in a cell type- or
context-specific manner [36–38]. The severe vascular
defects and embryonic lethality of Tie2 receptor knockout
[39, 40], Ang1 knockout [41], and Ang2 overexpressing
mice [36] highlight the significance of these factors in
proper development of the vasculature. Pericyte coverage
of vessels is diminished and their interaction with endothe-
lial cells is weakened in Ang1 knockout mice [41], although

Fig. 1 Electron micrograph of endothelial-pericyte associations. a. A
capillary of a normal vessel in mouse skin, showing tight association
between endothelial cell and pericyte processes. b. A capillary of a
tumor-associated vessel in an M1 chloroma tumor, showing dissocia-
tion of pericyte from endothelium with gaps (*) between both cell
types. PC, pericyte; PCN, pericyte nucleus; EC, endothelial cell; lum,
lumen. (Image generated by Suleyman Ergun)
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loss of Ang1 expression after embryonic day E13.5 did not
result in altered pericyte recruitment [42]. Likewise, Ang2
overexpression reduces capillary pericyte coverage during
retinal development [43], while tumor models with Ang2
neutralization exhibit increased pericyte coverage of blood
vessels [44–46]. Changes in Ang1/2 cytokine ratio alter
mural cell recruitment to the vasculature. As proposed by
Folkman and D’Amore [47], the recruitment of mural cells
may be mediated by Ang1-induced endothelial secretion of
mural cell chemoattractants. Indeed, endothelial cells stim-
ulated with Ang1 secrete hepatocyte growth factor (HGF),
enhancing mural cell migration towards endothelial cells in
co-cultures [48]. Ang1-stimulated endothelial cells also se-
crete heparin binding EGF-like growth factor (HB-EGF)
which activates mural cell ErbB1/ErbB2 receptors to induce
mural cell recruitment [49, 50]. Additionally, increased re-
cruitment of mural cells in aortic ring cultures is seen
following Ang1 induction of MCP-1 and p38MAPK

signaling, although the cellular source of the MCP-1 was
not determined [51]. There is also in vivo evidence to
suggest that mural cell precursors may express low levels
of Tie2 [52], and that direct stimulation of mural cells with
Ang1/2 may also influence recruitment. In vivo, the combi-
nation of Ang1 and VEGF induces an influx of mural cell
precursors that is not observed with either factor alone [53].
In vitro, both Ang1 and Ang2 enhance mural cell precursor
migration, with an additive effect rather than antagonism
[54], while no significant chemotaxis was seen in differen-
tiated mural cells [55]. Although Tie2 expression appears to
be downregulated following mural cell differentiation [52],
we and others have observed the induction of Tie2 expres-
sion on differentiated mural cells under angiogenic condi-
tions such VEGF stimulation [56, 57] or in the presence of
hypoxia [56], which may allow for direct recruitment of
mural cells by Ang1. Following recruitment to neovascula-
ture, mural cell secretion of Ang1 induces trans-association
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Fig. 2 a. Schematic representation of endothelial cells (EC) and peri-
cytes on a normal quiescent vessel. Pericytes physically encircle the
endothelial tubule, extending processes through the vascular basement
membrane to physically contact the underlying endothelium. Follow-
ing contact, pericytes participate in the deposition of the basement
membrane (BM), enhance endothelial tight junctions (Jcts) to augment
barrier function, prevent endothelial proliferation, provide structural
support, and confer viscoelastic properties to the vessel to regulate
blood flow. b. Abnormal association of pericytes with endothelium in a
tumor vessel. At the initiation of angiogenesis, pericytes dissociate
from the endothelial tubule in response to tumor-secreted factors and/

or tumor-educated macrophages. The basement membrane undergoes
remodeling or degradation, allowing endothelial cell proliferation to
ensue. An invading endothelial tip cell leads the growth of the sprout.
Alternatively, some evidence suggest pericytes may be present at the
leading tip. Mural cell precursors may be recruited toward the new
vessel, but in the tumor environment may fail to properly invest the
endothelium. Under these conditions, the pericyte may not be able to
exert inhibitory effects on endothelial cells, yet still provide trophic
signals to facilitate their survival. Vessels that lack sufficient pericyte
support are also commonly leaky, have abnormal basement mem-
branes, and are more susceptible to metastatic invasion
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of the Tie2 receptors between endothelial cells in close
contact and enhances AKT related survival, vessel integrity,
and quiescence [58]. Ang1-activated endothelial Tie2 also
induces basement membrane deposition though AKT-
induced Dll4/Notch signaling which further enhances the
vascular barrier [59].

Platelet-derived growth factor (PDGF)/PDGFR is anoth-
er pathway that strongly influences mural cell recruitment
and investiture. Endothelial produced PDGF-B enhances
mural cell proliferation, migration, and recruitment to grow-
ing vasculature through the mural cell PDGFR-β receptor
[60]. An absence of mural cell investiture, hemorrhage, and
embryonic lethality are found when either PDGF-B [61] or
PDGFR-β [62] is knocked out, indicating their critical roles
in angiogenesis. Similarly, reduced PDGFR-β signaling by
receptor inhibition by imatinib [50], receptor hypomorphic
mutations [63], and adenoviral expression of soluble
PDGFR-β as a ligand decoy [64] all significantly decrease
pericyte presence in the vasculature. Interestingly, endothe-
lial, and not tumor, production of PDGF-B is needed for
proper mural cell investiture, full coverage and formation of
intimate mural-endothelial cell contacts. In the absence of
the heparin sulfate proteoglycan (HSPG) binding motif of
PDGF-B, pericytes are recruited but form only loose asso-
ciations with endothelial cells and there is persistent micro-
vascular dysfunction [65]. Ectopic expression of PDGF-B in
tumor cells enhances pericyte recruitment, but is unable to
improve pericyte investiture [66]. The endothelial produc-
tion and subsequent retention of PDGF-B in the periendo-
thelial space likely creates a gradient that promotes both
pericyte recruitment and intimate association with the endo-
thelial abluminal surface [66].

Recent studies suggest that PDGFR-β activity in mural
cells may be modulated by VEGF [67]. In the presence of
VEGF, VEGF-R2 and PDGFR-β complex, inhibit PDGFR-
β phosphorylation, and subsequently reduce pericyte
proliferation, migration, and incorporation along vascu-
lar sprouts. During angiogenic sprouting when VEGF is
highly expressed, the inhibition of mural PDGFR-β may
enable continued endothelial proliferation and growth of
neovasculature. When angiogenic growth is sufficient in
an area and VEGF levels drop, PDGFR-β activation
would then be permitted, enabling mural cell recruit-
ment, subsequent endothelial quiescence, and vessel sta-
bility. Enhancement of mural cell migration by PDGF-B
also occurs indirectly by the stimulation of endothelial se-
cretion of SDF-1α that then binds mural CXCR4 recep-
tors [68]. PDGFR-α may also play a role in mural cell
recruitment and maturation. In contrast to PDGFR-β, PDGF-
B and PDGF-A can both bind PDGFR-α in mural cells,
activating mural cell migration, recruitment to vasculature,
and differentiation in a neuropilin-1 and p130Cas-dependant
mechanism [69].

Proper mural cell investiture is also influenced by Eph-
ephrin interactions. Ephrin-B ligands and their Eph receptor
tyrosine kinases are typically both membrane bound, requir-
ing close cell-cell proximity for interaction. Eph-ephrins can
signal bidirectionally, “forward” through the receptor and
“reverse” through the interacting ligand’s cytoplasmic do-
main. Similar to the knockouts in the Ang1/Tie2 pathway,
knockout of mural cell ephrin-B2 is embryonic lethal, a
result of edema and hemorrhage [70]. While total mural cell
numbers are not compromised, ephrin-B2 knockout specific
mural cells round up and poorly interact with the endothe-
lium [70]. Not surprisingly, ephrin-B2 phosphorylation
occurs at points where mural-endothelial contacts occur,
and this reverse signaling in both endothelial and mural
cells is required for their assembly into cord-like structures
[71]. Furthermore, endothelial-EphB4 activation of ephrin-
B2 induces mural Ang1 expression and increases Tie2 acti-
vation. As a result, pericyte investiture is enhanced and tumor
blood vessel leakiness declines [72]. Additional reports sug-
gest a requisite role for ephrin-B2 downstream of PDGF-B/
PDGFR-β signaling and recruitment in pericyte-like hepatic
stellate cells [73]. A possible role for EphA-ephrinA in peri-
cyte physiology is less clear, although it has been shown that
pericyte investiture is defective in EphA2-deficient mice [74].

Sphingosine-1-phosphate (S1P) and its family of
membrane-bound G protein-coupled receptors S1P1 – S1P5
[75], previously known as EDG-receptors, also play an inte-
gral role in pericyte recruitment. Under varying conditions,
mural cells express of all of these receptors, with highest
expression of S1P2/3 and lower levels of S1P1 [76–80]. S1P
regulates mural cell proliferation [76, 77, 81, 82], migration
[77, 83], response to PDGF and EGF [79], and differ-
entiation [82]. Defects in vasculature and discontinuous
coverage of mural cells are seen following ablation of sphin-
gosine kinases [84] or knockout of S1P1 [85]. This
effect is mediated by mural-endothelial interactions in-
cluding N-cadherin trafficking [86] and adherens junc-
tions [87] because endothelial-specific knockout mimics
the phenotype of the full knockout [88]. In contrast,
S1P2 knockout enhances mural cell recruitment to tumor
blood vessels, potentially through the production of angiogen-
ic factors that promote vascular maturation like TGFβ or the
loss of chemorepulsion mediated by S1P2 on mural cell pre-
cursors [89]. While it is known that activation of S1P2 by S1P
inhibits mural cell migration and spreading through inhibition
of Rac [90, 91], and the use of S1P2 antagonist JTE-013
restores mural cell migration in response to PDGF [78],
knockout of S1P2 in mural cells could further aid in clarifying
the S1P2 direct versus endothelial-mediated effects. In sum-
mary, multiple systems are critical in driving the recruitment
of mural cells, formation of tight mural-endothelial contacts,
and subsequent stabilization of the vasculature. The mecha-
nisms of these pathways and the factors that modulate their
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activity during angiogenesis and disease remain an ongoing
area of research.

Molecular Mediators of Junctional Interactions
Between Pericytes and EC

Although separated by a basement membrane, pericytes and
endothelial cells make physical contact with each other by
extension of processes through openings in the basement
membrane. This physical contact can be mediated by adhe-
rens junctions, gap junctions, and peg-and-socket junctions.
In the latter, pericyte processes serve as the ‘pegs’ which
insert into endothelial cell ‘sockets’ [92]. As these structures
have been suggested to both be associated with more mature
vasculature [93] and occur during angiogenesis [94, 95], the
exact nature or function of these structures remains unclear.
However, it has been suggested that these cell-cell contacts
are also home to other stabilizing junctional interactions [1];
indeed, one study localized the expression of Ang1 to peri-
cytes and Tie2 to endothelial cell membranes within such
interdigitations [96]. Adherens junctions composed of N-
cadherin play an important stabilizing role in pericyte-
endothelial interactions, as blocking [97, 98] or endothelial
loss [86] of N-cadherin results in decreased pericyte adhe-
sion to endothelium.

Gap junctions are composed of proteins known as con-
nexins, which couple with assembled connexins on an ad-
jacent cell membrane to form a functional junction. Gap
junction intercellular communication (GJIC) allows for the
direct exchange of ions, second messengers, and small hy-
drophilic molecules (generally under 1 kDa) between neigh-
boring cells to mediate organized growth and adaptive
responses within tissues. Functional GJIC between endothe-
lial cells and mural cells has been demonstrated in vitro
using electron probe microanalysis [99], electrical resistance
[100], and dye coupling studies [101, 102]; ex vivo by dye
coupling studies [103] and in vivo by ultrastructural studies
[104]. The presence of these gap junctions has been thought
to facilitate the conductance of electrical signals along the
vessels wall to control vascular tone [105, 106]. These gap
junctions also play a critical role in vascular assembly
during vessel formation. When mural cell precursors are
recruited to a newly-developed vessel, they form Connexin
43 (Cx43)-dependent gap junctions with the endothelium
which leads to activation of latent TGF-β to induce full
mural cell maturation [107].

Another role for gap junctions in the vasculature has been
recently proposed. Normal vessels undergo vascular remod-
eling in response to environmental, metabolic, and hemody-
namic stimuli [108, 109], and proper gap junctions may be
required for maintenance of normal responsive vascular
structures [110]. Mathematical modeling suggests that, in

the absence of properly integrated signaling along the ves-
sels due to alterations in heterocellular gap junction com-
munication, formation of arterio-venous shunts is favored
[110]. Interestingly, an inactivating phosphorylation of
Cx43, which is thought to disrupt junctional communica-
tion, has been reported on the capillaries of breast and other
tumors [111]. In addition, VEGF decreases endothelial gap
junction communication [112]. A loss of vascular gap junc-
tion activity could therefore explain both the decrease in
detection of pericyte differentiation markers and the aberrant
formation of arterio-venous shunts which plague the tumor
vasculature.

Pericytes as Drivers of Angiogenesis

Pericytes May Remodel Matrix

Although the canonical view of pericyte function in angio-
genesis holds that pericytes function primarily in the reso-
lution of angiogenesis by contributing to vascular
stabilization and maturation, circumstantial evidence sug-
gests that pericytes play a permissive, if not stimulatory,
role in early angiogenesis. The vascular basement mem-
brane is a stabilizing physical barrier to soluble molecules
and migrating cells that also serves as a scaffold for
pericyte-EC interactions. Activation of matrix proteases
and degradation of the basement membrane is necessary
for angiogenesis to occur (reviewed in [113]) and there is
evidence that tumors secrete factors that activate pericytes to
degrade the basement membrane and liberate matrix-bound
growth factors, thereby contributing to angiogenesis and
possibly facilitating tumor growth and invasion. The base-
ment membrane in the vicinity of pericytes is altered
following stimulation of muscle angiogenesis in vivo, sug-
gesting that matrix proteases have been activated [114].
Similarly, in hypoxia-induced angiogenesis in the brain,
one of the earliest morphological changes observed was
thickening of basement membrane between endothelial cells
and pericytes, along with disintegration of the basal lamina
at the leading edge of migrating cells [115] and upregulation
of the urokinase plasminogen activator receptor (uPAR) on
pericytes [116]. Immunostaining of sprouting tubules in
human fetal brain angiogenesis shows that endothelial cells
and pericytes associated with the basement membrane both
express activated MMP-2, suggesting that these cells may
cooperate to disassemble the basement membrane to allow
cell migration and the emergence of a nascent sprout [117].
In breast carcinoma in situ samples, matrix metalloprotei-
nase (MMP)-1 and MMP-9 were detected in both capillary
pericytes and fibroblasts, and levels of these proteases were
further increased in invasive carcinomas [118]. Increased
MMP-9 expression by pericytes has been detected in
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neuroblastoma xenograft tissues [119], human glioma sam-
ples [120], and human breast cancer tissues [121]. In vitro
studies have shown that treatment with pro-angiogenic fac-
tors is sufficient to stimulate mural cells to secrete MMPs.
Vascular smooth muscle cells treated with VEGF, an impor-
tant angiogenic mediator in may cancers, secrete MMP-9
[122, 123], as well as MMP-1 and MMP-3 [122], resulting
in the invasion of vSMC through Matrigel [122, 123] and a
mixture of type I and type III collagen [123]. Similarly,
MMP-2 and MMP-9 are activated in vSMC in response to
bFGF [124] and IL-1β+PDGF-BB [125], respectively. In
addition to facilitating sprouting angiogenesis, activated
pericytes have also been implicated in the degradation of
vascular basement membrane associated with the develop-
ment of ‘mother’ vessels [126], a pathological subtype of
angiogenic venule that divides to give rise to new ‘daughter’
vessels [127]. Interestingly, the degradation of basement
membrane during this process results not from MMP pro-
duction, but from an increase in pericyte-derived cathepsin
activity which results in pericyte detachment and vascular
enlargement [126]. These data, combined with reports that
tumor cells induce invasion and migration of mural cells
[128], suggest that tumor stimulation of mural cells may cause
them to play an active role in the initiation and propagation of
angiogenesis.

Pericytes May Lead Angiogenic Sprouts

Additional observations suggest that pericytes may have
non-canonical roles in regulating vascular sprouting in cer-
tain tissues, possibly by helping to guide the emerging
sprout [129]. Pericytes have been detected with endothelial
cells at the growing vascular tip in the mouse retina. Com-
bined immunohistochemistry and electron microscopy stud-
ies have detected pericytes during the earliest histological
stage in the formation of granulation tissue during wound
healing [130] and following the induction of angiogenesis in
skeletal muscle by electrical stimulation [114]. Pericytes
have similarly been reported to be located on sprouts emerg-
ing in mammary and other tumors [25, 131], although the
mechanistic implications of this co-localization are not well
understood. The guidance molecule Slit3 has been shown to
be secreted by both endothelial cells and vSMC and inter-
actions between Slit3 and endothelial Robo4 receptor stim-
ulate endothelial proliferation, motility, chemotaxis, and
tubule formation in vitro [132]. Since vSMC similarly ex-
press Robo1 and Robo4, the authors proposed that autocrine
and paracrine Slit3/Robo signaling may help coordinate
endothelial-mural cell interactions in vessel maturation, al-
though additional studies are needed to determine the po-
tential contributions of Slit/Robo signaling to earlier stages
of angiogenesis [133].

Studies of angiogenesis in ovulation have observed that
pericytes are located at the leading edge of endothelial
sprouts in the collapsed follicle [134, 135], but become
closely associated with EC in the mature corpus luteum
(reviewed in [136]). Endothelial cells in luteal arterioles
and capillaries produce nitric oxide and luteal pericytes
express VEGF, suggesting that a hypoxia-driven paracrine
loop may help coordinate sprouting [136]. In addition to
contributing a VEGF gradient, pericytes may also degrade
and remodel the ECM to form additional “guiding struc-
tures” that aid in the luteal invasion of endothelial sprouts,
possibly by laying down a scaffold containing fibronectin
that is permissive for endothelial migration [137]. A com-
plementary or possibly alternative guidance structure is
suggested by immunohistochemical analyses of growing
microvessels in the developing human brain, where it was
observed that pericyte markers extended the length of the
growing microvessel, while endothelial markers were ob-
served only in the initial segment of the vessel [117]. The
immunohistochemical staining pattern was interpreted as
illustrating endothelial cell-free segments in which leading
pericytes were recruiting EC from the parental vessel, pos-
sibly by secreting factors such as VEGF or by cell-cell
interactions mediated by molecules such as NG2 proteogly-
can. Similar endothelial-free pericyte assemblies have been
reported to regulate sprouting in retinal neovascularization,
the adult mouse cornea [138], and mouse tumor models [25,
139], suggesting that pericytes may confer guidance to
invading endothelial cells in a variety of contexts. Indeed,
a clue to the reconciliation of these apparent discrepancies in
the role of pericytes in sprouting angiogenesis is suggested
by a study indicating that the positioning of pericytes at the
leading front versus recruitment following nascent vessel
formation is governed by the specific angiogenic stimulus
[140]. Additional studies are required to determine (1) the
extent to which pericyte assemblies contribute to neovascu-
larization in other tissues and contexts; and (2) whether
tumor-induced defects in pericyte functions pertaining to
guidance of EC contributes to the altered architecture
exhibited by tumor vasculature.

Pericytes Provide Trophic Support for Endothelial Cells

In addition to interactions promoting stability and quies-
cence, there are several reports indicating that pericytes
provide paracrine survival support for endothelial cells.
Immature tumor blood vessels which lack pericyte coverage
are more vulnerable to VEGF withdrawal than vessels with
more extensive pericyte coverage [141]. It has also been
suggested that pericytes may play a role in the abundant
microvascular proliferation found in glioblastoma [142].
Treatment with IL-1β [143], PDGF-BB, or media condi-
tioned by colon cancer cells [144] induces VEGF production
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in mural cells, suggesting that mural cells may provide para-
crine trophic support in a variety of physiological and patho-
logical contexts. Contact between endothelial cells and
multipotent mesenchymal cells is required to induce mural
VEGF [145]. Pericyte production of VEGF was observed in
the developing retinal vasculature in vivo, further supporting
the concept that heterotypic contact-induced pericyte differ-
entiation upregulates local VEGF production as part of the
regulatory program that stabilizes newly formed vessels. The
functional consequences of trophic cross-talk between endo-
thelial cells and pericytes is demonstrated by the observation
that tumor vessels with pericyte coverage do not regress as
efficiently following anti-vascular therapy as vessels lacking
coverage [146–148], suggesting that a bi-compartmental strat-
egy may be required to more completely target tumor vascu-
lature. The combined use of VEGFR and PDGFR inhibitors
has been investigated as a possible strategy to circumvent
pericyte-mediated protection of tumor vessels by disrupting
signaling pathways mediating functional endothelial-pericyte
interactions to promote vessel regression [149–151]. Interest-
ingly, combined inhibition of VEGF and PDGF signaling did
not alter normal vessels [150], emphasizing the phenotypic
differences between endothelial-pericyte interactions in nor-
mal and neoplastic tissues.

Pericytes as Inhibitors of Angiogenesis and Tumor
Progression

Mural Cells are Necessary to Maintain a Quiescent Stable
Endothelium

Several studies [152, 153] have demonstrated that actively
proliferating endothelium lacks coverage by mural cells. In
addition, mural cell-endothelial cell interactions are reduced
following stimulation of angiogenesis by at least three dif-
ferent methods [154], and the arrival of pericytes coincides
with the cessation of vessel growth during wound healing
[155], suggesting that contact with mural cells leads to
quiescence of endothelial cells. Diminished pericyte cover-
age in tumor vessels corresponds with increased endothelial
proliferation. Whereas quiescent normal endothelia exhibit
an average proliferation rate of only 0.1 % [156], breast
tumor endothelial proliferation indices are elevated 20 to 50-
fold [24, 157]. The negative correlation between mural cell
investment and angiogenesis was further corroborated by a
study showing that pericyte coverage in low vascular den-
sity areas of breast tumors is significantly higher than in
areas with high vascular density [158]. A variety of in vitro
studies culturing endothelial cells with vSMC or pericytes
corroborate the decreased growth of endothelial cells under
these conditions [159, 160]. Further, mural cells prevent
endothelial cell migration [161] and sprouting [29], and

activation of endothelial MT1-MMP [162]. Together, these
data underscore the ability of mural cells to limit endothelial
cell responsiveness to external angiogenic stimuli when they
exhibit a normal, functional association with endothelium.

The molecular mechanisms regulating the functions of
pericytes in stabilization and maturation of newly formed
vessels are not well understood. Several in vitro studies
using 3-dimensional (3D) collagen matrices suggest that
crosstalk between endothelial cells and pericytes regulating
the balance of MMPs and TIMPs is critical for vessel
morphogenesis, sprout stabilization, and vessel regression.
When grown in 3D matrices of type I collagen, endothelial
cells arrange into networks and undergo lumen formation
[163, 164]. During the formation of these networks, endo-
thelial cells secrete high levels of the zymogens pro-MMP-1
and pro-MMP-10 [165, 166]. Activation of MMP-1 and
MMP-10 correlated with collagen gel contraction and cap-
illary tube regression. The addition of bovine retinal peri-
cytes to the collagen matrix was sufficient to block MMP-1
and MMP-10-dependent capillary tubule regression in the
presence of plasminogen, whereas other cell types were
ineffective, suggesting that endothelial contact with peri-
cytes inhibits vessel regression by limiting protease activity
and/or function [167]. Endothelial cells were the predomi-
nant source of TIMP-1, TIMP2, and PAI-1, whereas peri-
cytes were a strong source of TIMP-3 that was induced by
EC-pericyte interactions. Targeting of TIMP-2 in endotheli-
al cells and TIMP-3 in pericytes by siRNA resulted in
capillary tube regression in a process dependent on MMPs.
These results indicate that pericyte-dependent stabilization
of capillary tubules is mediated, at least in part, by protease
inhibition. Additional studies are required to determine
whether tumors may alter regulation of protease activities
contributed by endothelial cells and pericytes to subvert
vessel morphogenesis and regression and distort normal
vascular architecture.

Restoration of Pericyte Investment of Tumor Blood Vessels
Leads to Tumor Inhibition

As discussed, Ang1 and its receptor Tie2 play an important
role in mural cell recruitment and vessel maturation [39, 41].
Ectopic expression of Ang1 in breast, colon, and squamous
cell carcinoma results in decreased tumor proliferation and
angiogenesis in some xenograft models [168–170]. The
blood vessels in Ang1-expressing breast [53] and other
[170, 171] tumors demonstrated significantly greater asso-
ciation with α-SMA-positive mural cells compared to con-
trols, suggesting that enforced maturation of the blood
vessel functionally inhibited tumor angiogenesis. It is note-
worthy that Ang1 can also potently stimulate angiogenesis
via enhancing the migration, capillary formation, and sur-
vival of endothelial cells, which can lead to enhanced tumor
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growth (reviewed in [172]); however, in xenograft models
where Ang1 expression leads to enhanced pericyte invest-
ment, tumor growth is decreased [171]. Ang1 also decreased
metastasis, tumor growth, and ascites formation in an ex-
perimental model of colon peritoneal carcinomatosis [173].
Recently, in an in vivo melanoma model it was shown that
vessel stabilization is associated with a reduced tumor vessel
density and slows the tumor growth significantly but it also
results in a resistance to anti-angiogenic therapy [148].
These data, coupled with aforementioned studies demon-
strating the anti-angiogenic effects of mural cell associ-
ation, suggest that stabilization of tumor blood vessel by
mural cells may be a desirable therapeutic goal by which
new vessel formation may be inhibited and tumor growth
thereby arrested. However, continued therapeutic success
may require additional strategies to target a stabilized tumor
vasculature.

Mural Cells Stabilize Vessels by Deposition of Matrix

The vascular basement membrane confers an additional
level of structural stability to blood vessels. Not surprising-
ly, abnormal deposition of matrix is commonly observed in
the unstable tumor vasculature. This may be manifested as
discontinuous [174, 175] basement membrane, or abnormal
morphology of the basement membrane including multiple
layers and variable increased thickness [131, 175, 176].
Isolated pericytes have been shown to express the basement
membrane components collagen IV and various laminin
isoforms [177], as well as significant levels of fibronectin
[178]. One recent study suggested that in vSMC-endothelial
co-cultures the endothelial networks become ensheathed by
collagen IV and collagen XVIII, while lamins and fibronec-
tins localize to the vSMC layer [179]. Endostatin, a frag-
ment of collagen XVIII and an endogenous inhibitor of
angiogenesis [180] was shown to stabilize newly formed
blood vessels by stabilizing the inter-endothelial contacts
and by anchoring the nascent endothelial tubule to basement
membrane which results in a better integration of pericytes
into the capillary wall [181]. Another study demonstrated
that while three-dimensional endothelial tubules cultured in
the absence of pericytes showed some expression of base-
ment membrane proteins, expression of collagen type IV,
laminin, nidogens, perlecan, and fibronectin was substan-
tially increased when pericytes are present [182]. This en-
richment of matrix proteins results from the contribution of
both pericytes (nidogen-1; laminin α4, α5, β2, and γ1 sub-
units; perlecan) and endothelial cells (fibronectin and lam-
inin α5). Changes in matrix deposition are associated with
corresponding changes in integrin expression in both cell
types, resulting in tighter adhesion to matrix and control of
lumen diameter and endothelial behavior. Appropriate ma-
trix deposition appears to be critically dependent on both

fibronectin and the pericyte expression of TIMP-3 in co-
culture, as inhibition of either results in altered collagen IV
deposition and loss of tube maturation. Regulation of base-
ment membrane deposition by pericytes appears to play an
important role in not just structural support of the vessel but
also provides the integrin-mediated cues which help to
regulate vessel phenotype.

Mural Cells Enhance Endothelial Tight Junctions/Barrier
Activity

The barrier function performed by a normal, mature endo-
thelium results from the formation of tight junctions be-
tween adjacent endothelial cells. The abnormal tumor
vasculature is hyperpermeable, due to activation of
both transcellular and paracellular/intercellular pathways
(reviewed in [183]). Increasing evidence suggests that peri-
cytes may participate in regulation of vessel permeability.
Pathological ‘mother vessels’, which are notably pericyte
poor, are hyperpermeable via transcellular routes of extrav-
asation [127]. In addition, mouse models with vessel matu-
ration defects are reported to be more susceptible to
leakiness [184] and/or have altered expression of endothelial
tight junction proteins [185], suggesting a role in regulation
of intercellular permeability. Studies using membrane co-
culture models have demonstrated that mural cells enhance
endothelial barrier function, as measured by in vitro perme-
ability and electrical assays [97, 186–188], and heterotypic
contact between pericytes and endothelial cells produces an
endothelium that is more resistant to hypoxic injury [100].
Part of this may be due to physical location of pericytes,
which preferentially situate themselves at endothelial cell
junctions and cover gaps between endothelial cells [1].
Secretion of Ang1 by mural cells upregulates endothelial
expression of tight junction proteins zona occludens (ZO)-1
and occludin [189, 190], suggesting a molecular mechanism
by which mural cells enhance endothelial barrier function.
Enhancement of barrier function may also result from
pericyte-secreted S1P upregulation of VE-cadherin and
downregulation of Ang2 in co-cultures [97]. Some studies
suggest that barrier-enhancing effects are not observed in
non-contacting co-cultures, leading to the hypothesis that
intercellular communication through gap junctions is re-
quired for the enhancement of endothelial barrier function
by pericytes [100]. Reports demonstrating the interaction of
connexins with tight junction proteins ZO-1 and ZO-2 and
the ability of ZO-1 to regulate the rate of undocked aggre-
gations of connexins, known as connexons, to assemble into
functional gap junctions [191, 192] suggest a potential
mechanism by which crosstalk between endothelial cells
and pericytes enhances both barrier function and vessel
stabilization.
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Vessels Lacking Mural Cells are More Susceptible to Tumor
Metastasis

Hematogenous metastasis requires that tumor cells in-
vade a blood vessel, spread via the bloodstream to a
distal site, and extravasate out of the blood vessel into
the new tissue. Several studies suggest that proper as-
sociation between endothelial cells and mural cells may
decrease susceptibility to metastasis. In colorectal can-
cer, the absence of mural cell coverage on tumor vessels
correlates with metastasis [193] . Similarly, in a mouse
model of prostate cancer, vessels stabilized by pericytes
were less frequently invaded by tumor cells compared
to regions with decreased pericyte coverage [194]. In
addition, three different knockout animals with pheno-
types exhibiting lack of mural cell stabilization of ves-
sels are more susceptible to metastatic invasion [195,
196]. Further, the loss of pericyte-endothelial association
observed in tumors overexpressing both bFGF and
PDGF-BB is associated with increased metastasis
[197], whereas anti-VEGF treatment, which elicits ves-
sel normalization, prevents prostate cancer metastasis in
a mouse model [198], suggesting vascular normalization
may help prevent metastasis. Interestingly, normal ven-
ules display regions with decreased deposition of base-
ment membrane proteins in regions that correspond to
gaps between adjacent pericytes, sites which appear to
be utilized by transmigrating neutrophils [199, 200].
One may therefore conjecture that the increased suscep-
tibility of destabilized vessels may result, in part, from
regions of altered matrix deposition in the basement
membrane of tumor vessels.

Vascular Normalization as a Therapeutic Strategy

The dysfunctional tumor vasculature provides multiple
barriers to the delivery and response to anti-tumor ther-
apies. Recent work suggests that the use of anti-VEGF
therapies may result in what Jain has termed a ‘normal-
ization’ of the tumor vasculature. Some of the most
structurally aberrant vasculature that lacks pericyte in-
vestment may be ‘pruned’ under these conditions [23],
which can lead to increased regions of necrosis in the
tumor [201]. Interestingly, the remaining vasculature
may undergo a transient normalization period character-
ized by an Ang1-mediated increase in pericyte investi-
ture and an MMP-mediated reduction of the abnormally
thickened basement membrane [176]. During this ‘nor-
malization window’, numerous preclinical models sug-
gest that, due to an increase in vessel perfusion, oxygen
to the tumor is increased (reviewed in [202]). Impor-
tantly, increased oxygenation allows for more robust

response to radiation therapy, and may reduce the
hypoxia-driven progression of tumors. The enhanced
blood flow and decreased permeability of the ‘normal-
ized’ vessels also results in a decrease in interstitial fluid
pressure [23], resulting in enhanced delivery of systemic
therapeutic compounds into the tumor (reviewed in [202]).
In the brain, normalizing glioma vasculature via use
of anti-VEGFR therapies results in decreased edema
[203]. Administration of COMP-Ang1, an Ang1 variant,
resulted in vessel normalization and enhanced delivery of 5-
fluorouracil to achieve an enhanced therapeutic response in a
lung cancer xenograft model [204]. Intriguingly, normaliza-
tion of the vasculature by anti-angiogenic therapies [205]
or in RGS5-knockout mice [206] leads to increased
infiltration of cytotoxic leukocytes into the tumor, where
they may facilitate immune rejection of the tumor [206].
Together these data suggest that vascular normalization
may be a desirable therapeutic goal in the treatment of
cancer. Ongoing studies aimed at identifying and opti-
mizing the ‘normalization window’ should lead to im-
proved strategies to effect tumor control.

Conclusions

Pericytes are receiving increasing recognition for the pivotal
role they play in the development and function of the
vasculature. While a primary function of the pericyte
is to stabilize a vessel and render it quiescent, tumors
can activate pericytes to participate in pathological an-
giogenesis. Both loss of the stabilizing functions of the
pericyte and the acquisition of a pro-angiogenic pheno-
type facilitate the generation of a vasculature that is prolifer-
ative, leaky, and dysfunctional. Modulation of the two faces of
the pericyte – the “Jekyll” and “Hyde” – may provide a
therapeutic opportunity. The ‘normalization’ of the vascula-
ture in response to anti-VEGF therapies, characterized
by restoration of functional pericyte-endothelial associa-
tions, reverses the severity of many of the defects of the
tumor vasculature. Judicial use of conventional chemo-
and radiation therapy concurrent with this ‘normalization
window’ shows promise in enhancing tumor response to
therapy. A better understanding of the mechanisms by which
tumors subvert pericyte function may lead to identification of
means to disrupt this process, leading to a more sustained
‘normalization’ state that may be exploited to achieve better
tumor control.
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