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Disclosing the main features of the structure of a network is crucial to understand a number of static and
dynamic properties, such as robustness to failures, spreading dynamics, or collective behaviours. Among the
possible characterizations, the core-periphery paradigm models the network as the union of a dense core
with a sparsely connected periphery, highlighting the role of each node on the basis of its topological
position. Here we show that the core-periphery structure can effectively be profiled by elaborating the
behaviour of a random walker. A curve—the core-periphery profile—and a numerical indicator are derived,
providing a global topological portrait. Simultaneously, a coreness value is attributed to each node,
qualifying its position and role. The application to social, technological, economical, and biological
networks reveals the power of this technique in disclosing the overall network structure and the peculiar role
of some specific nodes.

T
he portrait of a network divided into a dense core and a sparse periphery originated a few decades ago
from scholars in economics and social sciences1–3, where such a dichotomy is of utmost importance to
explain unequal economic growth and development among countries. But the same paradigm is

undoubtedly crucial in other fields too, e.g., in communication networks4–6 or biology7–9, namely wherever
one is aimed at revealing whether there exists a central core through which most of the network flow passes.
This issue has clearly important connections with the many notions of node centrality10 although, when
dealing with core-periphery, attention is mostly paid on the overall network structure rather than on the
features of the individual nodes.

Following the seminal work by Borgatti and Everett11, network scientists have formalized several meth-
ods to check whether a given network is actually featuring a core-periphery structure, or some form of
generalized representation (e.g., core-semiperiphery-periphery), and to properly assign each node to the
relevant subnetwork8,12,13. Block-modeling approaches postulate a discrete network partition in two (i.e.,
core-periphery) or more blocks, with consequent constraints on the links allowed (i.e., periphery nodes
cannot communicate each other). The fitness of such a model to network data is then assessed11,13. Other
methods are aimed at defining a global, numerical indicator of core-periphery separation, based on the
remark that core nodes should have large closeness centrality, i.e., small average distance from the rest of
the network8,12.

We propose a technique which avoids an explicit (and often artificial) partition in subnetworks, like block-
modeling requires, and does not rely on any notion of distance, which is not univocally defined, and is therefore
ambiguous, in the important case of weighted networks. We associate a core-periphery profile to the network,
namely a discrete, non-decreasing function a1, a2, …, an (n is the number of nodes) that: provides a graphical
portrait of the network structure; induces a numerical indicator quantifying to what extent an actual centraliza-
tion exists; assigns a coreness value to each node. Thanks to the latter property, we introduce the generalized
notion of a-periphery by grouping all nodes with coreness below a prescribed threshold a. The core-periphery
profile is derived by a standard random walk (Markov chain) model, and can be obtained in a very general
modeling framework (directed and weighted networks).

In the paper, we first introduce the iterative algorithm that yields the core-periphery profile (leaving all
technical details to the Methods section and to the Supplementary Information file). This paves the way to
introducing an overall network centralization index and a notion of node coreness. By means of several examples,
mostly based on real-world networks data, we show how the set of tools we have introduced allows one in
classifying the overall core-periphery network structure. Moreover, it can reveal the peculiar role of some specific
nodes, providing information which is complementary to, but independent from, other measures of node-
centrality.
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Results
Let wij be the weight of the edge i R j in a (possibly) directed, strongly
connected10,14 network with nodes N 5 {1, 2, …, n}. At each (discrete)
time step, a random walker which is in node i jumps to j with prob-

ability mij~wij

.X
h

wih. Let pi . 0 be the asymptotic probability of

visiting node i, i.e., the fraction of time steps spent on i. Given a

subnetwork S (defined by the node subset S5N with all the edges
of the original network linking pairs of nodes in S), the persistence
probability aS denotes the probability that a random walker which is
currently in any of the nodes of S remains in S at the next time step. It
is thus a measure of cohesiveness and, indeed, it proved to be an
effective tool for finding and testing the community structure of
networks15. The value of aS can be made explicit (see Methods) as

aS~

P
i,j[S pimijP

i[S pi
: ð1Þ

If the network is undirected, p has the closed form solution

p~ s1, s2, . . . , snð Þ
.X

i
si, where si~

P
j wij is the strength of

node i (see Methods), so that the above expression simplifies to

aS~
P

i,j[S wij

.P
i[S,j[N wij, i.e., the fraction of the weight emanating

from the nodes of S remaining within S. Note that aS 5 0 when S
contains a single node (provided self-loops are ruled out), whereas
aS 5 1 when S is the entire network.

Core-periphery profile. In a network with ideal core-periphery
structure11, peripheral nodes (p-nodes) are allowed to link to core
nodes only, namely no connectivity exists among p-nodes. This
implies that aS 5 0 for any subnetwork S composed of p-nodes
only, since a random walker is constrained to immediately escape
from the set of p-nodes. This suggests a strategy to identify the
periphery: find the largest subnetwork with zero persistence
probability. In most real-world networks, however, the structure is
not ideal although the core-periphery structure is evident: a weak
(but not null) connectivity exists among the peripheral nodes. This
calls for the generalized definition of a-periphery, which denotes the
largest subnetwork S with aS # a: a random walker which is in any of
the nodes of the a-periphery, will escape, at the next step, with
probability 1 – a.

For a general network, finding the a-periphery falls in a class of
problems known to be computationally untractable16. We propose a

heuristic algorithm to find, for any given a, an approximation of the
a-periphery. We start by the node i with weakest connectivity (see
Methods) and generate a sequence of sets if g~P15P25 . . .
5Pn~N by adding, at each step, the node attaining the minimal
increase in the persistence probability. Correspondingly, we obtain
the core-periphery profile, that is the sequence 0 5 a1 # a2 # … # an

5 1 of the persistence probabilities of the sets Pk. It is a non-decreas-
ing sequence, as formally stated in the Methods section and proved in
the Supplementary Information. We then take the largest Pk such
that ak # a as our approximation of the a-periphery.

Although heuristic, the above ‘‘greedy’’ algorithm has a convincing
rationale (and it provides a good approximation in small networks
where the exact a-periphery can be computed – see Supplementary
Information). We start from the least connected node because typ-
ically peripheral nodes have less connections than core nodes. Then
we grow our periphery set by adding one node at a time, trying to
keep it as disconnected (or weakly connected) as possible, as a peri-
phery should be. We use the persistence probability to quantify this.
While growing the periphery set, we will typically leave the inclusion
of the most connected nodes to the last steps, since they would
otherwise sharply enhance connectivity. Indeed, highly connected
nodes are typically found at the core of the network.

Figure 1a displays the core-periphery profile of four types of arti-
ficial networks (see Supplementary Information for details), high-
lighting the inherent diversity in their structure. The limiting cases
are: the pure star network (one center node, n – 1 peripheral nodes
connected to the center only) for which a1 5 … 5 an–1 5 0, an 5 1;
and the complete (unweighed, undirected, all-to-all) network, with
no core-periphery structure by definition, for which ak grows linearly
as ak 5 (k – 1)/(n – 1) (see Methods). The Erdős-Rényi and Barabási-
Albert networks10,14 stand in the middle, with the former more sim-
ilar to a complete network and the latter displaying a rather stronger
core-periphery characterization17.

Centralization and coreness. The above algorithm provides, as
byproducts, two other important tools of analysis. The first one is
a measure of core-periphery centralization (cp-centralization) C that
naturally descends from the profile of Fig. 1a. Here we consider a
network to be the more centralized, the more its core-periphery
profile ak is similar to that of the star network. We can therefore
quantify such a similarity by measuring the area between the ak-
curve of a given network and that of the star network, and

Figure 1 | Core-periphery profile and centralization of four types of artificial networks. (a). The core-periphery profile of the star network

(the n – 1 peripheral nodes are connected to the center node only), of the complete (all-to-all) network, and of a few realizations of Erdős-Rényi (ER) and

Barabási-Albert (BA) networks (10 realizations each, n 5 100, average degree Ækæ 5 4). (b). The histograms of the distribution of the cp-centralization

C over 103 realizations of ER and BA networks (n 5 100, Ækæ 5 4). The values of C for the complete and star networks are higlighted for comparison.
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normalizing (see Methods) to assign C 5 1 to the star network itself
(maximal centralization) and C 5 0 to the complete network (no
centralization). If we randomly generate 103 instances of Erdős-
Rényi and Barabási-Albert networks, we obtain the distributions of
C reported in Fig. 1b, whose mean values are C 5 0.490 and C 5

0.668, respectively.
If a network displays a definite core-periphery structure (large C),

then the sequence ak naturally provides a measure of coreness of each
node. Indeed, nodes are iteratively selected to build the sets Pk start-
ing from the more peripheral and terminating with the most central
ones. Thus, ak can be naturally regarded as a measure of coreness of
the node inserted at step k. We have ak 5 0 for all p-nodes (the
periphery in the strict sense), whereas the coreness of the last inserted
node is maximal and equal to an 5 1. Note, however, that such an ak-
ranking is not relevant when the cp-centralization C is small, since in
that case nodes are selected in a more or less random order (as for the
complete network).

Figure 2a displays the core-periphery profile of a number of net-
works (see Supplementary Information for details). The social net-
work describing the interactions within a troop of monkeys11 seems
not to display any significant core-periphery structure. Indeed, it is
not very different from a complete network, as testified by the ak-
curve (C 5 0.261) and by the graph itself (panel b). The situation is
different with Zachary’s karate club network18, having C 5 0.709 and
featuring 20 p-nodes over 34, i.e., a large periphery even if intended in
the strict sense (panel c). The remaining profiles refer to networks
that reveal a larger and larger level of core-periphery characteriza-
tion. They are: the netscience network19, which describes the coau-
thorships (up to 2006) of scholars working on network science (C 5

0.645); the protein-protein interaction network of Saccharomyces
cerevisiae7 (C 5 0.768); the international network of airports20,21 (C
5 0.824); the Internet at the level of autonomous systems10,22 (C 5

0.942); and the neural network of the worm Caenorhabditis elegans23

(C 5 0.940). They all reveal a very broad periphery, as the number of
p-nodes ranges from about 45% to 85% of n.

The statistical significance of the above results can be assessed by
comparing the values obtained for the cp-centralization C with those
resulting from a procedure of network randomization. For each net-
work under scrutiny (Fig. 2a), we generate 100 randomizations
which preserve the in- and out-strength of each node i (the in- and
out-degree, if the network is unweighed - see Methods). For that, we
use a standard switching method24 or, when needed, its extension to
weighted networks25. For each randomization, we compute the cp-
centralization Crand. Then we compare the C value of the original

network with the statistics of the Crand values, obtaining the z-score

z~
C{mean Crandð Þ

std Crandð Þ : ð2Þ

A large value of z indicates that the network under scrutiny has a
significant, non-random core-periphery structure. As a matter of
fact, given that a very mild (if not even null) connectivity exists
among peripheral nodes in a network with strong core-periphery
characterization, such a feature should be partially destroyed by
randomization, resulting in a strong decrease of the corresponding
Crand. Table 1 reveals that, in most cases, those networks which have
larger C tend also to have larger mean(Crand) and larger z. The large
mean(Crand) reveals that the entire ensemble of randomized net-
works, where edge shuffling can only be partial since individual node
strength must be preserved, has a rather large centralization for
structural reasons. But the large z reveals that the specific real-world
network, which has been shaped by social, biological or technological
forces, is much more peculiar than its random counterparts, as it
displays a significantly much larger cp-centralization C.

Weighted networks. Weights associated to edges may have a crucial
role in determining the core-periphery structure, adding much
information to the pure topological (i.e., binary) structure. The
world trade network (wtn), which models the flows of commo-
dities among countries26,27, is a case in point. In 2008 its largest
connected component includes virtually all world countries (n 5
181) and has a very large density (65% of the possible pairwise
connections are active). As a consequence, its core-periphery pro-
file does not substantially differ from that of a complete network

Figure 2 | Core-periphery analysis of real-world networks. (a). The core-periphery profiles of the networks describing: the social interactions within a

troop of monkeys, n 5 20 (graph in panel (b)); the friendship among the members of a karate club, n 5 34 (graph in panel (c)); the coauthorships among

scientists working on networks (netscience), n 5 379; the protein-protein interaction (ppi) network of Saccharomyces cerevisiae, n 5 1458; the

international airports network, n 5 2868; the Internet in 2006, at the level of autonomous systems, n 5 11745; and the neural network of the worm

Caenorhabditis elegans, n 5 239. In graphs (b) and (c), nodes are coloured according to their coreness: p-nodes (ak 5 0) are in black.

Table 1 | Results of the randomization of the networks analyzed in
Fig. 2a: C is the cp-centralization of the original network;
mean(Crand) is the average of the cp-centralizations of 100 ran-
domized networks; the z-score is defined as z 5 (C – mean
(Crand))/std(Crand)

network C mean(Crand) z

monkeys 0.261 0.316 21.90
karate 0.709 0.659 2.21
netscience 0.645 0.546 12.6
ppi 0.768 0.702 14.8
airports 0.824 0.787 17.4
internet 0.942 0.890 50.3
neural 0.940 0.641 24.0
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(C 5 0.349) if weights are ignored, since most countries trade with
most of their potential partners (see Fig. 3a). However, countries
(and their pairwise connections) are extremely diversified if
weights are accounted for: import flows (in US dollars) range from
160 3 106 for Tonga to 2 3 1012 for the United States. Consequently,
the weighted network displays a strong core-periphery characteri-
zation (C 5 0.819), with a very small core composed of those few
countries most of the world trade flow passes through. Indeed, the
world map of Fig. 3b highlights that only very few countries have
large coreness values (only United States, Germany, China, France,
United Kingdom, Japan, Italy, and the Netherlands, in order, have
ak . 0.5).

Core-periphery profile and k-shell decomposition. It is instructive
to compare the technique of core-periphery profiling, above intro-
duced, with k-shell (or k-core) decomposition6,28,29, a widely used
method aimed at partitioning a network in layers, from the exter-
nal to the more central ones. We first compare the two approaches on
the toy-network of Fig. 4 (a slight modification of a previously
discussed example30): we will see that the same peculiarities emerg-
ing from this example will be found in real-world networks too.

Assume the network is undirected and binary: in the k-shell
decomposition, we begin by putting in the 1-shell the degree-1 nodes,
as well as, recursively, those having degree 1 after removal of the
former. Similarly, we put in the 2-shell the nodes with degree 2 after

removal of the 1-shell, as well as, recursively, those having degree # 2
after removal of the former, and so on. In the network of Fig. 4, three
shells are found moving from the less connected nodes to those with
largest connectivity (see panel a). The method can be extended to
weighted networks30 by replacing the degree di with a weighted degree
d0i~

ffiffiffiffiffiffiffiffi
disi
p

which reinforces nodes with large strength si. In Fig. 4a,
for example, if the link AB is given a weight wAB 5 3 while keeping all
the others to 1, then node B moves from the 1- to the 2-shell, high-
lighting the stronger tie with the most central group of nodes30.

The classification obtained by core-periphery analysis is quali-
tatively similar for most nodes, but a few important differences
exist (Fig. 4b). First, node B is qualified as a p-node (ak 5 0)
regardless of wAB. Second, despite its rather large degree, node C is
classified as a p-node too. These two apparent ‘‘anomalies’’ are,
however, fully consistent with the block-modeling paradigm put
forward by Borgatti and Everett11, according to whom the stand-
ard pattern of connection is that ‘‘core nodes are adjacent to other
core nodes, core nodes are adjacent to some periphery nodes, and
periphery nodes do not connect with other periphery nodes’’ (p.
377-378). Thus B is peripheral because its only connection,
regardless of the weight, is with a core node: as such, it is excluded
from any relevant transmission of information. Perhaps surpris-
ingly, C is peripheral too: but it is connected to core nodes only
and thus, despite its rather large connectivity, it essentially fails in
bridging core and periphery.

Figure 3 | Core-periphery analysis of the world trade network. (a). The core-periphery profiles of the binary (i.e., unweighed) and weighted network,

n 5 181: the weighted network displays a much stronger core-periphery characterization. (b). A world map where countries are coloured according to

their coreness in the (weighted) world trade network: countries with ak , 0.01 are in black.

Figure 4 | Comparing k-shell decomposition and core-periphery analysis. (a). k-shell decomposition: black, green, and red nodes compose,

respectively, the 1-, 2, and 3-shell. Node B is in the 1-shell (black) if weights are ignored, in the 2-shell (green) otherwise (see text). (b). Core-periphery

profile: nodes are coloured according to their coreness (setting wAB 5 1 or 3 yields negligible variations): p-nodes (ak 5 0) are in black.
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We find similar features if we move to real-world networks. The
graph of Fig. 5a illustrates the k-shell decomposition of the karate
network (see Supplementary Information), and it should be directly
compared with the graph of Fig. 2c to assess the role of each node.
The two methods give consistent classifications ‘‘on average’’, as
testified by the trend highlighted in Fig. 5b, but many nodes are
ranked rather differently from the two methods, for the reasons
above discussed. The same type of results emerge if we analyze a
medium-scale network (n 5 1458) such as the ppi (see Fig. 2 and
Supplementary Information), as put in evidence in Fig. 5c. Again,
besides the overall consistency between the results of the two meth-
ods, we find nodes with large k-coreness ki (i.e., the shell to which the
node belongs) but small ai, as node C in Fig. 4. But here we find the
opposite too, namely nodes belonging to the external k-shells but
having large ai: they are similar to node D in Fig. 4, which plays the
important role of organizing center of a rather peripherical subnet-
work. In summary, k-shell decomposition and core-periphery pro-
filing appears to be capable of providing independent information in
classifying the role and rank of nodes.

Revealing anomalous nodes. Using now the wtn as an example, we
present further results in order to stress the capability of the core-
periphery profile to highlight peculiarities in the role of some specific

nodes. For each node i, we consider its ranking according to two
different indicators, namely the strength si, which represents in
this example the country’s total trade volume, and the coreness ai

above defined. Figure 6 compares the two rankings (panel a):
anomalous nodes are those far from the bisectrix and, among
them, economically relevant are obviously those with top s-
rankings (lower-left corner, magnified in panel b).

The most striking anomaly is Mexico, which is 14th in the s-
ranking but only 121st in a-ranking. As a matter of fact, Mexico
devotes 62% of its trade to United States (the second partner being
China with 6% only). Despite its large trade amount, Mexico is thus a
peripheral country since, simplifying the picture, it is connected to
one single core node, similarly to node B in the network of Fig. 4b.
Canada and Switzerland, also highlighted in Fig. 6b, are examples of a
less definite anomalous role. They are 9th and 20th in the s-ranking,
respectively, but fall to 34th and 46th positions in the a-ranking. For
Canada the situation is the same as Mexico, with a strong bias to-
wards the United States. The strongest relationships of Switzerland,
instead, are shared among four core countries, i.e., Germany, Italy,
France, and U.S.: thus the role of Switzerland is comparable to that of
node C in the network of Fig. 4b.

It is instructive to compare the above results with those given by
another sort of network profiling, i.e, rich-club analysis25,31, which is

Figure 5 | Comparing k-shell decomposition and core-periphery analysis in real-world networks. (a). k-shell decomposition of the karate network:

black, blue, green, and red nodes compose, respectively, the 1-to 4-shells. (b, c). For the karate and ppi networks, the k-coreness ki (i.e., the shell to which

the node belongs) and the coreness ai are compared for each node. Notice that many points coincide: e.g., 20 (over 34) and 996 (over 1458) nodes have

ai 5 0 for, respectively, the zachary and ppi network. The blue line is the best linear interpolation.

Figure 6 | Comparing s- and a-ranking in the world trade network. (a). Each node (i.e., country) is represented by a dot whose coordinates are its

position in the s-ranking (i.e., total trade volume) and a-ranking (i.e., coreness). Note that top-ranking nodes are in the lower-left corner (lowest rank

values). (b). Zooming into the top 20 countries of the s-ranking. (c). Rich-club profile of the world trade network: each node (i.e., country) is represented

by a dot whose coordinates are its strength s (i.e., total trade volume) and the corresponding value W(s) of the rich-club coefficient.
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aimed at disclosing the tendency of nodes with large strength to form
tightly interconnected subnetworks. For weighted, directed net-
works, we straightforwardly adapt the definition of Zlatic et al.25 in
defining, for a given strength s, the rich-club coefficient as the den-
sity of the subnetwork induced by the nodes with si . s:

W sð Þ~ Ews

nws nws{1ð Þ : ð3Þ

In the above equation, n.s is the number of nodes with si . s and
E.s is the number of edges connecting them. The functionW(s), that
we denote as rich-club profile, is defined over the interval smin 5

minisi # s # maxisi # smax; it is discontinuous at each s 5 si, and
we let conventionally W(s) 5 1 for n.s # 1. Figure 6c displays the
rich-club profile for the wtn case. The final plateau (with W(s) very
close to 1) includes about 30 nodes, which correspond to a rich-club
of countries forming an almost complete (all-to-all) trading network.
Canada, Mexico and Switzerland are among them: this means that
this type of network profiling hides their (semi-)peripheral topo-
logical role, not distinguishing them from the other members of
the rich-club, mostly with a definite core position. We close by dis-
playing two more (s, a)-ranking plots, related to the netscience and
airports networks (see Fig. 2 and Supplementary Information). The
plots, which are in Fig. 7, confirm that the existence of anomalous
nodes (large strength, small coreness) is not a feature of the wtn only,
but is likely to be ubiquitous in medium/large scale, real-world net-
works. We report that we revealed the same anomalies when com-
paring the a-ranking to centrality measures other than the strength
si, namely closeness and betweenness centrality (with the standard
mapping wij R 1/wij for weighted networks) and PageRank (which is
equivalent to si for undirected networks, and strongly correlated for
directed ones32).

Discussion
The case-studies above discussed have shown that the core-periphery
network structure can effectively be assessed by elaborating the
information provided by a random walk (Markov chain) model.
This provides both a global network portrait and an individual char-
acterization (coreness) of each node.

The results highlight the complementarity between the core-peri-
phery and other types of network profiling, such as k-shell decom-
position or rich-club analysis. As a matter of fact, the peculiar role of
some specific nodes can be revealed, providing information which

shows to be independent from other measures of node-centrality.
Moreover, the introduced coreness indicator is unambiguously
defined in the general framework of directed, weighted networks,
whereas other centrality measures which are often related to core-
periphery analysis are not (for example, average distance or between-
ness depend on the weight-to-distance mapping which is used). For
these reasons, the core-periphery profile deserves to enter the tool-
box of the network analyst, to back up other profiling tools (e.g.,
k-shell decomposition, rich-club analysis) devoted to assess both
the global network structure and the role of each single node.

Methods
Persistence probabilities. We consider (possibly) directed, strongly connected10,14,
n-node networks with weight matrix W 5 [wij], i.e., wij . 0 denotes the weight of the
edge i R j, which is set to 1 when the network is binary (i.e., unweighed), while wij 5 0
if the edge i R j does not exist. We assume there are no self-loops, namely wii 5 0 for
all i 5 1, 2, …, n. For a directed network, we denote by sin

i ~
P

j wji and sout
i ~

P
j wij ,

respectively, the in- and out-strength of node i, and by si 5
P

j(wij 1 wji) the (total)
strength. In the case of undirected network, we simply define the strength as
si~

P
j wij~

P
j wji . Notice that in-, out-, and total strength reduce to the in-, out-,

and total node degree (din
i ,dout

i , and di) if the network is binary.
The standard description of the discrete-time evolution of a random walker on the

network assumes that, at each time step, mij~wij
�P

h wih is the probability that a
random walker which is in node i jumps to j, so that the probability pi,t of finding the
walker in node i at time t is governed by the n-state Markov chain pt11 5 ptM, with pt

5 (p1,t p2,t … pn,t). Since connectedness implies that M is an irreducible matrix, the
stationary probability distribution p 5 pM is unique and strictly positive33. For an
undirected network it has the closed form p~ s1s2 . . . snð Þ

�P
i si. For directed

networks, the stationary probability distribution p is computed, in principle, by
routinely solving the n 3 n linear system p 5 pM or by iterating pt11 5 ptM until
convergence33. Both methods become challenging for very large networks, although
the sparsity of M can be exploited. Note that the problem is essentially equivalent to
the computation of the PageRank centrality34, for which a large body of research is
currently active, with new approaches including, e.g., decentralized and/or
randomized techniques35,36. This is out of the scope of the present work, however: for
our purpose, we assume that the vector p has been computed with a suitable method.
In our case studies (see Supplementary Information) we used the standard Matlab
routines for linear systems solution.

Let us now partition the node set N 5 {1, 2, …, n} into q subsets S1, S2, …, Sq. This
correspondingly defines q subnetworks, each one formed by including all the edges of
the original network linking pairs of nodes of the subset. If we assume that the Markov
chain pt11 5 ptM is in the stationary state p, then the dynamics of the random walker
at the subnetwork scale can be described by the q-node lumped Markov chain37–39

Pt11 5 PtU, where the entries of the q 3 q matrix U are given by

ucd~

P
i[Sc ,j[Sd

pimijP
i[Sc

pi
: ð4Þ

The entry ucd is the probability that the random walker is at time (t 1 1) in any of the
nodes of Sd, provided it is at time t in any of the nodes of Sc. The diagonal term ac 5 ucc

Figure 7 | Comparing s- and a-ranking in the netscience and airports networks. Each node is represented by a dot whose coordinates are its position in

the s-ranking (strength) and a-ranking (coreness). Note that top-ranking nodes are in the lower-left corner (lowest rank values). The two plots, which are

restricted to the top countries of the s-ranking, highlight the existence of anomalous nodes (large strength, small coreness).
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is the persistence probability15 of the subnetwork Sc: it can be regarded as an indicator
of the cohesiveness of Sc, as the expected escape time from Sc is tc 5 (1 – ac)–1. From

(4) we obtain ac~
P

i,j[Sc
pimij

� �.P
i[Sc

pi, which is equivalent40 to the ratio

between the number of transitions of the random walker on the edges internal to Sc

and the number of visits to the nodes of Sc. In the case of undirected networks,

recalling that p~ s1s2 . . . snð Þ
�P

i si , ac simplifies to ac~
P

i,j[Sc
wij

� �.P
i[Sc

si ,

which is the fraction of the strength of the nodes of Sc that remains within Sc.

Core-periphery profile. We define the core-periphery profile ak, k 5 1, 2, …, n, of the
network by the following algorithm:

Step 1: Select at random a node i among those with minimal strength (si # sj for all
j[N). Modulo a relabeling of the nodes, we can assume, without loss of generality, that
the selected node is 1. Set P1 5 {1}, hence a1 5 0.

Step k 5 2, 3, …, n: Select the node attaining the minimum in:

ak~ min
h[N\Pk{1

P
i,j[Pk{1| hf g pimijP

i[Pk{1| hf g pi

~ min
h[N\Pk{1

P
i,j[Pk{1

pimijz
P

i[Pk{1
pimihzphmhið ÞP

i[Pk{1
pizph

:

ð5Þ

If it is not unique, select at random one of the nodes with minimal strength sh among
those attaining the minimum. Without loss of generality, we can assume that the
selected node is k. Set Pk~Pk{1| kf g~ 1,2, . . . ,kf g.

We note that the algorithm may have some randomicity (in the selection of the
initial node and when, at step k, many nodes with the same strength attain the same
ak), but we verified this has negligible impact in the analysis of real-world cases (see
Supplementary Information for details). The main property of the core-periphery
profile, namely monotonicity, is stated in the following proposition, whose proof is in
the Supplementary Information.

Proposition. ak11 $ ak for all k 5 1, 2, …, n – 1.
The core-periphery profile of the (unweighed, undirected, all-to-all) complete

network, which has wij 5 1 for all i ? j, can readily be derived by using the above
equation for ac and noting that, at step k, the set Pk is a k-node clique and thus contains
k(k – 1)/2 edges. Therefore

ak~

P
i,j[Pk

wijP
i[Pk

si
~

k k{1ð Þ
k n{1ð Þ~

k{1
n{1

: ð6Þ

Centralization. We derive the explicit expression of the core-periphery centralization
C. The (discretized) area between a generic core-periphery profile ak and that of the
star network (ak 5 0 for k 5 1, 2, …, n – 1, an 5 1) is given by

Pn{1
k~1 ak . For the

complete network (see (6)) such expression becomes

Xn{1

k~1

ak~
Xn{1

k~1

k{1
n{1

~
1

n{1

Xn{2

k~1

k~
1

n{1
: n{1ð Þ n{2ð Þ

2
~

n{2
2

: ð7Þ

Then we define the centralization C for a core-periphery profile ak as the complement
to 1 of the normalized area, namely

C~1{
2

n{2

Xn{1

k~1

ak: ð8Þ
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