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Abstract
Coronary computed tomographic angiography (CCTA) is emerging as a key non-invasive method
for assessing cardiovascular risk by measurement of coronary stenosis and coronary artery
calcium (CAC). New advancements in CCTA technology have led to the ability to directly
identify and quantify the so-called “vulnerable” plaques that have features of positive remodeling
and low density components. In addition, CCTA presents a new opportunity for noninvasive
measurement of total coronary plaque burden that has not previously been available. The use of
CCTA needs also to be balanced by its risks and, in particular, the associated radiation exposure.
We review current uses of CCTA, CCTA’s ability to measure plaque quantity and characteristics,
and new developments in risk stratification and CCTA technology. CCTA represents a quickly
developing field that will play a growing role in the non-invasive management of cardiovascular
disease.
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Introduction
Coronary artery disease (CAD) remains the leading cause of morbidity and mortality
worldwide despite major pharmacologic and risk stratification advancements over the last
two decades.(1) In 30–50 % of patients, the first sign of CAD is presentation with acute
myocardial infarction.(2) Multiple studies have linked non-calcified atheroma to adverse
outcomes.(3, 4) Interestingly, patients who experience acute MI are generally found to have
previous sub-acute plaque ruptures prior to their major event.(5, 6) Therefore, the detection
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of these vulnerable plaques may allow for ideal risk stratification prior to a severe CAD
outcome. Recent technological innovations in coronary computed tomography angiography
(CCTA) have improved imaging resolution such that CCTA can now provide both
visualization of the coronary lumen, and identification of at-risk non-calcified plaque.(7–10)
The reference standard diagnostic tool for coronary stenosis is quantitative coronary
angiography (QCA), while intravascular ultrasound (IVUS) is the standard for investigation
of in-vivo intracoronary plaque characteristics. However, both modalities are unsuitable for
screening purposes, as they are invasive and expensive. Although CCTA currently does not
carry the spatial resolution of IVUS, it is non-invasive and technological increases have
improved speed and resolution while decreasing radiation exposure.(11–14) These
properties make CCTA an ideal screening modality for genetically susceptible and
intermediate-risk patients, as well as a plausible method to quantitatively track the utility of
atherosclerosis treatment.(15, 16)

Accurate analysis of plaque characteristics by CCTA would allow for improved risk
stratification, measurement of response to therapy, and understanding of genetic markers of
disease. This review will focus on CCTA in the context of non-calcified plaque, specifically:
1) characteristics and epidemiology of vulnerable plaques, 2) the ability of CCTA to
identify, quantify, and assess plaque characteristics, and 3) recent technological
improvements and future directions in CCTA.

Current Methods of Risk Stratification by Coronary Computed
Tomographic Angiography

Technological advancements in CCTA have resulted in increasing diagnostic capability as
well as an accelerating trend in utilization. CCTA is well validated for analysis of coronary
artery calcium while more sophisticated techniques for plaque burden and composition
remain under development.

Coronary Artery Calcium Score
Currently, CT is used to assess coronary artery calcium (CAC) score, which has been
successfully used as an independent predictor of negative CAD events such as myocardial
infarction (MI), revascularization, and mortality.(17–19) Detrano et al.’s study from the
multiethnic study of atherosclerosis (MESA) has expanded CAC’s applicability to multiple
ethnic groups including white, black, Hispanic, and Chinese. Doubling the CAC score
increased the risk of a cardiac event by 18–39%. No major differences were seen between
ethnic groups in the predictive ability of CAC score.(20) Additionally, CAC has been shown
to add incremental value to a number of the standard measurements of cardiac risk such as
JUPITER and Framingham risk scores. Blaha et al. found that in a cohort of MESA patients
with CAC score >0, and meeting JUPITER inclusion criteria, the five-year number-needed-
to-treat (NNT) to prevent cardiovascular disease (stroke and MI and complications) was
only 30.(21) In the Heinz Nixdorf Recall Study, CAC was used to correctly reclassify
patients with intermediate cardiac risk by Framingham Risk Score, resulting in a net
reclassification index (NRI) of 21.7% to a low risk category (determined by CAC<100) and
30.6% to a higher risk category (determined by CAC≥400).(22) A study of the MESA
population by Polonsky et al. found a similar NRI for CAC score on top of traditional risk
factors (age, gender, tobacco, blood pressure, cholesterol, and ethnicity), at an overall rate of
25%.(23) However, while CAC appears to be an excellent surrogate marker for presence of
disease, calcification of atherosclerotic plaque is thought to represent the endpoint of plaque
maturation and lesion stabilization. Heavily calcified plaque is not the typical culprit lesion
implicated in acute coronary syndrome.
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Low CAC scores appear to be insufficient to fully assess risk. Multiple studies of patients
with a CAC score of 0 have confirmed the presence of NCP and significant coronary artery
stenosis, with prevalence of 11–13% and 0.9–3.7% respectively and severe stenosis (>70%
luminal narrowing) seen in 0.4–1.5%.(24–27) CAC score of 0 has only a 45% sensitivity to
predict the absence of ≥50% stenosis.(28) Additionally, within approximately 20% of
asymptomatic patients with cardiac risk factors and no detectable CAC, significant stenosis
is present. Within almost one third of these patients, these stenoses result in ischemia.(29)
These studies show that there is a significant at-risk population that is unable to be
diagnosed by CAC and traditional risk factors alone.

Measurement of Coronary Artery Plaque Stenosis by CCTA
In 2008, three major prospective multi-center trials marked the establishment of CCTA as a
technology that could equal or eventually surpass invasive angiography for determining the
degree of coronary artery stenosis. These three trials (CORE-64, ACCURACY, and
Meijboom et al.) compared CCTA to QCA with sensitivities/specificities of 85%/90%,(30)
95%/83%,(31) and 99%/64%,(32), respectively. These multi-center trials that offered
comparison to invasive angiography establish the diagnostic capability of CCTA. In general,
these trials support the concept of the use of CCTA for the evaluation of patients at
intermediate risk of coronary artery disease. For patients at high risk, CCTA may be
unnecessary since invasive angiography serves to diagnose and treat in the same setting.

In addition to angiography, the degree of coronary stenosis by CCTA has been compared to
IVUS. In a recent meta-analysis, Voros et al. identified 33 studies comparing CCTA to
IVUS. They showed that CCTA was excellent for detection of coronary plaques (sensitivity
90%, specificity 92%), with increased accuracy with improving scanner technology. CCTA
slightly overestimated lumen area (0.46 mm2 p=0.005) compared to IVUS, but there were
no significant differences between plaque area, volume, weighted mean difference of
volume, and percent area stenosis.(33) Thus, CCTA’s ability to identify plaque in the
coronary arteries even beyond that which causes stenosis is well established.

Beyond detection of plaque, CCTA has shown promise in characterizing the type of plaque
that is present. In our laboratory using Vital Images software (Vitrea fX 6.1), the total
amount of plaque can be determined by a semi-automated method (Sureplaque) that detects
the inner and outer vessel walls over a length of the coronary artery. Area between inner and
outer vessel walls is counted as plaque. Plaque burden is calculated by normalizing the
volume of plaque within the vessel by the length of the vessel. In this system, an artery that
appears normal, without visually identifiable plaque, had a total plaque burden (TPB) of
approximately 6.5–7.5 mm2. Patients with increased amounts of plaque (eg figures 1a and
1b) have larger scores. The total plaque is further divided by the software into several
components by HU density (soft plaque: −100–29; fibrous plaque: 30–149; calcified plaque:
150–1300). The subdivided plaque burdens in normal-appearing vessels are soft plaque
burden (SPB) of <2 mm2, fibrous plaque burden (FPB) of <4 mm2, and calcified plaque
burden (CPB) of <2 mm2. Figure 1a shows visualization of calcification within coronary
arteries using different CCTA views, with the patient’s corresponding plaque burdens. The
use of CCTA for characterizing plaque is discussed in greater detail below.

Plaque characterization with CCTA
Overview: Vulnerable Plaques and Acute Coronary Syndromes

Culprit lesions responsible for rupture, thrombosis, and acute MI are typically larger soft
plaques with incomplete or no calcification representing a different segment of disease from
CAC.(34–36) These plaques were found to be 1) lipid laden and non-calcified plaques
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(NCP), 2) thin-capped, and 3) positively remodeled(37–39) implying that vulnerable, pre-
rupture plaques would share the same characteristics.

The clarity of the term “non-calcified plaque” has suffered greatly from its dual use as a
descriptive and definitive phrase. Early studies focusing on CCTA alone have often defined
NCP as any discernable object within the vessel wall with enhancement greater than the wall
structures but less than the lumen,(26, 40, 41) effectively defining NCP as any plaque that is
not completely calcified. Recent SCCT guidelines have recommended subdividing plaque
type into calcified, non-calcified, or mixed.(42) IVUS comparison studies further subdivide
plaque categories with definitions of NCP excluding plaques with minor calcified elements
within.(4, 43) Histological comparison studies subdivide plaques by the Stary classification
system, with NCP synonymous with corresponding Stary stages.(44) For the purposes of
this review, we will refer to NCP as plaques that are not completely calcified, encompassing
both SCCT categories of “non-calcified plaque” and “mixed plaque,” and corresponding
with the characteristics of the culprit lesions discussed above.

While many studies have attempted to correlate plaque sub-types with risk factors, results
have been highly inconsistent. States generally found to be associated with NCP include
typical cardiac risk factors such as: hypertension,(45, 46) smoking,(45–47) obesity,(46, 48)
gender,(47) diabetes,(47) CAC score,(49) high-sensitivity CRP,(50) and apolipoprotein A1;
(50) as well as non-typical factors such as: pericardial fat volume,(51) epicardial fat volume,
(52) and inflammatory monocyte subsets.(53) It is important to note that not all studies
found statistical strength of association for these factors.(48) The variability in correlating
NCP with known cardiovascular risk factors suggests a significant need for prospectively
designed studies.

Recent evidence suggests that CAC is not a perfect indicator of atherosclerotic burden. In
patients with zero CAC score, the rate of obstructive NCP in asymptomatic populations is
estimated to be <1%. However, in symptomatic patients this percentage is much higher,
suggesting that there are at-risk population subsets that would benefit from NCP screening.
(26) In fact, elevated NCP burden is present in almost all patients who present with ACS.
(38, 39, 54) A study by Motoyama et al. found that culprit lesions were comprised of NCP
in 79% of ruptured lesions causing ACS, whereas stable lesions causing typical angina were
comprised of NCP in only 9%.(55) The prospective multicenter ACCURACY trial showed
that plaque composition by CCTA is related to stenosis severity by QCA; mixed plaques
showed a higher rate of stenoses ≥70% (68%) compared with completely non-calcified and
calcified plaque (28% and 3.6%).(56) Other studies demonstrated higher proportions of
mixed plaques in patients with ACS vs. stable CAD, as well as higher proportions of NCP.
(4) These studies suggest that NCP represents a clinically-significant type of measurable
pathology, associated with both ACS and stenosis, and not adequately addressed by CAC
score.

Coronary Computed Tomography and the Ability to Characterize Plaque Types
Ever since early multi-detector coronary CTA, researchers have been interested in the ability
to non-invasively differentiate plaque types. Comparison of 4-detector row CT with
histology by Becker et al. noted that CCTA could assess significant attenuation differences
between lipid-rich and fibrous-rich non-calcified plaque (47±9 and 104±28 HU,
respectively; p<0.01),(57). Further developments in CT technology enabled more precise
differentiation between plaque types with 16-slice MDCT, although microcalcification
within plaques remained difficult to classify.(58–60)

As imaging technology has improved, ex-vivo histological comparisons have become less
prevalent. Despite concerns about accuracy,(61, 62) IVUS has become the gold standard for
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intravascular plaque analysis.(63, 64) Early comparisons of CCTA with IVUS showed
promise for characterization and quantification of plaques, but results suffered from poor
scan resolution and reproducibility, (65–68) especially outside of the proximal coronary tree
segments.(69) Improvements in CT technology in more recent studies resulted in improving
ability to quantify and distinguish plaque types,(4, 43, 70–72) especially if the measured
areas were limited to regions with high scan quality, without blurring or heavy calcification.
(73) Figure 1b shows CCTA visualization of calcified and non-calcified plaque within
coronary arteries.

Multiple studies have attempted to determine distinct HU ranges corresponding to different
histological plaque types. Mean HU densities for lipid-rich soft plaques range from 14–75
HU,(66, 74) fibrous plaques range from 67–149 HU,(75, 76) and calcified plaques range
from 135–1089 HU.(77, 78) Table 1 summarizes recent studies correlating attenuation with
plaque characteristics. Figure 2 shows lipid-rich and fibrous soft plaques visualized on
CCTA.

Comparison is difficult between these studies, due to different modes of classification for
CCTA-determined plaque types (non-calcified/mixed/calcified, fatty/fibrous/calcified,
hyperechoic/hypoechoic/calcified, or stratification by Hounsfield units), which do not
precisely correspond to the different modes of IVUS classification (soft/intermediate/
calcified, calcified/mixed/fibrous/soft, fatty/fibrous/calcified, fibrotic/fibro-fatty/necrotic-
core/calcified) or histological classification. Despite the need for future improvement of
CCTA, there is a clear trend that improving technology continues to close the gap to provide
a non-invasive, cost-saving alternative to expensive and invasive gold standard
measurements.

CCTA and the Ability to Identify Vulnerable Plaques
As our understanding of plaque histology has improved,(79) interest has risen in the ability
of CCTA to identify particularly-at-risk plaque structures. At risk plaques tend to have low
x-ray attenuation (Hounsfield unit) values. Alternatively, soft plaque may had specific
anatomic characteristics such as the “napkin-ring sign” that indicate a specific morphology.

CCTA quantification of plaque types subdivided by SCCT recommendation (non-calcified,
calcified, partially calcified) shows excellent inter and intra-rater agreement.(80) While the
categories lack the descriptive strength of pathology-based histological subtypes by Stary
classification, CCTA and IVUS-based histology correspond well in some important
respects. Highly vulnerable plaques such as thin-capped fibroatheromas (TCFA) are found
in 32% of plaques classified as partially calcified by CCTA, versus 13% for “non-calcified,”
and 8% for calcified.(43) Additionally, TCFA may be associated with the “napkin-ring sign”
on CCTA, a ring-like enhancing lesion that has been implicated in rupture and ACS in
multiple studies.(7–9) In these cases, the ring may be due to differential density of necrotic
lipid core surrounded by thin fibrous material, as the lesion itself is typically associated with
large plaques with necrotic lipid cores.(10)

More recent studies show a weak correlation between high density NCP and fibrous plaque
tissue (R=0.47) as well as between low-density NCP and fibrofatty/necrotic core plaques
(R=0.25), as noted in the ATLANTA I study using quantitative CCTA to IVUS.(81) Choi et
al. demonstrated that plaques with greater than 10% necrotic core volume had significantly
lower HU densities (41.3±26.4 vs 93.1±37.5) and significant correlations were found
between HU density and percent necrotic core (r=−0.53) and fibrotic component (r=0.57),
but not with fibrofatty component or calcium determined by IVUS. (82)
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CCTA and the Ability to Identify Positive Remodeling
Positive remodeling, as described by Glagov et al.,(83), is the tendency of coronary arteries
to undergo compensatory enlargement from early atherosclerosis. Positive remodeling is
measured by dividing the cross sectional vessel wall area by a corresponding proximal and
distal segment reference area or lesion area. While definition of the proximal and distal
reference segments is somewhat subjective, the CCTA approach has been validated against
IVUS (75, 84, 85) and has shown excellent reproducibility.(80) Positive remodeling has
been associated with a high risk of ACS. (37, 38) Kitagawa et al. which showed that within
NCP lesions, remodeling index was the only factor that correlated with culprit lesions
causing ACS and non-culprit lesions within patients who had ACS due to plaque rupture at a
different site.(86) Positive remodeling is presumed to be associated with inflammation and
increased propensity for rupture. Negative, or constrictive remodeling, is associated with
lesion stabilization and has been observed in plaques following statin treatment.(87)

More recent studies have examined the use of positive remodeling, which is easily measured
by CCTA, as a surrogate marker for regions of vulnerable plaque. IVUS studies have
demonstrated that positive remodeling is associated with increased intra-plaque lipid volume
and decreased calcium and fibrous tissue, a composition typical for vulnerable plaque.(88,
89) This association is supported within the CCTA literature, as Schmid et al. demonstrated
correlation between degree of remodeling and CT attenuation of plaque in a sample of 72
lesions. Positively-remodeled plaque attenuation had a significantly lower value than lesions
displaying no or negative remodeling (59±22 HU versus 91±20HU, p<0.001).(90)
Additionally, a study by Kroner et al demonstrated that thin capped fibroatheromas by IVUS
were associated with 43% of positively-remodeled plaques by 64MDCT as compared to
4.8% of negatively remodeled lesions.(91) The authors concluded that CCTA positive
remodeling was correlated with actual histological markers of plaque instability.

Future Directions in Coronary Computed Tomographic Angiography
Plaque characterization by CCTA has potential application for 1) assessing overall risk for
primary prevention, 2) evaluation of ACS, and 3) following progression of disease and
response to therapy. These topics are reviewed below.

Plaque assessment for primary prevention
There have been several studies looking at the prognostic value of plaque characteristics
both individually and in addition to current modes of risk stratification. In 810 patients,
Matsumoto et al. demonstrated that low attenuation plaque (HU <68) was associated with
higher rates of major cardiac events over 2.9 years (OR:2.9 95%CI:1.2–6.7 p<0.05).(92) In a
study of 517 patients referred for cardiac evaluation undergoing 16-slice MDCT and
myocardial perfusion imaging, van Werkhoven et al showed that having two or more
segments with completely non-calcified plaque was predictive of events (HR:5.0 95%CI:
2.2–11.7 p<0.01) and that having three or more segments with mixed plaque was also
predictive of events (HR:3.5 95%CI:1.5–8.1 p<0.005).(93) This same group was also
followed for composite all-cause mortality, non-fatal MI, and unstable angina over a median
follow-up of 22 months in 432 patients undergoing CAC and 6-slice CCTA. There was a
significant incremental predictive value of CCTA in patients with a calcium score greater
than 1000, particularly with regards to number of NCP’s (HR:1.3 95%CI:1.1–1.4 p=0.001)
and mixed plaque-containing segments (HR:1.2 95%CI:1.0–1.4 p=0.039). The number of
calcified segments was not predictive.(94)

More impressively, Ahmadi et al. recently showed that CCTA plaque type had significant
predictive value in 1,102 symptomatic patients with non-obstructive (stenosis <50%) CAD
followed over 78±12 months.(95) In this cohort, the rate of death increased in association
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with calcified plaque (1.4%) to mixed plaque (3.3%) to completely non-calcified plaque
(9.6%). The risk-adjusted hazard ratio in patients with mixed plaque was 3.2 (95%CI1.3–8.0
p<0.001) and for completely non-calcified plaque the risk was twice as high at 7.4 (95%CI:
2.7–20.1, p<0.001). These studies demonstrate that the presence of soft plaque and mixed
plaque provided incremental value in predicting all-cause mortality over traditional
measurements of risk.

Plaque assessment and acute coronary syndrome
Distinguishing between ACS and stable angina on presentation would allow for faster and
more accurate treatment. Retrospective analysis of CCTA from patients presenting with
ACS have shown differences between their plaque characteristics compared to those with
stable angina. Volumetric plaque burden was assessed by 64-slice CCTA in 57 patients with
NSTEMI compared to 19 with stable angina pectoris, finding that the mean HU density was
lower in patients with NSTEMI (74 vs. 99HU p=0.02), and that the volume of calcified
plaque and number of lesions with calcified plaque was decreased in NSTEMI. Stable
angina patients had fewer segments with NCP, and positive remodeling was found in 19% of
patients with NSTEMI as compared none in patients with stable angina.(96)

Two studies have looked at developing standardized scoring methods for detecting culprit
lesions, which include plaque characteristics such as low attenuation, remodeling index,
spotty calcification, and plaque volume. In one of these studies, Kim et al. combined plaque
attenuation of ≤ 60 HU, remodeling index ≥1.05, and presence of NCP or spotty
calcification to predict ACS patients with a sensitivity of 97.1% and specificity of 67.6%,
ROC analysis showed an (AUC:0.908 p<0.001).(97) Ferencik et al. used presence of
positive remodeling, spotty calcium, and stenosis length >4.5mm, finding that this was
associated with OR 4.6, 95% CI 1.6 to 13.7 (AUC 0.824) for prediction of ACS over stable
angina.(98)

Although prognosis before the onset of MI is ideal, using CCTA to stratify risk after
diagnosis of ACS may also be of value. Stone et al. revealed that recurrence of a major
cardiac event after treatment with percutaneous coronary intervention was attributed to a
different, untreated vessel region almost half of the time. These untreated regions were
associated with the typical characteristics of vulnerable plaque by IVUS,(3) therefore, if
CCTA is able to identify co-existing vulnerable plaques, treatment decisions can be tailored
to the patient’s individual risk. In a study of 312 patients, CCTA measurement of NCP
volume in patients presenting with NSTEMI was a better predictor of future cardiac events
over 16 months than clinical variables and left-ventricular ejection fraction (LVEF).(99)
Watabe et al. showed that CCTA-defined culprit lesions prior to percutaneous coronary
intervention may be predictive of myocardial necrosis and significantly greater post-
procedural risk.(100)

Plaque assessment to monitor treatment progression
There is little biological evidence that statins are able to reduce the burden of calcified
plaque, but earlier studies magnetic resonance imaging studies of the aorta and carotid
arteries have shown reduced plaque burden in response to intensive statin treatment. (101–
108) With CCTA, a number of studies have showed decreased NCP with treatment.(16,
109–111) Burgstahler et al. demonstrated that initiation of atorvastatin therapy reduces NCP
volumes (24±13% p<0.05) but does not impact calcium scoring (Agatston score: 261±301
vs. 282±360 p>0.05) or total plaque burden (0.15±0.11ml vs. 0.13± 0.075ml p>0.05).(112)
Inoue et al. used serial CCTA to track decreases in plaque volume in response to fluvastatin
treatment, and found decreases in both low attenuating plaque volume (4.9 ± 7.8 vs. 1.3 ±
2.3 mm3, p = 0.01) and total plaque volume (92.3 ± 37.7 vs. 76.4 ± 26.5 mm3, p < 0.01).
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(16) While specific therapy to prevent NCP rupture has yet to be discovered, there is
evidence that statins may cause constrictive remodeling and increased plaque stability,
suggesting that the decrease in plaque volume in the studies above may be protective against
ACS events.(87)

Technical issues for plaque characterization with CCTA
Radiation Reduction in Coronary CTA

Accurate assessment of coronary plaque by CCTA requires high spatial resolution and
excellent contrast resolution. Unfortunately both “requirements” are associated with high
radiation dose. In addition, the concept of CCTA monitoring of plaque healing implies
multiple CCTA examinations with further radiation exposure. Already, CT use for non-
cardiac applications represents the greatest contributor to medical radiation in the US which
has now reached equivalence to natural background radiation.(113, 114) Radiation exposure
associated with CCTA is especially concerning because of the widespread nature of
coronary artery disease and high radiation doses that were used with early CT scanning
devices. The sections below indicate recent developments that have allowed cardiac CT
radiation exposure to transition from one of the highest dose to one of the lowest dose CT
scanning applications.

CCTA presents a unique set of hurdles due to the necessity for high resolution images in an
anatomical area predisposed towards significant motion artifacts. Widespread evaluation of
CCTA began in 2004, with radiation dose estimates ranging from 9–21.4 mSv per scan(14)
due to continual scanning throughout the cardiac cycle at maximum tube current and voltage
with retrospective electrocardiogram (ECG) gating. ECG-based tube current modulation was
subsequently introduced, where tube voltage was decreased by 75–96% when outside of
diastole, resulting in a decrease to approximately 8–10 mSv per scan.(13) Low tube voltage
protocols were the next development in patients with BMI<25, with reduction of tube
voltage from 120 kV to 100 kV, resulting in a radiation dose of approximately 6.5 mSv.(13)
Prospective ECG triggered gating, or “Step-and-shoot” technology, where the x-ray tube is
only activated during pre-determined moments in diastole effectively took the ECG-based
tube current modulation technology to its limit. While this procedure generally was only
useful in patients with lower heart rates, radiation dose was decreased to 1.5–4 mSv
depending on the tube voltage protocol that was used.(13) Most recently, development and
improvement of multidetector CT (MDCT) with large scale detector systems has allowed
single-beat acquisition of CCTA for patients with heart rate <63 bpm and decreases in
exposure to the 1 mSv range.(11, 13, 14)

Image Reconstruction in Coronary CTA
More recent innovations have focused in improvement of post-processing techniques
through computationally intense algorithms that improve the clarity and quality of scans to
compensate for decreased scan radiation.(115, 116) Classically, image reconstruction in CT
has used a Filtered Back Projection (FBP) algorithm. This mode of reconstruction creates
images by combining the multiple axial 2D back-projections generated by each gantry
revolution and applying filters to increase contrast and compensate for the increased signal
intensity at the center of the image. FBP relies on a few simplifying assumptions, idealizing
the characteristics and interactions of the x-ray beam with the patient and the detector,
although leading to some inaccuracies and artifacts. FBP has the benefit of being fast with
low computational load, but suffers in scanning large patients, imaging at high resolution or
in areas of high bone density (e.g. the pelvis) or using when low-dose technique.(117)

Iterative reconstruction refers to a repeated process of image reconstruction that draws the
reconstructed image closer to an idealized model, creating a reconstruction with less noise
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and higher clarity. Figure 3 shows a comparison of FBP versus iterative reconstruction,
showing decreased noise in the iterative reconstruction views. This approach can
compensate for lower radiation dose, making sub-millisievert CCTA possible.(118) While
based on similar reconstruction theory, these techniques are not exactly the same and the
literature reveals subtle differences between all of these methods. The variety and range of
new techniques for radiation dose reduction are defined in Table 2.

Conclusion
New technological developments have expanded the ability of CCTA to elucidate aspects of
cardiovascular disease previously only measurable through invasive modalities; however,
concerns still remain about utilization and radiation exposure. New methods of
reconstruction may allow CCTA to be performed with lower radiation dose and better image
quality. Besides assessment of coronary stenosis, plaque composition and characteristics
have begun to assume increasing importance. CCTA can thus combine features of stenosis
detection by invasive angiography and plaque characterization by invasive ultrasound.
Assessment of plaque by CCTA may be used to assess prognosis as well as to identify at
risk plaques. Finally, the concept of medical therapy and monitoring of plaque healing and
regression by CCTA has recently become possible using low radiation dose techniques.
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Figure 1.
a. Calcified coronary arteries. A) Agatston calcium score axial view. B) Filtered Back-
projection axial view. C) Arterial cross section view. D) Orthogonal curved multiplanar
reconstruction view. Green arrows: Calcified plaque in left anterior descending (LAD)
artery visualized in multiple modalities. This patient’s CAC score was 1982. Total plaque
burden (TPB) is 11.0; soft plaque burden (SPB) is 1.9; fibrous plaque burden (FPB) is 4.4;
calcified plaque burden (CPB) is 4.7.
b. Coronary arteries exhibiting non-calcified plaque. A) Agatston calcium score axial view.
B) Filtered Back-projection axial view. C) Arterial cross section view. D) Orthogonal
curved multiplanar reconstruction view. Green arrows: Mixed LAD plaque.. Red arrows:
Significant non-calcified plaque in LAD proximal to calcified segment. The patient’s CAC
score is 54. Total plaque burden (TPB) is 10.1; Soft plaque burden (SPB) is 1.7; Fibrous
plaque burden (FPB) is 5.3; Calcified plaque burden (CPB) is 3.1.
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Figure 2.
Filtered back-projection reconstructions of coronary arteries exhibiting non-calcified plaque
indicated by red arrows, with occasional calcification (not marked). A) Patient with plaque
in left main coronary artery. HU of plaque is 5, consistent with lipid-rich plaque. Total
plaque burden (TPB) is 7.9; soft plaque burden (SPB) is 1.5; fibrous plaque burden (FPB) is
3.6; calcified plaque burden (CPB) is 2.8. B) Patient with plaque in left main coronary
artery. HU of plaque is 29, consistent with lipid-rich plaque. TPB is 6.5; SPB is 2.6; FPB is
3.5; CPB is 0.4. C) Patient with plaque in left anterior descending artery. HU of plaque is
85, consistent with fibrous non-calcified plaque. TPB is 10.1; SPB is 1.7; FPB is 5.3; CPB is
3.1. D) Patient with plaque in left anterior descending artery. HU of plaque is 85, consistent
with fibrous non-calcified plaque. TPB is 8.7; SPB is 1.7; FPB is 4.9; CPB is 2.1.
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Figure 3.
Comparison of axial and arterial cross-sectional views using different reconstruction
techniques from same data set. A) Filtered back-projection. B) Adaptive Iterative Dose
Reduction, mild level. C) Adaptive Iterative Dose Reduction, standard level. Notable for
increased incremental image quality, decreased noise and increased smoothness in higher
levels of iterative dose reduction (right) versus traditional reconstruction by filtered back-
projection (left).
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