
Estimation of Stratified Mark-Specific Proportional Hazards
Models with Missing Marks

Yanqing Sun
Department of Mathematics and Statistics, The University of North Carolina at Charlotte,
Charlotte, NC 28223, USA. yasun@uncc.edu

Peter B. Gilbert
Department of Biostatistics, University of Washington and Fred Hutchinson Cancer Research
Center

Abstract
An objective of randomized placebo-controlled preventive HIV vaccine efficacy trials is to assess
the relationship between the vaccine effect to prevent infection and the genetic distance of the
exposing HIV to the HIV strain represented in the vaccine construct. Motivated by this objective,
recently a mark-specific proportional hazards model with a continuum of competing risks has been
studied, where the genetic distance of the transmitting strain is the continuous `mark' defined and
observable only in failures. A high percentage of genetic marks of interest may be missing for a
variety of reasons, predominantly due to rapid evolution of HIV sequences after transmission
before a blood sample is drawn from which HIV sequences are measured. This research
investigates the stratified mark-specific proportional hazards model with missing marks where the
baseline functions may vary with strata. We develop two consistent estimation approaches, the
first based on the inverse probability weighted complete-case (IPW) technique, and the second
based on augmenting the IPW estimator by incorporating auxiliary information predictive of the
mark. We investigate the asymptotic properties and finite-sample performance of the two
estimators, and show that the augmented IPW estimator, which satisfies a double robustness
property, is more efficient.
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1 Introduction
In many medical studies, evaluation of treatment efficacy is based on comparison of survival
times between two treatment groups. This is often done through the ratio of two hazard
functions of an endpoint. In a preventive HIV vaccine efficacy trial, the usual primary
objective is to assess vaccine efficacy (V E) to prevent HIV infection, where typically V E is
defined as one minus the hazard ratio (vaccine/placebo) of the failure event. However, it
may be quite difficult to achieve an efficacious vaccine due to genetic variation of HIV
(Fauci et al., 2008). The study population is exposed to many genetic types of circulating
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HIVs but the vaccine only contains antigens based on one or a few strains, and the vaccine
protection is likely to be lower against strains that are not in the vaccine or that have greater
genetic distance from the strain(s) in the vaccine (Gilbert et al., 1999). Assessment of this
problem can be formulated with a competing risks failure time model where the endpoint is
HIV infection and the mark variable is the genetic type or distance of the transmitting
strain(s) from the strain(s) represented in the vaccine (A `mark' by definition is only
meaningful/observable in failures). The goal is to evaluate mark-specific vaccine efficacy
defined as one minus the mark-specific hazard ratio (vaccine/placebo) of infection.

In HIV vaccine efficacy trials, the mark variable of interest is some measure of genetic
distance between an HIV sequence measured from an infected subject and an HIV sequence
represented in the vaccine. For example, if the two HIV sequences are aligned, then the
genetic distance may be defined as the weighted percent mismatch of amino acids (e.g., Wu
et al., 2001), with weights selected to make the distance scientifically/immunologically
meaningful. Definitions of genetic distance between unaligned sequences are also possible,
for example based on the difference in total counts of amino acids that possess certain
physico-chemical properties. For many definitions of genetic distances of interest, the value
of the distance may be unique for almost all infected subjects, making it natural to consider
it as a continuous mark variable. Gilbert et al. (2004, 2008) developed procedures for
estimation and testing of continuous mark-specific hazards rates and relative risks, and Sun
et al. (2009) studied the continuous mark-specific proportional hazards model, which allows
evaluating mark-specific vaccine efficacy with adjustment for covariate effects.

However, the previous work for a continuous mark did not account for missingness of the
mark variable in failures, so that its valid implementation relies on a dubious missing
completely at random assumption (MCAR). While these methods will perform satisfactorily
for mark variables measured in almost all failures, for which violations of MCAR are
inconsequential, they may be invalid and misleading under moderate-to-high rates of
missingness. Moreover, arguably the marks of greatest scientific interest in HIV vaccine
trials are subject to high rates of missingness. In particular, ideally the mark would be
defined based on the HIV strain that is actually transmitted. However, because vaccine trials
only periodically test for HIV infection, the earliest observable HIV genotype is measured
using a subjects' earliest available blood sample, which is drawn days, weeks, or several
months after the actual transmission event. Therefore the ideal mark definition is
unachievable, and we must consider knowledge of HIV evolution and the HIV testing
algorithm to develop a workable definition.

HIV vaccine trials test volunteers for anti-HIV antibodies at periodic intervals (e.g., every 3
or 6 months); these antibody-based tests have near-perfect sensitivity to detect infections
that occurred at least 4 weeks ago but otherwise may miss the infection. For all subjects with
an HIV antibody positive (Ab+) test, a “look-back” procedure is applied wherein earlier
available blood samples are tested for HIV infection using a more sensitive antigen-based
HIV-specific PCR assay, which has near-perfect sensitivity if the infection occurred at least
one week ago; thus for example if blood samples are drawn 2 weeks and 6 weeks after HIV
acquisition, and the Ab and PCR tests are applied to both samples, then with very high
probability the 2-week sample will be Ab−, PCR+ and the 6-week sample will be Ab+, PCR
+. Therefore, each infected subject is classified into one of two groups, defined by whether
the earliest sample is Ab− and PCR+ (an `early' sample) or is Ab+ and PCR+ (a `later'
sample). These groups approximately correspond to the first available sample being drawn
less than or greater than 4 weeks after HIV acquisition. Extensive analysis of early viruses
suggests that these viruses well-approximate the transmitting strain, whereas later viruses
tend to have undergone significant evolution, with many genetic mutations (Keele et al.,
2008). If the mark is defined based on the earliest sampled virus from each infected subject,

Sun and Gilbert Page 2

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



then the fact that it is often significantly mutated relative to the transmitted virus may make
the analysis misleading about the relationship between vaccine efficacy and the exposing
virus. One remedy to this problem defines the mark as the early virus in the Ab− and PCR+
phase, which will likely be missing from many infected subjects, with missingness rate
depending on the frequency of HIV testing. For the recent Step HIV vaccine trial with
genetic data on 87 diagnosed HIV infections, with 6-monthly HIV antibody testing, 41 were
Ab−/PCR+ viruses, for a missingness rate of 53% (unpublished data). The sequel trial that is
ongoing (named HVTN 505), with 3-monthly HIV antibody testing, is expected to give a
missingness rate of less than 50%. The `early' mark of interest may be missing for other
reasons besides HIV evolution, for example because of a missing blood sample or a
technical problem in measuring the HIV sequence; the developed methods accommodate
this issue by allowing separate models of the different missingness types.

To analyze data with the mark defined as the genetic distance from the early virus, a
`complete-case' application of the previously developed methods, which excludes infected
subjects without a measured mark, may be highly biased and inefficient. Accordingly, this
article develops valid and more efficient estimation methods for data-sets with missing at
random continuous marks. The new methods restrict attention to a univariate mark variable,
albeit if the vaccine contains multiple HIV sequences and/or if multiple sequences are
transmitted to a study participant (which happens in a minority of cases, Keele et al., 2008),
then it would be of interest to study a multivariate mark variable defined as the set of genetic
distances to the vaccine sequences. The current methods can accommodate multiple genetic
distances by defining the univariate mark as the minimum of the multiple distances.

Early work in nonparametric estimation for failure time data with missingness of a discrete
mark (failure type) include Dinse (1986), Racine-Poon & Hoel (1984) and Lagakos & Louis
(1988). Goetghebeur & Ryan (1990) and Dewanji (1992) derived modified logrank tests to
compare survival experience between two groups. Goetghebeur & Ryan (1995) and Lu &
Tsiatis (2001) studied proportional cause-specific hazards models for one particular failure
cause. Gao & Tsiatis (2005) studied linear transformation models of cause-specific hazard
functions and Lu & Liang (2008) studied semiparametric additive models of cause-specific
hazard functions.

We develop two estimation approaches for the stratified mark-specific proportional hazards
model. The first uses inverse probability weighting (IPW) of the complete-case estimator,
which leverages auxiliary predictors of whether the mark is observed. The second approach,
adapting the theory of Robins et al. (1994), augments the IPW complete-case estimator with
auxiliary predictors of the missing marks.

The article is organized as follows. Notation, assumptions, and the stratified mark-specific
proportional hazards model are introduced in Section 2. The estimation procedures are
proposed in Section 3. The asymptotic properties of the proposed estimators are derived in
Section 4. Procedures for constructing confidence intervals for mark-specific vaccine
efficacies are also given in Section 4. The finite-sample performance and robustness analysis
of the estimators are studied in simulations in Section 5. Proofs of the main results are
placed in the web Appendices.

2 Stratified mark-specific proportional hazards models and missing marks
Let T be the failure time, V a continuous mark variable, and Z(t) a possibly time-dependent
p-dimensional covariate. Under the competing risks model, the mark V is only defined and
observable when T is observed, whereas if T is right-censored, the mark is undefined and
meaningless. Suppose that the conditional mark-specific hazard function at time t given the
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covariate history Z(s), for s ≤ t, defined below only depends on the current value Z(t). The
conditional mark-specific hazard function given Z(t) = z is defined as

(1)

with t ranging over a fixed interval [0, τ]. Assume that V is continuous and has a known
bounded support; rescaling V if necessary, this support is taken to be [0, 1]. The function
given in (1) is the natural analog of its discrete counterpart, with similar interpretation.

Gilbert et al. (2008) defined mark-specific vaccine efficacy as VE(t, v) = 1−λ(t, v|z = 1)/λ(t,
v|z = 0), with z the indicator of assignment to the vaccine group; they developed several
nonparametric and semiparametric tests concerning VE(t, v) as well as a nonparametric
estimation method. Sun et al. (2009) studied the mark-specific proportional hazards (PH)
model, λ(t, v|z(t)) = λ0(t, v)exp {β(v)T z(t)}, where λ0(·, v) is the unspecified baseline
hazard function and β(v) is the p-dimensional unknown regression coefficient function of v.
For the HIV vaccine trial application, the covariate is partitioned as z(t) = (z1, z2(t))T, where
z1 is the treatment (vaccine) group indicator and z2(t) is a vector of possibly time-dependent
covariates. Then the covariate-adjusted mark-specific vaccine efficacy defined above takes
the simpler form VE(v) = 1 − exp(β1(v)), without any dependence on t. Assuming the
vaccine and placebo groups have the same distribution of the number of exposures to viruses
with genetic distance marks in a neighborhood of v (by randomization and double-blinding),
VE(v) approximates the multiplicative effect of the vaccine to reduce the instantaneous rate
of infection with this virus type (Gilbert et al., 2008; Sun et al., 2009). The statistical
procedures developed by Sun et al. (2009) are based on observations of the random variables
(X, Z(·), V) for δ = 1 and (X, Z(·)) for δ = 0, where X = min{T, C}, δ = I(T ≤ C), and C is a
censoring random variable. Whereas the earlier work assumed V was observed whenever T
is observed, here we allow V to be missing, and incorporate in the estimation procedures
auxiliary covariates and/or auxiliary mark variables that inform about the probability V is
observed and about the distribution of V. For our motivating example discussed above,
genetic data for the `later' virus measured in almost all infected subjects is a natural auxiliary
mark to help predict the genetic distance V for an `early' virus that is frequently missing.

In practice, different key subgroups (e.g., men and women; subjects living in different
geographic regions) typically have different baseline mark-specific hazards of HIV
infection. The stratified mark-specific PH model postulates that the conditional mark-
specific hazard function given covariate z(t) for an individual in the kth stratum equals

(2)

where β(v) is the p-dimensional unknown regression coefficient function of v, λ0k(·, v) is
the unspecified baseline hazard function for the kth stratum and K is the number of strata.
Model (2) allows different baseline functions for different strata. Similar generalizations of
the Cox model was studied by Dabrowska (1997).

Next we introduce some notation and assumptions that are used throughout the article. Let

nk be the number of subjects in the kth stratum; the total sample size is . As
above, the right-censored mark-specific failure time is represented by (X, δ, V) and Z(·) is
the covariate process. Let R be the indicator of whether all possible data are observed for a
subject; R = 1 if either δ = 0 (right-censored) or if δ = 1 and V is observed; and R = 0
otherwise. Auxiliary variables A may be helpful for predicting missing marks. Since the
mark can only be missing for failures, supplemental information is potentially useful only
for failures, for predicting missingness and for informing about the distribution of missing
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marks. For example, the `later' HIV virus V* can be considered a subset of A. In general, A
could include multiple viral sequences per infected subject at multiple time-points along
with the time points at which the viruses are sequenced, giving a picture of the intra-subject
evolution of a subject's HIV infection. The relationship between A and V can be modelled to
help predict V (see Section 5 for a simulation example).

We assume that the censoring time C is conditionally independent of (T, V) given Z(·) for an
individual in the kth stratum. We also assume the mark V is missing at random (Rubin,
1976); that is, given δ = 1 and W = (T, Z(T), A) of an individual in the kth stratum, the
probability that the mark V is missing depends only on the observed W, not on the value of
V; this assumption is expressed as

(3)

Let πk(Q) = P (R = 1|Q) where Q = (δ, W). Then πk(Q) = δrk(W) + (1 − δ). The missing at
random assumption (3) also implies that V is independent of R given Q:

(4)

For an observed value w of W of an individual in the kth stratum, we write rk(w) = P (R = 1|
δ = 1, W = w) and ρk(v, w) = P (V ≤ v|δ = 1, W = w). The stratum-specific definitions of
rk(w) and ρk(v, w) leave the options for the models of the probability of complete-case and
mark distribution to be different for different strata.

Let for each k, {Xki, Zki(·), δki, Rki, Vki, Aki; i = 1, …, nk} be iid replicates of {X, Z(·), δ, R,
V, A} from that stratum. The observed data is denoted by {Oki; i = 1 …, nk, k = 1, …, K},
where Oki = {Xki, Zki(·), Rki, RkiVki, Aki} for δki = 1 and Oki = {Xki, Zki(·), Rki = 1} for δki
= 0. We assume that {Oki; i = 1 …, nk, k = 1, …, K} are independent for all subjects.
Similarly, we denote Wki = (Tki, Zki(Tki), Aki) and Qki = (δki, Wki).

We consider a parametric model rk(Wki, ψk) for rk(Wki), where ψk is an unknown vector of
parameters to be further discussed in the next section. Let πk(Qki, ψk) = δkirk(Wki, ψk) + (1
− δki). Additional notation is introduced in the following. For , t ≥ 0, let Yki(t) = I(Xki
≥ t),

where for any , z⊗0 = 1, z⊗1 = z and z⊗2 = zzT. Define  and

. Under the missing at random assumption (3),

 if the model rk(Wki, ψk) is correctly specified. Let
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Let  and .

3 Estimation procedures
When there are no missing marks, β(v) in model (2) can be estimated by maximizing the
following local log-partial likelihood function for β = β(v) at a fixed v:

(5)

where Kh(x) = K(x/h)/h, K(·) is a kernel function with support [−1, 1], τ is the end of the
follow-up period and h = hn is a bandwidth. Here Nki(t, v) = I(Xki ≤ t, δki = 1, Vki ≤ v) is the
marked counting process with a jump at the uncensored failure time Xki and the associated
mark Vki. The log partial likelihood function (5) resembles that of Kalbfleisch & Prentice
(1980) in the case of discrete marks, except that it borrows strength from observations
having marks in the neighborhood of v. The kernel function is designed to give greater
weight to observations with marks near v than those further away. As discussed by
Silverman (1986, p.43), the choice of kernel function has little to do with the performance of
the estimators. For example, the asymptotic relative efficiency of the Tukey kernel
compared to the optimal Epanechnikov kernel is 0.9897 and the Gaussian kernel has a
relative efficiency of 0.9512. It is common to assume compact support for technical
simplicity. The bandwidth, on the other hand, is an important parameter in the estimation of
β(v). The cross-validation method is often used for bandwidth selection. This is further
discussed in Section 5.

Taking the derivative of l(v, β) with respect to β gives the score function

(6)

The maximum partial likelihood estimator is a solution to U(v, β) = 0. This estimator was
studied by Sun et al. (2009) when there is no stratification, i.e. K = 1.

In the presence of missing marks, (5) can only be applied directly to estimate β(v) through a
complete-case analysis (e.g., excluding failures with a missing mark), which may be biased
and inefficient. Our first approach to remedying this problem, following the idea of Horvitz
& Thompson (1952), uses inverse probability weighting of complete-cases. However, this
approach has been shown to be inefficient in several situations (Gao & Tsiatis, 2005; Lu &
Liang, 2008); also see Scharfstein et al. (1999). Our second approach, adapting the idea of
Robins et al. (1994), augments the inverse probability weighted complete-case estimation
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equation with a consistent estimator of the conditional distribution of the mark that uses the
estimator from the first approach and auxiliary data from subjects with missing marks.

Our model formulation is different from those in the existing literature on the discrete
competing risks model, where only the cause-specific hazard function for one particular
cause is modeled while the cause-specific hazard functions for the other causes are left
unspecified. To evaluate mark-specific vaccine effects, model (2) specifies a proportional
mark-specific hazards model for each mark v, 0 ≤ v ≤ 1. This model induces restrictions on
the conditional mark distribution ρk(v, Wk) given in (4), so that arbitrary modeling may run
into conflicts with the mark-specific PH model (2) and result in inconsistent estimation. This
modeling restriction requires a different approach, as described below.

3.1 Inverse probability weighted complete-case estimator
Following Horvitz & Thompson (1952), inverse probability weighting of complete-cases has
been commonly used in missing data problems. Let rk(Wki, ψk) be the parametric model for
the probability of complete-case rk(Wki) defined in (3), where ψk is a q-dimensional

parameter. For example, one can assume the logistic model with logit

for those with δki = 1. By (3), the maximum likelihood estimator  of ψ =
(ψ1,…,ψK) is obtained by maximizing the observed data likelihood,

(7)

We propose the following inverse probability weighted (IPW) estimating equation for β:

(8)

The IPW estimator of β(v) solves the above equation and is denoted by .

The baseline function λ0k(t, v) can be estimated by , obtained by smoothing the
increments of the following estimator of the doubly cumulative baseline function

 dsdu:

(9)

For example, one can use kernel smoothing,

(10)

where  and , with K(1)(·) and K(2)(·) the kernel
functions and b1 and b2 the bandwidths.

3.2 Augmented inverse probability weighted complete-case estimator

The IPW estimator  uses only complete cases and is inefficient. Following Robins et
al. (1994), Gao & Tsiatis (2005) proposed augmented inverse probability weighted
complete-case estimators for the linear transformation model of cause-specific functions
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subject to missing failure types. Lu & Liang (2008) studied a semiparametric additive model
for cause-specific functions with missing failure types. In both papers, an additional model
is supplied for the conditional probability of the failure type of interest P(J = 2|W) to utilize
the data from the failures with missing types as well as from the complete cases when there
is only one stratum, where J is the type of failure in a typical competing risks set-up.
Whereas Gao & Tsiatis (2005) and Lu & Liang (2008) had the flexibility to model P(J = 2|
W), our conditional distribution of the mark, ρk(v, w), being specified for each v ∈ [0, 1],
has a built-in structure that must be considered. Nevertheless, we will show that the idea of
Robins et al. (1994) can still be used for model (2) to improve efficiency. Specifically, more
efficient estimation of (2) can be achieved by incorporating knowledge of ρk(v, w) into the
estimation procedure. Let gk(a|t, v, z) = P(Aki = a|Tki = t, Vki = v, Zki = z, δki = 1). Then

(11)

where w = (t, z, a). If Aki is independent of Vki given (Tki, Zki, δki), then

. In this case, ρk(v, w) can be estimated by

, where .

Routine kernel methods can be used to show that  at the rate of
(nh)−1/2 when b1 ≍ b2 ≍ h, where ≍ means convergence to zero at the same rate.

When the auxiliary marks Aki are correlated with Vki, the conditional distribution ρk(v, w)
involves the function gk(a|t, u, z), which can be modeled to capture the correlation. The
stronger the correlation, the greater potential to improve efficiency. As considered in Section
1, if Vki is the genetic distance of an early virus, then an auxiliary mark Aki that is expected
to predict Vki is the genetic distances of all available later viruses and their sampling times.

Consider a parametric model gk(a|t, u, z, θk) for gk(a|t, u, z). Let  be an estimator
of gk(a|t, u, z). Then ρk(v, w) can be estimated by

(12)

Taking b1 ≍ b2 ≍ h, it is easy to show that  at the rate of (nh)−1/2.

Let ,  and . Following
Robins et al. (1994), we obtain the following augmented (AUG) inverse probability
weighted estimating equation for β:

(13)

The AUG estimator of β(v) solves the above equation and is denoted by .

The doubly cumulative baseline function  is estimated by
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(14)

The baseline hazard function λ0k(t, v) can be estimated by the kernel estimator

(15)

4 Asymptotic properties
Let

, be the (right-continuous) filtration generated by the full data processes {Nki(s, v), Yki(s),
Zki(s); 0 ≤ s ≤ t, 0 ≤ v ≤ 1, i = 1, …, nk, k = 1, …, K}. Assume

, that is, the mark-specific instantaneous
failure rate at time t given the observed information up to time t only depends on the failure
status and the current covariate value. By the definition (1),

. Hence, the mark-specific intensity of Nki(t, v)
with respect to  equals Yki(t)λki(t, v|Zki(t)). Let

. By Aalen & Johansen (1978),
Mki(·, v1) and Mki(·, v2) − Mki(·, v1) are orthogonal square integrable martingales with
respect to  for any 0 ≤ v1 ≤ v2 ≤ 1.

Let  be the right continuous filtration obtained

by adding Rki and δkiAki to . Let . Then

(16)

where  is the intensity of Nki(t, v) with respect to . Assume that  is

continuous in (t, v). Let . By Aalen & Johansen

(1978), for any 0 ≤ v1 ≤ v2 ≤ 1, the processes  and , 0 ≤ t ≤ τ
are orthogonal square integrable martingales.

The following regularity conditions are assumed throughout the rest of the paper. Most of
the notation can be found at the end of Section 2.

Condition A

(A.1) β(v) has componentwise continuous second derivatives on [0, 1]. For each k = 1,
…, K, the second partial derivative of λ0k(t, v) with respect to v exists and is
continuous on [0, τ] × [0, 1]. The covariate process Zki(t) has paths that are left
continuous and of bounded variation, and satisfies the moment condition
E[∥Zki(t)∥4 exp(2M∥Zki(t)∥)] < ∞, where M is a constant such that (v, β(v)) ∈
[0, 1] × (−M, M)p for all v and ∥A∥ = maxk,l |akl| for a matrix A = (akl).

(A.2) Each component of  is continuous on [0, τ]×[−M, M]p,  is
continuous on [0, τ]×[−M, M]p×[−L, L]q for some M, L > 0 and j = 0, 1, 2.

, and

.

Sun and Gilbert Page 9

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A.3)
The limit pk = limn→∞ nk/n exists and 0 < pk < 1.  on [0, τ] ×[−M,

M]p and the matrix  is positive definite, where

.

(A.4) The kernel functions K(·), K(1)(·) and K(2)(·) are symmetric with support [−1, 1]
and have bounded variation. The bandwidths satisfy b1 ≍ b2 ≍ h and nh2 → ∞
and nh5 = O(1) as n → ∞.

(A.5) There is a ε > 0 such that rk(Wki) ≥ ε for all k, i with δki = 1.

Discussion of some of these conditions can be found in Sun et al. (2009). To avoid the

problems at the boundaries v = 0, 1, we study the asymptotic properties of  for interior
values of v ∈ [a, b] ⊂ (0, 1).

4.1 Asymptotic results of inverse probability weighted complete-case estimator

The consistency and asymptotic normality of  are established in the next two
theorems.

Theorem 1. Under Condition A, if the model for rk(Wki) is correctly specified, then

 uniformly in v ∈ [a, b] ⊂ (0, 1) as n → ∞.

Let ν0 = ʃ K2(x) dx, μ2 = ʃ x2K(x)dx,

Theorem 2. Under Condition A, if the model for rk(Wki) is correctly specified, then

 for v ∈ [a, b] as n

→ ∞, where  and Σ(v) is given in condition (A.3).

By (16) and by the property of expectation that E(·) = E{E(·|Wki),

ν0Σ*(v) can be consistently estimated by
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The proof of Theorem 2 uses a Taylor expansion of the score function, leading to

, where β*(v) is on the line segment

between  and β(v), and

is the derivative of  with respect to β. Here  is defined at the end of

Section 2. It can be shown that  as n → ∞. Thus, the
asymptotic variance ν0Σ−1(v)Σ*(v)Σ−1(v) can be estimated by

.

4.2 Asymptotic results of augmented inverse probability weighted complete-case
estimator

Let  and  be the score vector and information matrix for  under (7). Then

(17)

(18)

and .

We also introduce the following notation:

(19)

The next theorem shows that the AUG estimator  is consistent if either rk(w, ψk) or
gk(a|t, v, z, θk) is correctly specified, a double robustness property.

Theorem 3. Assuming Condition A,  uniformly in v ∈ [a, b] ⊂ (0, 1) as n →
∞. This consistency holds if either rk(w; ψk) or gk(a|t, v, z, θk) is correctly specified.

Following the proofs of Theorem 2 and 3, it is easy to show that

 is asymptotically normal for v ∈ [a, b] ⊂ (0, 1)
for some function ϑ*(v) if either rk(w, ψk) or gk(a|t, v, z, θk) is correctly specified. When

Sun and Gilbert Page 11

Scand Stat Theory Appl. Author manuscript; available in PMC 2013 March 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



both rk(w, ψk) and gk(a|t, v, z, θk) are correctly specified, Theorem 4 below shows that

 is more efficient than .

Theorem 4. Assuming Condition A, if both rk(w, ψk) and gk(a|t, v, z, θk) are correctly

specified, we have

for v ∈ [a, b] as n → ∞ where  and Σ(v) is given in the condition (A.

3). The estimator  is more efficient than  in the sense that

(20)

Equation (20) shows that the asymptotic covariance

 is smaller than

 and the difference between the two

covariances is at the order of h. The demonstrated efficiency gain for  is reasonable

since the estimation procedures for both  and  are based on the local partial
likelihood with h as its bandwidth.

Let  be defined similarly to  given in (12) with the AUG estimator

. Let ,

 and

The asymptotic variance of  can be consistently estimated by

.

Let  where β1(v) is the coefficient for vaccination status and β2(v) for

other covariates. Let  be the first element on the diagonal of the matrix

ν0Σ−1(v)Σ*(v)Σ−1(v) and  its consistent estimator, which is the first element on the

diagonal of . By Theorem 4, a large sample 100(1−α%

pointwise confidence interval for β1(v) is given by , 0 < v < 1,
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where zα/2 is the upper α/2 quantile of the standard normal distribution. The confidence
intervals for the other coefficient functions can be constructed similarly.

The mark-specific vaccine efficacy V E(v) = 1−exp(β1(v)) can be estimated by

. By Theorem 4 and the delta method,

 for v ∈ (0,1). A large sample 100(1 − α)
% pointwise confidence interval for VE(v) is then given by

, o < v < 1.

5 Simulation study
5.1 Assessment of estimation procedures under correctly specified models

First, we conduct a simulation study to check the finite sample performance of the two
proposed estimation procedures when both rk(w) and gk(a|t, v, z) are correctly specified. The
augmented inverse probability weighted complete-case estimator (AUG) for (2) with
missing marks is compared to the complete-case estimator (CC) wherein the failures with
missing marks are deleted for the analysis, and to the inverse probability weighted complete-
case estimator (IPW). These estimators are compared to the unachievable benchmark, the
full data likelihood estimator (Full), which analyzes the full data-set before some simulated
marks are deleted. We consider the case with K = 1 stratum, in which case the CC and Full
methods are that of Sun et al. (2009).

With k = 1 throughout this section, let Zki be the treatment indicator taking value 0 or 1 with
probability of 0.5 for each value. The (Tki, Vki) are generated from the following mark-
specific proportional hazards model:

(21)

where α, β and γ are constants. Under model (21), the mark-specific baseline function is
λ0(t, v) = exp(γv) and the mark-specific vaccine efficacy is VE(v) = 1 − exp(α + βv). The
vaccine efficacy VE(v) = 0 for α = 0 and β = 0, indicating no vaccine efficacy. The vaccine
efficacy does not depend on the type of infecting strain if β = 0, while the VE(v) decreases
in v if β > 0. We examine the estimation procedures for the following specific models:

(M1) (α, β, γ) = (0, 0, 0.3), where VE(v) = 0;

(M2) (α, β, γ) = (−0.69, 0, 0.3), where VE(v) does not depend on v;

(M3) (α, β, γ) = (−0.6, 0.6, 0.3), where VE(v) decreases;

(M4) (α, β, γ) = (−1.2, 1.2, 0.3), where VE(v) decreases.

All failure times greater than τ = 2.0 are considered as censored. In addition, we generate
random censoring times from an exponential distribution, independent of (T, V), with
parameter adjusted so that the overall censoring rates range from 25% to 35%. The
complete-case indicator Rki is generated with conditional probability rk(Wki) = P(Rki = 1|δki
= 1, Wki), where

(22)

Here ψk0 = 0.2 and ψk1 = −0.2. The proportion of missing marks is about 50%, similar to
the rate observed in current HIV vaccine efficacy trials.

For the proposed AUG estimator, conditional on (Tki, Zki, Vki), we assume that a single
auxiliary mark follows the model
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(23)

for i = 1, …, nk, where Vki is the possibly missing mark generated from model (21), Uki is
uniformly distributed on [0, 1] independent of Vki, and θ > 0 measures the association
between Aki and Vki. The correlation coefficient ρ between Aki and Vki is 1 for θ = 0. Since
Aki is observed for all observed failure times, the AUG estimator in this case is the Full
estimator. The Aki and Vki are independent for θ = ∞(ρ = 0), in which case the AUG
estimator is denoted by AUG-A0. The AUG estimator is denoted by AUG-A1 for θ = 0.8
yielding ρ ∞ 0.78, by AUG-A2 for θ = 0.4 with ρ ∞ 0.92 and by AUG-A3 for θ = 0.2 with
ρ ∞ 0.98. Thus the simulation compares the AUG estimators at four levels of association
between Aki and Vki.

We study settings with relatively high correlations because these occur for real data-sets due
to the fact that inter-subject HIV sequence diversity is considerably larger than intra-subject
HIV sequence diversity (Keele et al., 2008). We have found linear correlations between
early and later sequence distances as high as 0.98.

Under model (23), the conditional density of Aki given (Tki, Zki, Vki) is

(24)

The likelihood for θ is

It is easy to show that the maximum likelihood estimator is

. Plugging in the density estimator

 into (12) yields , which is used to construct the AUG estimator of β in
(13).

Performance of the proposed estimation procedures is evaluated for the models described in
(21), (22) and (24) through simulations. We use the Epanechnikov kernel K(x) = .75(1 −
x2)I{|x| ≤ 1}. The same kernel is also used for K(1)(x) and K(2)(x). For sample size n = 500
and bandwidths b1 = 0.1 and h = b2 = 0.15, Figure 1 shows the average estimates of β(v)
under the models (M1)–(M4) based on 500 simulations for four different procedures: Full,
CC, IPW and AUG. Figure 2 shows the standard errors of these estimates and Figure 3
shows the pointwise coverage probabilities of 95% confidence intervals for β(v) constructed
using the AUG estimators based on 500 simulations.

The simulation results show that the bias of both estimators is very small at a level
comparable to that of the full data likelihood estimator (Figure 1). However, the complete-
case estimator yields large bias especially for models (M2)–(M4). The simulations also
validate that the AUG estimator is more efficient than the IPW estimator (Figure 2). In
particular, the AUG estimator without auxiliary marks (AUG-A0) has smaller standard
errors than the IPW estimator, and the AUG estimator with the auxiliary mark has smaller
standard errors than the AUG estimator without auxiliary marks. Moreover, the standard
errors of the AUG estimator decrease as the correlation between the auxiliary mark and the
mark of interest increases, with the standard errors for AUG-A1, AUG-A2 and AUG-A3
getting closer to that of the Full estimator. The pointwise coverage probabilities displayed in
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Figures 3 are almost all in the range of 92.5% and 97.5% for v ∈ (0, 1), indicating adequate
performance of the proposed variance estimator for the AUG estimator. The deviation from
the 95% nominal level is attributed to both the limited sample size (at n = 500) and the
limited number of simulation runs (also at 500). The pointwise coverage probabilities are
expected to be closer to 95% when both the sample size and the number of simulation runs
increase.

The bandwidth selection is important in nonparametric smoothing procedures. The bias
tends to be larger and the standard errors smaller for larger bandwidths. A reasonable
bandwidth choice trades-off between bias and standard error. We have tried simulations with
different bandwidths, taking bandwidth b2 equal to 0.05 and 0.1 and b1 equal to 0.15, and
found our procedures relatively insensitive to the choice. The standard errors are larger at
the boundary points than at the inner points, v ∈ (b2, 1 − b2). In practice, the appropriate
bandwidth selection can be based on a -fold cross-validation method. This approach is
widely used in the nonparametric function estimation literature and has been investigated by
Efron & Tibshirani (1993) and Tian et al. (2005) among others. The simulations also show
satisfactory performance of the AUG estimator of V E(v); see Figures 1–3 in the web
Appendices.

5.2 Robustness analysis of the estimation procedures under mis-specified models
This subsection considers robustness of the proposed estimators to mis-specifications of
rk(w) and/or gk(a|t, v, z), and to violation of the missing at random assumption. As above Zki
is a binary random variable taking value 0 or 1 with probability 0.5 for each value. The (Tki,
Vki) are generated from the mark-specific proportional hazards model (21) with (α, β, γ)
given in (M3). The censoring times Cki for model (M3) remain the same as before yielding
approximately 30% censoring and Xki = min(Tki, Cki).

Robustness of the estimators to mis-specification of rk(w) is examined by assuming model
(22) while the actual complete-case indicator Rki is generated with the conditional
probability rk(Wki) = P(Rki = 1|δki = 1, Wki), where

(25)

Robustness of the AUG estimator is also examined when gk(a|t, v, z) is mis-specified. This
is carried out by assuming the model (23) for the auxiliary mark or equivalently model (24)
for gk(a|t, v, z) while the actual mark is generated from

(26)

for i = 1, …, nk, where Uki is uniformly distributed on [0, 1] independent of Vki.

Robustness of the estimators to violation of the missing at random assumption (3) is
examined by assuming model (22) while the actual Rki depends on Vki through the model

(27)

The proportion of missing marks among the observed failure times is kept around 50% in all
of the cases.

For sample size n = 500 and bandwidths b1 = 0.1 and h = b2 = 0.15, Figure 4 shows the bias
of the estimators of β(v) under model (M3) based on 500 simulations for four different
procedures: Full, CC, IPW and AUG. Figure 5 shows the standard errors of these estimators.
In both figures, panel (a) shows the plots when rk(w) is mis-specified following (25) and
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gk(a|t, v, z) is correctly specified by (24) with θ = 0.2; panel (b) shows the plots when gk(a|t,
v, z) is mis-specified following (26) and rk(w) is correctly specified by (22) with ψk1 = 0.2
and ψk1 = −0.2; and panel (c) shows the plots when rk(w) is mis-specified following (25)
and gk(a|t, v, z) is mis-specified following (26); and panel (d) shows the plots when rk(w)
depends on Vki following (27) and gk(a|t, v, z) is correctly specified by (24) with θ = 0.2.

The bias of the IPW estimator is large as seen in Figure 4(a) when rk(w) is mis-specified.
Figures 4(a) and (b) show that the AUG estimator has very little bias tracking closely the
full data likelihood estimator when one of rk(w) and gk(a|t, v, z) is mis-specified, reflecting
the double robustness property of the AUG estimator. When both rk(w) and gk(a|t, v, z) are
mis-specified, the AUG estimator still has smaller bias compared to the IPW estimator, as
seen in Figure 4(c). Surprisingly, the AUG estimator yields as little bias as the full data
likelihood estimator when the missing at random assumption is violated in Figure 4(d) while
the IPW estimator shows very large bias. In all the scenarios, the complete-case estimator
has largest bias. Figure 5 shows that the AUG estimator is more efficient than the IPW
estimator with smaller standard error when both rk(w) and gk(a|t, v, z) are correctly
specified, and this efficiency gain diminishes when one of them is mis-specified. Again the
AUG estimator seems to have smaller standard error when the missing at random
assumption is violated as shown in Figure 5(d).

6 Discussion
To address the fact that mark variables are subject to missingness in HIV vaccine efficacy
trials and other applications, this article extends previous work on the continuous mark-
specific proportional hazards model to accommodate marks missing at random. We
developed two approaches based on inverse probability weighting (IPW) of complete-cases,
wherein failures in the score equation are weighted by the reciprocal of the probability the
mark is observed. As always for IPW-based methods, the methods provide unstable
estimation if some failures have outlying estimated probabilities near zero; therefore
effective implementation in practice requires careful definition of the mark and covariates in
the missingness model. Moreover, performance of the IPW-based methods depends on the
ability to build a good model for the probability of observing the mark in failures. For HIV
vaccine efficacy trials with the mark defined as the genetic distance of an `early' virus (i.e.,
measured on an HIV antibody negative blood sample), subject characteristics that could help
predict whether the `early' virus is observed include viral load (very high viral load predicts
the virus is early, and very low/undetectable viral load makes the sequencing technology
prone to fail to measure the sequence), the timing of the subject's HIV tests including any
extra tests beyond those scheduled, whether the infection was diagnosed during the series of
injections (when HIV testing is more frequent), and whether any antiretroviral pre-exposure
prophylaxis was received.

Following Robins et al. (1994), our second approach augments the IPW estimating equation
with a term for failures with a missing mark, which recovers information through modeling
and estimation of the mark distribution. The simulation study showed that this approach
effectively gains back efficiency compared to the IPW approach, and that the quality of
predictive modeling heavily influences the extent of efficiency improvement. In our
formulation the conditional density of the auxiliaries given the mark of interest is modeled
and estimated. Therefore in practice a one-dimensional (or at most two-dimensional)
auxiliary may be all that the data can support, given the need to either use nonparametric
density estimation or to specify a reasonable parametric model. Fortunately for HIV vaccine
efficacy trials with mark the genetic distance of the `early' virus, the genetic distance of a
`later' virus may be a well-predicting univariate mark, as supported by examination of HIV
sequence databases. Recently completed and ongoing efficacy trials are measuring distances
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from early and later viruses, and it will be of interest to apply the new methods to the
forthcoming data-sets.

This article focused on point and interval estimation, leaving the problem of inference for
future work.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Bias of estimation for β(v) under four procedures: Full, CC, IPW and AUG based on 500
simulations for n = 500, b1 = 0.1 and h = b2 = 0.15; (a) for model (M1), (b) for model (M2),
(c) for model (M3) and (d) for model (M4). AUG-A0 is the AUG estimator corresponding to
ρ = 0, AUG-A1 for ρ ≈ 0.78, AUG-A2 for ρ ≈ 0.92 and AUG-A3 for ρ ≈ 0.98, where ρ is
the correlation coefficient between Aki and Vki.
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Figure 2.
Average standard errors of the estimates for β(v) under four procedures: Full, CC, IPW and
AUG based on 500 simulations for n = 500, b1 = 0.1 and h = b2 = 0.15; (a) for model (M1),
(b) for model (M2), (c) for model (M3) and (d) for model (M4). AUG-A0 is the AUG
estimator corresponding to ρ = 0, AUG-A1 for ρ ≈ 0.78, AUG-A2 for ρ ≈ 0.92 and AUG-
A3 for ρ ≈ 0.98, where ρ is the correlation coefficient between Aki and Vki.
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Figure 3.
Estimated pointwise coverage probabilities of 95% confidence intervals for β(v) constructed
using the AUG estimator based on 500 simulations for n = 500, b1 = 0.1 and h = b2 = 0.15;
(a) for model (M1), (b) for model (M2), (c) for model (M3) and (d) for model (M4). AUG-
A0 is the AUG estimator corresponding to ρ = 0, AUG-A1 for ρ ≈ 0.78, AUG-A2 for ρ ≈
0.92 and AUG-A3 for ρ ≈ 0.98, where ρ is the correlation coefficient between Aki and Vki.
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Figure 4.
Bias of estimation for β(v) with the estimators, Full, CC, IPW and AUG, under model (M3)
with n = 500, b1 = 0.1 and h = b2 = 0.15 based on 500 simulations. (a) shows the plots when
rk(w) is mis-specified following (25) and gk(a|t, v, z) is correctly specified by (24) with θ =
0.2. (b) shows the plots when gk(a|t, v, z) is mis-specified following (26) and rk(w) is
correctly specified by (22) with ψk1 = 0.2 and ψk1 = −0.2. (c) shows the plots when rk(w) is
mis-specified following (25) and gk(a|t, v, z) is mis-specified following (26). (d) shows the
plots when rk(w) depends on Vki following (27) and gk(a|t, v, z) is correctly specified by
(24) with θ = 0.2.
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Figure 5.
Standard errors of the estimators, Full, CC, IPW and AUG, for β(v) under model (M3) with
n = 500, b1 = 0.1 and h = b2 = 0.15 based on 500 simulations. (a) shows the plots when
rk(w) is mis-specified following (25) and gk(a|t, v, z) is correctly specified by (24) with θ =
0.2. (b) shows the plots when gk(a|t, v, z) is mis-specified following (26) and rk(w) is
correctly specified by (22) with ψk1 = 0.2 and ψk1 = −0.2. (c) shows the plots when rk(w) is
mis-specified following (25) and gk(a|t, v, z) is mis-specified following (26). (d) shows the
plots when rk(w) depends on Vki following (27) and gk(a|t, v, z) is correctly specified by
(24) with θ = 0.2.
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