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Abstract: We introduce an integration of dynamic light scattering (DLS) 
and optical coherence tomography (OCT) for high-resolution 3D imaging of 
heterogeneous diffusion and flow. DLS analyzes fluctuations in light 
scattered by particles to measure diffusion or flow of the particles, and OCT 
uses coherence gating to collect light only scattered from a small volume 
for high-resolution structural imaging. Therefore, the integration of DLS 
and OCT enables high-resolution 3D imaging of diffusion and flow. We 
derived a theory under the assumption that static and moving particles are 
mixed within the OCT resolution volume and the moving particles can 
exhibit either diffusive or translational motion. Based on this theory, we 
developed a fitting algorithm to estimate dynamic parameters including the 
axial and transverse velocities and the diffusion coefficient. We validated 
DLS-OCT measurements of diffusion and flow through numerical 
simulations and phantom experiments. As an example application, we 
performed DLS-OCT imaging of the living animal brain, resulting in 3D 
maps of the absolute and axial velocities, the diffusion coefficient, and the 
coefficient of determination. 
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1. Introduction 

Dynamic light scattering (DLS) is widely used to quantify the dynamics of scattering particles 
by analyzing the autocorrelation function of light scattered from the particles [1–3]. Optical 
coherence tomography (OCT) uses coherence gating to enable the measurement and analysis 
of light back-scattered from small volumes (typically on the order of a few wavelengths), 
facilitating high-resolution 3D imaging of the sample structure [4–6]. Therefore, an 
integration of these two techniques would provide high-resolution 3D imaging of particle 
dynamics (e.g., a 3D map of the diffusion coefficient quantifying the diffusive motion of 
particles at every voxel). 

This paper describes the integration of DLS and OCT leading to a novel technique for 
high-resolution 3D imaging of particle dynamics, named DLS-OCT. For this integration, we 
propose and validate a theory that considers three concerns simultaneously. First, as OCT 
provides a very small probing volume, the theory considers the effect of such a wavelength-
scale probing volume on the autocorrelation function of scattered light. Second, the theory 
considers the non-ergodic effect, since static and moving particles can be mixed within the 
OCT resolution volume in a highly heterogeneous sample. Finally, as both diffusion and flow 
can appear in a sample though spatially separated (e.g., the brain where both translational 
blood flow and diffusive intracellular organelle motions appear), the theory should be able to 
distinguish diffusive motions from translational flow and measure either the diffusion 
coefficient or the velocity according to the distinction. Although each of these concerns on 
DLS have been studied separately in the literature: the effect of the finite sample volume [7–
9], the non-ergodic effect [10,11], and the mixture of diffusion and flow [12]; no theory has 
considered all of these simultaneously and has related these to OCT. Therefore, we derived 
the field autocorrelation function directly from the phase-resolved OCT signal under the 
assumption that static and moving particles are mixed in the resolution volume of OCT and 
the moving particles can exhibit either diffusive or translational motion. 

This paper describes the derivation of the DLS-OCT theory, from the OCT signal when a 
single particle moves, to the field autocorrelation function when many particles exhibit 
heterogeneous dynamics. We propose a fitting algorithm to accurately estimate the diffusion 
coefficient and velocity from the autocorrelation function. The DLS-OCT theory has been 
validated through numerical simulations starting with the numerical position data of particles. 
Further, measurements of the axial and transverse velocities and the diffusion coefficient have 
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been validated with phantom experiments. Based on these validations, we present an example 
application where DLS-OCT imaging was performed on the living rodent brain cortex, 
resulting in a velocity map showing blood flow and a diffusion map showing non-translational 
motions at the boundary of vessels. 

2. Materials and methods 

2.1 Spectral-domain optical coherence tomography system 

We used a spectral-domain optical coherence tomography (SD-OCT) system (Thorlabs, Inc) 
and optimized it for DLS-OCT imaging. The details of the OCT system are described in our 
previous publication [13]. SD-OCT generally has several advantages over time-domain OCT, 
one of which is to provide phase information that is very sensitive to the motion of particles 
[14,15]. The system employs a large-bandwidth near-infrared light source (1310 ± 170 nm in 
wavelength) for a large imaging depth and high spatial resolution (an axial resolution of 3.5 
μm in biological tissue). The transverse resolution depends on which objective lens is used. 
Our 10X objective lens was used for the phantom and animal experiments described in this 
paper, leading to the transverse resolution of 3.5 μm in biological tissue. The scanning speed 
is 47,000 A-scans/s. 

2.2 Animal preparation 

A detailed description of the animal preparation is given in our previous publication [13]. All 
experimental procedures were approved by the Massachusetts General Hospital Subcommitee 
on Research Animal Care. Sprague Dawley rats (250-300 g) were anesthetized with 
isofluorane and ventilated with a mixture of air and oxygen during surgical procedures. A 
craniotomy was performed, and a 3 mm × 3 mm area over the somatosensory cortex was 
exposed. The dura was carefully removed, and then the brain surface was covered with 
agarose gel and a glass cover slip. Physiological signs such as heart rate, body temperature 
and blood pressure were continuously monitored during surgery and during the experiment. 

3. Results 

3.1 DLS-OCT theory 

Our derivation starts from the SD-OCT signal when only one particle exists in the sample. 
SD-OCT generally measures the spectrum of the interference between the reference beam and 
light reflected from the sample. With reasonable approximations and the assumption of 
Gaussian-shaped source light spectrum, the Fourier transform of the interference spectrum 
results in the signal arising from a voxel (i.e., the complex-valued field reflectivity) where a 
single particle moves as z1(t) along the z axis with respect to the center of the voxel: 

 
2 21

12 1( ) ( ) ( )
1 01( ) q z t iqz tR t R e e− Δ=  (1) 

where the amplitude R01 is proportional to the field reflectivity of the particle. The other 
quantities are defined in Table 1. The spectral width of the light source Δq determines the 
axial length of the coherence gating of SD-OCT (i.e. the Gaussian function in the magnitude 
of Eq. (1)). The transverse resolution is generally determined by the objective lens used in the 
focusing optics. Therefore, the signal from a particle moving in the three-dimensional space is 

 
2 2 2 2 2

1 1 1 12 [ ( ) ( )] 2 ( ) ( )
1 01( ) .th x t y t h z t iqz tR t R e e− + −=  (2) 
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Table 1. Physical quantities used in this study. 
Symbol Physical Quantity Values Unit 

k0 The center wave number of source spectrum (center wavelength=1310 nm) 4.8 μm−1 

Δk0 
The deviation in the wave number of source spectrum (wavelength FWHM = 

170 nm) 
0.37 μm−1 

n The refractive index of medium 1.35  
q The representative change in the wave vector due to scattering, 2nk0 13 μm−1 
Δq The deviation in the wave vector change, 2nΔk0 0.99 μm−1 
h The inverse of the 1/e width of axial resolution, Δq/2 0.50 μm−1 

ht 
The inverse of the 1/e width of transverse resolution (depending on the 

objective lens); ht = h when the isotropic voxel is used. 
  

Δt The temporal resolution (the time step in the autocorrelation) 21 μs 
T The total measurement time per voxel, 100 Δt 2.1 ms 

Now, we derive the field autocorrelation function of the OCT signal (Eq. (2)) when a 
single particle moves in the voxel. The movement of a particle can be defined by the self-part 
of the Van Hove space-time correlation function [16], that is, the probability that the particle 
which was initially at position ri at time ti is found at position rf at time tf, 1( , | , )f iP t tf ir r . The 

probability of a particle exhibiting both translational and diffusive motions with the velocity v 
and the diffusion coefficient D can be formulated by 

 

2
( )

4 ( )

1

1
( , | , ) .

2 ( )

f i

f i

v t t

D t t

f i

f i

P t t e
D t tπ

− − −
−

−=
−

f ir r

f ir r  (3) 

Then, the field autocorrelation function of the signal is 
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 (4) 

where E[ ] means the average over random initial positions of the particle and 2 2 2
t x yv v v= +  is 

the squared transverse speed. Here, we assumed that the initial position of the particle is 
evenly distributed through the whole space. In the regime of this study, where the maximum 
time lag τmax = 25 Δt limits the maximum measureable velocity to 1/h/τmax ~5 mm/s and the 
corresponding maximum measurable diffusion coefficient to (h/q)2vmax

2τmax ~10 μm2/s, the 
factors that couple the diffusive movement and the small voxel size, 21 (1 4 )th Dτ+  and 

21 (1 4 )h Dτ+ , are very close to 1 (the minimum was 0.9969). Therefore, Eq. (4) becomes 

 
2 2 2 2 2 2 2

( ) .t t z zh v h v iqvq Dg e e eτ τ τττ − − −=  (5) 

When there are many particles exhibiting an identical mixture of translational and diffusive 
motions in the voxel, the OCT signal can be expressed by the superposition of signals from 
the individual particles: 

 
2 2 2 2 22 [ ( ) ( )] 2 ( ) ( )

0
1 1

( ) ( ) t j j j j

N N
h x t y t h z t iqz t

j j
j j

R t R t R e e− + −

= =

= =   (6) 

where N is the number of particles. The field autocorrelation function of this signal is the 
same as Eq. (5), 
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2 2 2 2 2 2 2

( ) t t z zh v h v iqvq Dg e e eτ τ τττ − − −=  (7) 

where we used the assumption that (i) the movement of the j-th particle is uncorrelated with 
that of the k-th particle so that ( , | , ) 0P t tτ+ ='

k jr r ; and (ii) the magnitude of reflectivity does 

not markedly vary across particles so that 
2 2

0 0jR R≅ . It is not surprising that the field 

autocorrelation function of many homogenous particles is close to that of a single particle 
because the latter has already been averaged over random initial particle positions. 

When particles exhibit heterogeneous dynamics in the voxel, those dynamics can be 
categorized into three groups (static (S), diffusing or flowing (F), and entering or exiting (E); 
see Fig. 1(a)). We now assume an isotropic voxel (ht = h) for simplicity. The OCT signal from 
the voxel is 

 
2 2 2 2 2 22 2 ( ) ( ) 2 ( ) ( )

0 0 0
1 1 1

( )
S F E

Sj Sj Fj Fj Ej Ej

N N N
h r iqz h r t iqz t h r t iqz t

S j F j E j
j j j

R t R e e R e e R e e− − −

= = =

= + +    (8) 

where NΩ is the number of Ω-type particles in the voxel (Ω = S, F, or E). Here, the rEj(t) and 
zEj(t) will randomly vary by the definition of the E-particles. Again, we assumed 

2 2 2

0 0 0 1S j F j E jR R R≅ ≅ =  for simplicity, leading to 

 
2 2 2 2 2 22 2 ( ) ( ) 2 ( ) ( )

1 1 1

( ) ( ) ( )
S F E

Sj Sj Fj Fj Ej Ej

N N N
h r iqz h r t iqz t h r t iqz t

S F E
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R t e e e e e e R R t R w t− − −

= = =

= + + ≡ + +   (9) 

where w(t) is complex-valued white noise. In practice, the third term may include stochastic 
fluctuations in the OCT signal due to imperfections of the OCT system. 

 

Fig. 1. Conceptual illustration of the DLS-OCT theory. (A) Particles within the OCT resolution 
volume can be categorized into three groups: static, flowing or diffusing, and entering or 
exiting particles. For clarification, entering/exiting particles enter into or exit out of the voxel 
during a single measurement time step, resulting in stochastic fluctuations of the OCT signal. 
(B) The general behavior of the field autocorrelation function in the complex plane predicted 
by our model. MS and MF are approximately proportional to the fractions of static and 
flowing/diffusing particles, respectively, weighted by their scattering cross-sections. 

The field autocorrelation function of this OCT signal has several groups of coupled terms. 
Note that static and moving particles are mixed in this case (i.e., non-ergodic) and thus the 

system is not stationary; that is, * *( ) ( ) (0) ( )R t R t R Rτ τ+ ≠ . 
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Each coupled term leads to 
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where δ(τ) is the delta function, rjFk0 is the j-axis component of the initial position of the k-th 
F-particle (j = x,y,z). In deriving Eq. (11), we assumed that the m-th S-particle and k-th F-
particle are uncorrelated such that [( , ) ( , )] ( , ) ( , )P t t P t P tτ τ+ ∩ = +Fk Sm Fk Smr r r r , leading to 

 
[( , ) ( , )]

( , | , ) ( , ).
( , )

P t t
P t t P t

P t

ττ τ+ ∩
+ = = +Fk Sm

Fk Sm Fk
Sm

r r
r r r

r
 (12) 

Note that the S-F coupled terms do not necessarily vanish when the particle movements are 
uncorrelated. For the terms to vanish, the deviation in the probing light spectrum should be 
relatively small, (q/Δq)2 >> 1, which is satisfied in this study as (q/Δq)2 > 300. Consequently, 
the field autocorrelation function of mixed dynamics is given by 

 
2 2 2 2 2 2 2

( ) (1 ) ( ).t t z zh v h v iqvq D
S F S Fg M M e e e M Mτ τ τττ δ τ− − −= + + − −  (13) 

In summary, under the assumption that static and moving particles are mixed in the OCT 
resolution volume and the moving particles can exhibit either translational or diffusive 
motion, the 4D (space and timelag) field autocorrelation function of the 4D (space and time) 
SD-OCT signal can be described as 
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MS(r), MF(r), vt(r), vz(r), and D(r) are the parameters of particle dynamics to be estimated for 
each position. MS is the composition ratio of static particles, MF is that of flowing/diffusing 
particles, vt is the transverse component of the flow velocity, vz is the axial component, and D 
is the diffusion coefficient. 

The general behavior of this autocorrelation function is illustrated in Fig. 1(b). For a given 
voxel, the constant term (MS) is the center of rotation, and MF is the initial amplitude of 
rotation. The speed of rotation is determined by the axial velocity-dependent phase term 
( ziqve τ ), which is similar to the one used in Doppler OCT. The decay of the amplitude of 

rotation is governed by the diffusion-oriented decay term (
2q De τ− ) that appears in the 

traditional DLS analysis for diffusion measurements. Interestingly, the decay is also affected 

by the velocity-dependent term (
2 2 2 2 2 2
t t zh v h ve τ τ− − ), which made the decay differ from a simple 

exponential decay. This term, which is similar to that introduced in previous DLS studies [7–
9,12], enabled us to estimate the transverse component of the flow velocity in addition to the 
axial component as provided by the phase term. We assumed that the composition ratios of 
the static and flowing/diffusing particles (i.e., MS and MF) do not vary during a short 
correlation time (e.g., 0.5 ms in this study). 

3.2 Fitting algorithm 

We developed and optimized an algorithm for estimating the dynamic parameters through 
fitting the theory to the autocorrelation data. The fitting has to determine five independent 
coefficients (MS, MF, vt, vz, and D) such that they minimize the sum of squared residuals (i.e., 
maximizing the coefficient of determination, R2): 

 

2 2 2 2 2 2 2 2
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R
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τ τ

− − −− − − − −
= −

−
 (15) 

 

Fig. 2. The performance of the simple fitting algorithm for an isotropic voxel (A) and an 
anisotropic voxel (B). ht = 4h was used for the anisotropic voxel. The performance was tested 
for a total of 25,200 combinations (36 number densities, 10 diffusion coefficients, 10 velocities 
and 7 flow angles). ME = 1 – MS – MF. Data are presented in mean ± SD. Each point represents 
the mean and error for the combination of other parameters (e.g., the point of MS = 0.5 in the 
MS plot shows the mean and error of the 700 results from the combination of 10 diffusion 
coefficients, 10 velocities and 7 flow angles where MS = 0.5). 
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As shown in Fig. 2, we found it inaccurate to use a simple fitting algorithm containing a 
single simplex search method [17] to find a global minimum in the five-dimensional 
parameter space. For this reason, we developed an advanced fitting algorithm. First, we 
reduced the number of parameters by determining D, vz and vt directly in the least square 
manner given MS and MF: 
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 (16) 

During this determination, only the nonzero timelag data were used to exclude the term of the 
entering/exiting dynamics, (1-MS-MF) δ(τ). The radius of rotation |g(τ)-MS| was weighted in 
calculating vz to reduce the contribution of noisy movements of small-radius data points. Also, 
g1(τ) was weighted in calculating vt and D to minimize distortion of the residuals that is 
caused by applying the logarithm. D was forced to have a positive value. 

Even when fitting for the two remaining parameters (MS and MF), searching for the 
minimum was very sensitive to the initial guess (i.e., there was more than one local 
minimum). Therefore, our algorithm guesses and tests three different initial guess of MS and 
MF. 

For the initial guesses of MS and MF, an initial estimation of 1-MS-MF = ME was helpful. 
ME was simply estimated from the first three non-zero timelag data under the assumption that 
the first four data points can be approximated to a second-order polynomial. That is, 
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where τk = kΔτ is the k-th timelag. ME was forced to have a value between zero and one. 
For the first initial guess of MS, the center of rotation was used. We derived an equation to 

find the center of rotation (A + iB) in the complex plane for a given set of autocorrelation data 
points g(τk) = ak + ibk such that the center minimizes the variation in the radius of rotation 
(i.e., the distance from the center). This equation (Eq. (18)) was used to choose an initial 
guess of MS as the center of rotation of the latter half of the autocorrelation function. We used 
only the latter half because the radius of rotation varied largely during the first half of the 
timelag when flow and/or diffusion were large. The real part of the center of rotation was 
chosen as the initial guess for MS. 
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 (18) 

where < > is the average over k > Nτ/2 and Nτ is the number of autocorrelation data points 
(i.e., the number of timelag points). MF was determined by MF = 1-MS-ME. Both MS and MF 
were forced to have a value between zero and one. 
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For the second initial guess of MS and MF, a mesh of MS and MF was tested. For each pair 
of MS and MF in the mesh grid, D, vz and vt were determined (Eq. (16)) and then R2 was 
calculated (Eq. (15)). One pair of MS and MF was chosen as the second initial guess where it 
maximizes R2. As the third initial guess, we chose a set of typical values that empirically 
turned out to result in good fitting, MS = MF = (1-ME)/2. 

For each initial guess, the simplex search method was used to find MS and MF minimizing 
the sum of squared residuals, where D, vz and vt were directly determined from MS and MF 
during each iteration (Eq. (16)). This process resulted in three sets of MS, MF, D, vz and vt. We 
chose the one with the maximum R2. A diagram summarizing our fitting algorithm is 
presented in Fig. 3. 

We tested if the algorithm results in better estimation of the parameters than the simple 
algorithm shown in Fig. 2. Autocorrelation data were generated for various values of MS, MF, 
D, v = (vz

2 + vt
2)1/2 and vz/v (the cosine of the flow angle) according to Eq. (13). The estimated 

parameters agreed with the given values much better than with the simple algorithm (Fig. 4). 

3.3 Validation through numerical simulation 

Our DLS-OCT theory has been validated using numerical simulations. As summarized in Fig. 
5, we numerically generated two-dimensional (transverse and axial axes) position data of 100 
particles for 100 time steps (Δt = 20 μs) for various parameter values (Table 2). Position data 
were used to generate SD-OCT signals, and autocorrelation data were obtained from the 
signals. The autocorrelation data were fit using the algorithm described in the above section, 
leading to the estimation of the dynamic parameters. 

 

Fig. 3. The algorithm of estimating the dynamic parameters from the field autocorrelation 
function. 
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Fig. 4. The performance of the advanced fitting algorithm for an isotropic voxel (A) and an 
anisotropic voxel (B). ht = 4h was used for the anisotropic voxel. The performance was tested 
for a total of 25,200 combinations as described in the caption of Fig. 2. Data are presented in 
mean ± SD. Each point represents the mean and error for the combination of other parameters 
as in Fig. 2, but the error was too small to be seen. 

 

Fig. 5. Process of numerical simulation for validating the DLS-OCT theory. True values of the 
diffusion coefficient and velocity were determined by fitting the mean square displacement 
(MSD) of the numerical position data. 

First, we validated the estimation of the flow velocity for various parameters while fixing 
the diffusion coefficient to zero. As can be seen in Fig. 6(a), the autocorrelation function 
behaved as our theory predicted across several combinations of the parameters. Note that the 
center of rotation moved when the number of static particles changed. In this study, we 
mainly investigated the diffusion coefficient and velocities (D, v, and vz) multiplied by MF, 
because a small MF in practice can make the estimation result in unreasonably large diffusion 
coefficient or velocities. Since MF is dimensionless, MF D and MF v have the units of μm2/s 
and mm/s, respectively. As a result, the absolute velocity and the axial velocity were 
estimated close to the true values (Fig. 6(b)). In addition, the diffusion coefficient was 
estimated negligible (0.20 ± 0.27 μm2/s). These results verify that the field autocorrelation 
function of the OCT signal numerically obtained from the position data of flowing particles 
exhibits the behavior that our theory predicts and thus the flow velocity can be accurately 
estimated by fitting the model of Eq. (14) to data. 

Table 2. Parameters used in the numerical simulation. 
Symbol Simulation parameters Values Unit 
Δt The time step in numerical simulation 20 μs 
N The total number of scatterers in the voxel 100  
NS The number of static scatterers 10, 20, 30, 40, and 50  
NF The number of flowing/diffusing scatterers 40, 50, 60, 70, and 80  
NE The number of entering/exiting scatterers N - NS - NF  

D 
The diffusion coefficient of non-translational 

movements 
2, 4, 6, 8, and 10 μm2/s 

v The speed of translational flow 1, 2, 3, 4, and 5 mm/s 
θ The polar angle of translational flow 0, π/6, π/3, π/2, 2π/3, 5π/6, and π rad 
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Fig. 6. Numerical validation of the velocity estimation. (A) Examples of the autocorrelation 
functions obtained from the numerical position data and their fitting results. D = 0 μm2/s. (B) 
Results of the estimation of the absolute velocity and the axial velocity. The estimation was 
tested for a total of 525 combinations (15 number densities, 5 velocities and 7 flow angles). 
Data are presented in mean ± SD in the top, where each point represents the mean and error 
across flow angles. Meanwhile, in the bottom, all estimations for 525 cases are presented and 
the data was fit to a line (red), resulting in 1.03 × (true) + 0.001 (r2 = 0.99) where r2 is the 
coefficient of determination. The autocorrelation function was averaged across 100 random 
initial distributions of particles. 

Next, we validated the estimation of the diffusion coefficient. The position data of 
diffusing particles was generated with the fractional Brownian motion synthesis algorithm 
[18]. Our model was fit to the numerical autocorrelation function data (Fig. 7(a)), and the MF-
weighted diffusion coefficient was estimated close to the true values (Fig. 7(b)). In this 
simulation, the absolute velocity was estimated negligible (0.24 ± 0.47 mm/s). 

Results from these numerical simulations confirm that the DLS-OCT theory enables us to 
effectively distinguish diffusion from flow for a given autocorrelation function and accurately 
estimate the diffusion coefficient or the absolute and axial velocities according to the 
distinction. The distinction is mainly attributed to the difference in the waveforms of decay of 
the MF-term (Fig. 7(c)) as predicted in Eq. (14). 

 

Fig. 7. Numerical validation of the diffusion estimation. (A) Examples of decays of the 
autocorrelation functions obtained from the numerical position data and their fitting results. v = 
0 mm/s and vz = 0 mm/s. (B) Results of the estimation of the diffusion coefficient. The 
estimation was tested for a total of 75 combinations (15 number densities and 5 diffusion 
coefficients). The estimation data was fit to a line (red), resulting in 1.04 × (true) + 0.30 (r2 = 
0.89). The autocorrelation function was averaged across 1,000 random initial distributions of 
particles. (C) Decays of the autocorrelation functions between flowing and diffusing particles. 
The solid line shows decay of the MF-term of the autocorrelation function of diffusion particles 
(NS/N = 0.1, NF/N = 0.8, D = 10 μm2/s, v = 0, and vz = 0), while the dotted line shows that of 
flowing particles (NS/N = 0.1, NF/N = 0.8, D = 0, v = 5 mm/s, and vz = 0). 
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3.4 Validation through phantom experiment 

DLS-OCT measurement of the velocity and diffusion coefficient was further validated 
through phantom experiments. We used the SD-OCT system described in the Materials and 
methods. In order to verify measurement of the flow velocity, a piezoelectrically actuated 
static sample was used to simulate axial movements of particles while transverse movements 
were implemented by galvanometric lateral scanning of OCT beam. For each combination of 
the axial and transverse velocities, we acquired the OCT signal and obtained 3D 
autocorrelation function data, g(x,z,τ). The autocorrelation function was averaged over 
neighboring 3 × 3 voxels and then was used to estimate the dynamic parameters, leading to 
2D maps of MS(x,z), MF(x,z), D(x,z), vz(x,z), vt(x,z), and R2(x,z), where R2 is the coefficient of 
determination (Eq. (15)). The values of a bad-fitting voxel (R2<0.5) were replaced with the 
mean value of the neighboring good-fitting voxels. As noise can result in a small MF and large 
v or D, the velocity and diffusion maps were weighted by MF while MF smaller than 0.1 was 
forced to zero. Then, each map of the dynamic parameters was convolved with a 2D Gaussian 
kernel (10 μm in diameter). As a result, the absolute and axial velocities were reliably 
measured across various true velocities and flow angles (Fig. 8(a)). Microsphere samples of 
0.1 and 1 μm in diameter were used for validation of the diffusion measurement, where the 
measured diffusion coefficient agreed with the theoretical values given by the Einstein-Stokes 
equation (Fig. 8(b)). For this phantom experiment, monodisperse polystyrene microspheres in 
2.5% solids (w/v) aqueous suspension (Polysciences, Inc.) were used. 

 

Fig. 8. Experimental validation of DLS-OCT measurements of the flow velocity (A) and 
diffusion (B). Various combinations of the lateral scanning speeds and the axial piezo speeds 
implemented several equivalent flow angles, θ = arctan(vz/vt). The gray line in (B) shows the 
Einstein-Stokes equation. Data are presented in mean ± SD. The horizontal error bar in (A) 
resulted from the variation in the piezoelectric actuation. 

3.5 DLS-OCT imaging of the rodent brain 

Based on the validated DLS-OCT measurement of the velocity and diffusion, we performed 
DLS-OCT imaging of the living rodent cortex. A-scans were repeated 100 times at a fixed 
position, and the position was moved in a raster manner to scan the volume of 600 μm × 600 
μm × 300 μm (x × y × z) of the cortical surface. This FOV consisted of 400 × 400 positions, 
leading to the scanning step size of 1.5 μm and a total scanning time of ~10 min. We chose 
100 A-scans per position because our fitting algorithm worked well when the autocorrelation 
function data had ≥25 time points, and the measurement time of ~2 ms corresponding to 100 
A-scans was sufficiently shorter than the characteristic time constants of the primary sources 
of motion artifacts (i.e., cardiac and respiratory motions) as revealed in our previous study 
[13]. The 4D (space and time) complex-valued field reflectivity of the sample was obtained, 
and then was used to produce the 4D (space and timelag) autocorrelation function data. The 
autocorrelation function was averaged over 3 × 3 × 3 neighboring voxels, since the theory 
considers the autocorrelation function being the average over not only the measurement time 
but also various initial positions of particles. The spatial averaging of the autocorrelation 
function is based on the assumption that the initial position of the particles will vary across 
the neighboring voxels whereas their dynamics will be similar. For this assumption to be as 
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valid as possible, we chose the scanning step size slightly smaller than the conventional 
Nyquist sampling frequency. Analysis of the 4D autocorrelation function data led to 3D maps 
of the transverse and axial velocities, the diffusion coefficient, and the coefficient of 
determination (R2). This processing took ~3 hours with our 200-core parallel processing 
cluster system. 

As shown in Fig. 9(a), the absolute velocity map clearly revealed the structure of the 
vascular anatomy and cerebral blood flow. The axial velocity map showed the axial 
component of the flow velocity, which looked very similar to conventional Doppler OCT 
images. The flow direction determined by the axial and transverse velocities agreed with the 
structural direction of vessels. This agreement between the structural and flow direction can 
be more clearly seen in the cross-sectional maps (Fig. 9(a), right). 

When the diffusion map is overlaid with the absolute velocity map (Fig. 9(b)), we 
observed high-diffusion and low-velocity voxels at the boundary of vessels. Interestingly, the 
vessel boundaries also exhibited a characteristic low coefficient of determination (Fig. 9(c)). 
Single-plane images clearly showed the result that the vessel boundaries exhibit high 
diffusion, low velocity, and low R2. At the circular cross-sections of the vessels (Fig. 9(c), 
blue arrows), high-velocity and high-R2 blood flow are surrounded by the high-diffusion, low-
velocity, and low-R2 dynamics of the vessel boundaries. In particular, the low R2 means that 
the motion was neither translational nor diffusive; we hypothesize that it might be oscillatory 
due to the interaction between blood flow and the tension of vessel walls. As can be seen in 
the examples of the autocorrelation functions (Fig. 9(d)), the composition ratio of static 
particles (MS; the center of rotation in the complex plane) increased as the voxel is located far 
from the center of the vessel. When the voxel is located at the vessel boundary, it exhibited 
the characteristic dynamics with a low R2 (i.e., bad fitting). As the present paper focuses on 
describing this new technique, a detailed interpretation of the brain imaging data will be 
described elsewhere. 
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Fig. 9. DLS-OCT imaging of the living rodent cortex. (A) The first image presents the 
maximum projection (MP) of the 3D map of the absolute velocity along the depth (i.e., en 
face), and the second image presents the en face signed maximum projection (SMP) of the 3D 
map of the axial velocity. The depth of focus was ~300 μm. The images with the green 
boundary show the MP of absolute velocity and the SMP of the axial velocity along the 
transverse direction (i.e., cross-sectional) over the volume indicated as the green box in the en 
face images. The SMPs of the axial velocity are presented over the range from −5/√2 to 5/√2 
mm/s, where a negative velocity (blue color) means that blood flows toward the surface of the 
cortex. (B) The first image presents the en face MP of the 3D map of the diffusion coefficient. 
In the second image, the diffusion image (yellow) is overlaid with the absolute velocity image 
(red). The 3X magnified images of the cyan boxes are presented to clearly show the 
characteristic dynamics of the vessel boundaries. This merged image is presented with smaller 
ranges of the velocity and diffusion coefficient for higher contrast. (C) The single planes of the 
merged map and the coefficient of determination map at the depth of 120 μm are presented. 
(D) Examples of the autocorrelation function are presented for three voxels (cyan crosses) that 
are located in the plane indicated as the cyan box in (C). The middle row shows the 
autocorrelation function data (black dots) and their fits (red lines) in the complex plane, where 
the estimated MS and MS + MF are presented as the blue and green circles, respectively. The 
bottom row shows decay of the MF-terms. The coefficients of determination of these three 
voxels are R2 = 0.999, 0.988, and 0.647. All scale bars, 100 μm. 
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4. Discussion 

DLS-OCT has several advantages over conventional techniques. As for the application to 
blood flow imaging, laser Doppler flowmetry is used to measure blood flow at a fixed point 
[19,20], and its imaging corollary provides the 2D map of blood flow [21]. Doppler OCT 
enables 3D imaging of the axial flow velocity with microscopic resolution [22]. Compared to 
these techniques, DLS-OCT can simultaneously and independently measure the axial and 
transverse components of the flow velocity. Further, DLS-OCT can distinguish diffusion from 
flow, leading to a separate 3D map of the diffusion coefficient. In addition, DLS-OCT may 
offer additional contrast mechanisms (e.g., those based on R2 and MF). The R2 map 
quantitatively images the degree of how much the motion is close to translational or diffusive 
ones; and for example it clearly revealed characteristic dynamics of the vessel boundaries. 
The MF map will quantify the fraction of moving particles in each voxel, which is similar to 
the mobile fraction suggested in non-ergodic DLS studies [10,11]. 

Each term in the DLS-OCT model we derived is similar to those predicted in several DLS 
studies. The velocity-dependent decay term is similar to that predicted in the study of the 
effect of the finite sample volume on DLS analysis [7–9], although the autocorrelation 
function in our theory was directly derived from the OCT signal whereas the finite size of the 
sample volume in the literature resulted from the illuminating and collecting optics. The linear 
decomposition of the static component and the flowing/diffusing component is similar to the 
decomposition shown in the study of DLS in non-ergodic media [10,11]. The combined 
diffusion-oriented and flow-oriented decay terms were similarly introduced in the study of 
DLS where diffusion and flow are mixed [12]. Therefore, our theory can be understood as a 
mathematical combination of the phase-resolved OCT signal, the finite sample volume DLS 
model, the non-ergodic DLS model, and the model for the mixture of diffusion and flow. 

Our DLS-OCT theory assumed that the composition ratios of the static and 
diffusing/flowing particles (MS and MF) do not vary during the measurement time. The 
validity of this assumption will depend on the measurement time and the magnitude of 
dynamics within a sample. For example, the assumption was reasonable when imaging blood 
flow of the brain with the measurement time of ~2 ms, because the blood flow velocity is 
typically 1-5 mm/s and thus leads to 2-10 μm displacement during the measurement time, 
smaller than or approximately comparable to the resolution volume. When we used a longer 
measurement time (200 ms), the autocorrelation function deviated from our model. In 
contrast, the fitting result was not reliable if only very short correlation times were used. 
Therefore, the correlation and measurement times for DLS-OCT imaging should be chosen 
carefully, taking into account both the scale of target dynamics and the fitting performance. 

This study used the DLS-OCT theory for distinguishing whether the motion is 
translational or diffusive, not for measuring the mixture of the two motions. Nevertheless, the 
model seems to be able to measure the mixture of translational and diffusive motions. It was 
reported, however, that the diffusion is estimated inaccurately when mixed with large flow 
[12]. We also observed this tendency in a phantom experiment, where the diffusion 
coefficient was overestimated by ≈1.5 times when it was mixed with flow whose velocity is 
larger than >1 mm/s. In this study, the relative magnitudes of flow and diffusion can be 
estimated based on how much they contribute to the decay in the autocorrelation function. 
With the parameters used in this study, v = 0.1 and 1 mm/s approximately correspond to D = 
0.004 and 0.4 μm2/s, respectively. The coupling between diffusion and large flow will not be 
a critical problem in the studies investigating a sample where diffusion and flow are spatially 
separated. Meanwhile, considerable caution would be required if one wants to apply the 
present technique to the measurement of diffusion that is mixed with large flow within the 
resolution volume. On the other hand, the voxels with large blood flow in vessels often 
exhibited high diffusion, which can be either a real diffusive motion or decorrelation of the 
OCT signal that can be quantified by the exponential decay with the diffusion coefficient. 
This high diffusion in vessels might be attributed to the mixture of non-translational motion of 
red blood cells including rotation, turbulence in blood flow, and the variance in the velocity 
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distribution within the resolution volume. Since this interpretation has not been yet validated, 
and since the present study used the DLS-OCT theory for determining whether the motion is 
translational or not, we overlaid the diffusion map with the velocity map as in Figs. 9(B) and 
9(C). This overlay means that our analysis gave priority to flow over diffusion so that 
diffusion is of interest only at the voxels with low flow. Therefore, the coupling between 
diffusion and large flow was not an important concern at those vessel boundaries. 

OCT uses coherence gating to collect light only scattered from the resolution volume and 
is known to effectively exclude multiply scattered photons [23]. However, strong multiple 
scattering can give rise to a distortion in the OCT signal, which often causes an undesired 
shadow of large vessels [13]. This multiple scattering also affected DLS-OCT estimation of 
dynamics at the voxels located beneath the surface vessels. This effect can be seen clearly by 
comparing the merged images in Fig. 9, where Fig. 9(b) presents the maximum projection 
over the whole depth while Fig. 9(c) only presents a single plane at the depth of 120 μm. High 
velocity and diffusion appeared in the shadow of the large surface vessels as shown in the 
single-plane image. This multiple scattering effect also can be found in the cross-section 
image of the velocity map of Fig. 9(a), where the absolute velocity was estimated large in the 
vessel shadow but the axial velocity was not. Although this multiple scattering would not 
cause a serious problem as one may generally build an en face image by including surface 
vessels as in Fig. 9(b), in the future it will be interesting to derive a DLS-OCT model that 
considers the effect of multiple scattering. 

Future theoretical efforts should consider the possibility of measuring a mixture of 
translational and diffusive motions, and the effect of multiple scattering. Although there can 
be various modified versions of the DLS-OCT theory, the one described here will work well 
for 3D imaging of dynamics in a highly heterogeneous sample where static and moving 
particles can be mixed within the micrometer-scale resolution volume and the moving 
particles can exhibit either diffusion or flow, as long as it is used in the single-scattering 
regime. 

5. Conclusion 

We demonstrated a technique based on the integration of DLS and OCT for high-resolution 
3D imaging of heterogeneous diffusion and flow. A theory for this purpose was proposed and 
validated with numerical simulations and phantom experiments. The DLS-OCT theory 
enabled us to simultaneously measure the axial and transverse velocities and the diffusion 
coefficient with the micrometer-scale resolution. We tested the utility of this technique by 
applying it to 3D in vivo imaging of translational blood flow and non-translational motion of 
the vessel boundary in the living animal brain cortex. 
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