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Abstract: We present a numerical approach to extract the dispersion 
mismatch in ultrahigh-resolution Fourier domain optical coherence 
tomography (OCT) imaging of the retina. The method draws upon an 
analogy with a Shack-Hartmann wavefront sensor. By exploiting 
mathematical similarities between the expressions for aberration in optical 
imaging and dispersion mismatch in spectral / Fourier domain OCT, Shack-
Hartmann principles can be extended from the two-dimensional paraxial 
wavevector space (or the x-y plane in the spatial domain) to the one-
dimensional wavenumber space (or the z-axis in the spatial domain). For 
OCT imaging of the retina, different retinal layers, such as the retinal nerve 
fiber layer (RNFL), the photoreceptor inner and outer segment junction 
(IS/OS), or all the retinal layers near the retinal pigment epithelium (RPE) 
can be used as point source beacons in the axial direction, analogous to 
point source beacons used in conventional two-dimensional Shack-Hartman 
wavefront sensors for aberration characterization. Subtleties regarding 
speckle phenomena in optical imaging, which affect the Shack-Hartmann 
wavefront sensor used in adaptive optics, also occur analogously in this 
application. Using this approach and carefully suppressing speckle, the 
dispersion mismatch in spectral / Fourier domain OCT retinal imaging can 
be successfully extracted numerically and used for numerical dispersion 
compensation to generate sharper, ultrahigh-resolution OCT images. 
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1. Introduction 

After the development and first demonstration of optical coherence tomography (OCT) 
imaging of the human retina [1–3], OCT has become a clinical standard in ophthalmic 
diagnosis and research [4]. Since then, there have been significant efforts in increasing the 
imaging speed and resolution of OCT. While the axial resolution of standard clinical 
ophthalmic OCT systems is 5-7 µm, ultrahigh resolution OCT images of the retina with an 
axial resolution approaching 3 µm or less have been demonstrated using broadband light 
sources [5–8]. Ultrahigh-resolution imaging is important because it can contribute to better 
understanding of pathogenesis and enable earlier diagnosis of retinal diseases [9, 10]. 

For ultrahigh resolution OCT, dispersion mismatch between the sample and reference 
arms can cause a significant broadening of the axial point spread function [11, 12]. Therefore, 
to achieve the best possible axial resolution, it is important to compensate for dispersion 
mismatch accurately. While it is possible to closely match the dispersion of optical 
components between sample and reference paths and match ocular dispersion by inserting an 
appropriate length water cell in the OCT reference arm, it is difficult to account for variability 
in axial eye lengths between different individuals. Therefore, numerical dispersion 
compensation is typically employed to correct residual dispersion mismatch [7, 8, 13]. 

Fourier domain OCT is particularly well-suited for numerical dispersion compensation 
because it provides direct access to the spectral interferogram. However, the exact dispersion 
mismatch is typically unknown and needs to be found by post processing the OCT data. There 
are two widely used types of approaches for numerical dispersion compensation in retinal 
imaging. The first is to use bright specular reflections at the foveal surface [8]. The specular 
reflection is isolated in depth, shifted to the zero-depth position, and inverse Fourier 
transformed to calculate the dispersion mismatch. The limitation of this approach is that it 
requires a dominant specular reflection which is not always available. The second type of 
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approach is to assume a third order polynomial for the dispersion mismatch and vary the 
polynomial coefficients to maximize an image sharpness metric [7, 13]. The limitation of this 
approach is that it assumes a specific polynomial order for the dispersion mismatch and/or the 
resultant coefficients could be stationary at a local maximum rather than the global maximum. 
Regardless of these limitations, all of these approaches are widely used, and in principle, 
should all converge to a single answer. Another recently reported approach, different from the 
two references above, utilizes the cross-correlation of sub-bandwidth reconstructions [14]. 

Fourier domain OCT and holography are closely related in that they are both coherent 
interferometric techniques that utilize both intensity and phase information, although the 
implementations of the two techniques are considerably different [15]. On the other hand, the 
Shack-Hartmann wavefront sensor is also related to holography in that it is capable of 
detecting the sample wavefront. Therefore, there are mathematical similarities between 
Fourier domain OCT and Shack-Hartmann wavefront sensing which may allow the 
application of similar analytical tools between the two techniques. 

In this paper, we present a numerical approach to extract the dispersion mismatch in 
ultrahigh-resolution spectral / Fourier domain OCT retinal imaging using a Shack-Hartmann 
wavefront sensor analogy. It is demonstrated that by using this approach and carefully 
suppressing speckle, the dispersion mismatch in spectral / Fourier domain OCT can be 
successfully extracted numerically, which can then be used for numerical dispersion 
compensation to generate sharper ultrahigh-resolution OCT images. 

2. Theory and simulation 

2.1 Dispersion mismatch in spectral / Fourier domain OCT 

In OCT, the spectral interferogram int ( )I k  detected by the spectrometer as a function of 

wavenumber k  can be expressed as [4, 16–18]: 

 { }int

1
( ) ( ) ( ) ( ) ( ) cos 2 ( ) ( )

2 R S dispI k k S k R k r z k z z k d zρ θ ϕ= Δ Δ + Δ Δ + Δ Δ  (1) 

where ( )kρ , ( )S k , ( )RR k , ( )Sr zΔ , ( )zθΔ Δ , and ( )disp kϕΔ are the detector responsivity, 

optical power spectrum of the light source, power reflectivity of the reference arm, magnitude 
of the sample field reflectivity, phase of the sample field reflectivity, and dispersion mismatch 
between the sample and reference arms, respectively. It is important to note that in retinal 
imaging ( )disp kϕΔ  is commonly approximated to be depth-independent, and therefore is a 

common term for signals at all depths. 

2.2 Aberration in optical imaging 

A paraxial plane wave 2 2exp{ [ { ( ) / 2 } ]}x y x yj k x k y k k k k z+ + − +  that travels through an 

optical element with small aberration ( ){ }exp ,aberj x yφ  can be expressed as: 
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2 2

( , ) exp ,
2

x y

x y aber

k k
u x y j k x k y k z x y

k
φ

   +    = + + − +   
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where k , xk  and yk is the wavenumber, x component and y component of the propagation 

vector, respectively. 
To develop an explicit analogy between aberration in optical imaging and dispersion 

mismatch in Fourier domain OCT, an arbitrary superposition of aberrated planar wavefronts 
can be interfered with an ideal reference plane wave jkze  as in holography: 
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where ( , )s x yr k k is the weight of superposition for the planar waves. The interference term of 

Eq. (3) can be calculated as: 
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The mathematical similarities between Eqs. (1) and (4) are now apparent where Eq. (4) is 
simply a two-dimensional extension of Eq. (1). This implies dispersion mismatch in spectral / 
Fourier domain OCT and aberration in optical imaging are mathematically analogous. 

 

Fig. 1. Finding dispersion mismatch using a Shack-Hartmann wavefront sensor analogy. (A) A 
lenslet array samples a spatially non-planar parabolic wavefront. (B) The positions of the 
focused spots on the focal plane are proportional to the local slopes of the wavefront. (C) The 
wavefront can be reconstructed by integrating the local slope in space. (D) Using multiple 
spectral windows for STFT, a nonlinear parabolic phase corresponding to a dispersion 
mismatch can be sampled in wavenumber. (E) The position of the Fourier transform for a 
given window is proportional to local slope of nonlinear phase. (F) The nonlinear phase can be 
reconstructed by integrating the local slope in wavenumber. STFT: short-time Fourier 
transform. 

2.3 Finding dispersion mismatch using Shack-Hartmann wavefront sensor analogy 

In optical imaging, a Shack-Hartmann wavefront sensor can be used to find the wavefront 
distortion induced by an aberration term ( ),aber x yφ . The Shack-Hartmann typically contains 

a lenslet array which divides the input wave into multiple subapertures. The local slope of the 
wavefront at the center of each of the lenslets can be found by the following equations [19]: 

 ( ), / /aber x y x x fφ∂ ∂ = Δ  (5) 

 ( ), / /aber x y y y fφ∂ ∂ = Δ  (6) 
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where f is the focal length of the lenslets, and xΔ and yΔ are the deviations of the focal 
spots in the x and y directions in relative to the center of the lenslet. These discrete local 
slopes can be used to reconstruct the input wavefront using integration, characterizing the 
aberration introduced by the optical element. In imaging the eye using adaptive optics, the 
optical element is the eye itself, and the aberration of the eye ( ),aber x yφ  can be defined as 

the deviation of the exiting wavefront after the cornea from an ideal planar wavefront that is 
assumed to be generated by an ideal optics of the eye with a point source on the retina. 

A Shack-Hartmann wavefront sensor can be considered as a local wavefront sampling 
device. Therefore, utilizing the mathematical analogy developed in the previous sections, it 
should be possible to perform local phase slope sampling on the spectral / Fourier domain 
OCT interferogram in order to extract the dispersion mismatch between sample and reference 
arms. In order to extract dispersion mismatch in spectral / Fourier domain OCT, the lenslet 
array can be replaced with windowing the interferogram with narrow windows centered at 
different wavenumbers in the wavenumber space followed by Fourier transformation, which 
is analogous to the lenslets forming images at the focal plane in a Shack-Hartmann wavefront 
sensor. In a manner analogous to the way that the lenslets in the Shack-Hartmann wavefront 
sensor provide local slopes of the incoming wavefront, multiple narrow windows at different 
center wavenumbers provide local slopes of the phase of the spectral interferogram. 
Therefore, the dispersion mismatch can be calculated by integrating the phase slope in the 
wavenumber space in spectral / Fourier domain OCT, just as the wavefront can be calculated 
by integrating the wavefront slope in the x-y space in Shack-Hartmann wavefront sensing. 
This analogy is illustrated in Fig. 1 using an example of parabolic wavefront and phase. 

2.4 Simulation 

In order to demonstrate that the dispersion mismatch in spectral / Fourier domain OCT can be 
found using the analogy described above, a numerical simulation was performed to extract a 
known amount of dispersion mismatch introduced between the sample and reference arms. 
The spectral interferogram from three scatterers at slightly different depths and its Fourier 
transform are shown in Figs. 2(a) and 2(b). When a dispersion mismatch added, the A-scan 
becomes distorted as shown in Fig. 2(c). Figure 2(d) shows an example of the effect of short-
time Fourier transform using a narrow window centered at a particular wavenumber. The first 
panel of Fig. 2(d) shows the effect of windowing on the spectral interferogram. The second 
panel shows the Fourier transform of the windowed interferogram. Since the window is 
narrow, it appears as a point or single scatterer, which is analogous to the Shack-Hartmann 
wavefront sensor, where it is conventionally assumed that the wavefront emerges from a point 
source. It should also be noted that beyond a certain threshold where it starts to appear as a 
point scatterer, reducing the window size further does not affect the results significantly. The 
third panel shows the unwrapped phase of the Hilbert transform of the windowed 
interferogram shown in the first panel. Note that the location of the peak of the A-scan in the 
second panel can be defined as the instantaneous slope of this unwrapped phase at the center 
of the window. This results in a more accurate, sub-pixel location of the peak because of the 
discrete samples. By sliding the center wavenumber of the window over the entire 
wavenumber range and integrating the resultant slope in wavenumber, the dispersion 
mismatch can be extracted as shown in Fig. 2(e). Note that there is a slight difference between 
the simulated dispersion mismatch and dispersion mismatch extracted by the algorithm 
because there is more than one scatterer in the A-scan. 

This result is expected for a single scatterer, but for multiple scatterers, it is not obvious 
whether this approach remains valid. However, as will be shown in the next section, by 
carefully considering the analogy between this approach and the Shack-Hartmann wavefront 
sensor, it is possible to infer that this approach should still be valid for multiple scatterers 
when speckles are appropriately managed. 

Figure 2(f) shows that the entire operation of the sliding window short-time Fourier 
transform can be simply replaced by Hilbert transformation of the entire interferogram 
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without short-time Fourier transformation. Since the operation described above essentially 
calculates the integral of the instantaneous slope of the phase, while the Hilbert transform of 
the entire interferogram calculates the phase, they are equivalent. This fact is highly 
advantageous computationally because of the high computational cost of short-time Fourier 
transformation with multiple windows. Therefore, short-time Fourier transformation is used 
here only for developing the analogy between this approach and the Shack-Hartmann. Note 
that there is a slight difference between the two curves in Fig. 2(f) because the instantaneous 
slope was calculated using a finite window width with a finite wavenumber interval. 

 

Fig. 2. Simulation for extracting the dispersion mismatch using Shack-Hartmann wavefront 
sensor analogy. (A) A spectral interferogram with three scatterers and a Gaussian light source. 
(B) The Fourier transform of (A) without any dispersion mismatch. (C) The Fourier transform 
of the interferogram with an arbitrary simulated dispersion mismatch introduced. (D) An 
example of the short-time Fourier transform for a given window location. (E) A comparison of 
the simulated and extracted dispersion mismatches. (F) A comparison of the extracted 
dispersion mismatch calculated with short-time Fourier transform with a sweeping window 
and that calculated with Hilbert transforming the entire spectral interferogram. 

2.5 Effect of speckle 

For A-scans with a single scatterer or specular reflections, variations of the approach outlined 
previously have already been widely used for finding the dispersion mismatch in Fourier 
domain OCT [8, 20]. However, the validity of this approach for A-scans with multiple 
scatterers is not obvious without the analogy developed previously. 

In Shack-Hartmann wavefront sensing for imaging the eye, it is typically assumed that the 
wavefront coming from the beacon on the retina is a point source. Although this is true in 
terms of the resolution of the small lenses in the lenslet array, there are still multiple scatterers 
that act as the beacon on the retina. Therefore, speckle can be a problem for accurate 
aberration characterization with a typical Shack-Hartmann wavefront sensor [21]. Similarly, 
in finding the dispersion mismatch in spectral / Fourier domain OCT using the analogy 
developed here, speckle can be a severe problem when there are multiple scatterers in a single 
A-scan. The effect of speckle on the approach described here is shown in Fig. 3. Figure 3(a) 
shows a spectral interferogram with three scatterers as in Fig. 2, but with the relative locations 
shifted to cause severe constructive and destructive interferences. This constructive and 
destructive interference results in speckle patterns when narrow windows are used for short-
time Fourier transform. Note that an analogous problem can occur in Shack-Hartmann 
wavefront sensors. Figure 3(b) shows the dispersion mismatch extracted with the approach 
described above. Note that an abrupt jump occurs where there is destructive interference. 
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These abrupt jumps can cause a splitting of the OCT point spread function when the 
dispersion mismatch is used for numerical dispersion compensation. 

One obvious way of suppressing speckle and other noise for the Shack-Hartmann 
wavefront sensor is to average multiple images assuming small sample movement between 
acquisitions [22]. In typical OCT imaging, multiple A-scans are acquired while the 
galvanometer is scanning. Therefore, in order to suppress speckle for extracting the dispersion 
mismatch in spectral / Fourier domain OCT, multiple neighboring A-scans with different 
speckle patterns can be averaged. Note that averaging is not performed on the interferograms, 
but on the extracted dispersion mismatches from the A-scans. The effect of speckle 
suppression by averaging the dispersion mismatch will be shown in the results section. 

 

Fig. 3. (A) A spectral interferogram with three scatterers. The wavenumbers where destructive 
interference occurs are indicated with red arrows. (B) A comparison of the extracted dispersion 
mismatch and the simulated dispersion mismatch. The red arrows indicate the same 
wavenumbers as in (A). Note that the abrupt changes in the extracted dispersion mismatch 
occur at the wavenumbers indicated with the arrows. 

3. Methodology 

3.1 Ultrahigh-resolution spectral / Fourier domain OCT system 

Two different OCT systems were used in these experiments. A schematic of the OCT systems 
used is shown in Fig. 4. For the first system, a commercial broadband superluminescent diode 
(SLD) light source (Exalos) and a line scan camera (Basler Sprint spL4096-140 km) were 
used to develop an ultrahigh-resolution spectral domain OCT system at 825 nm with an 
imaging speed of 70,000 A-scans per second. The full width at half maximum (FWHM) 
bandwidth of the broadband light source was 161 nm. The spectrometer had a collimating 
lens with an effective focal length of 76 mm, a 1200 lines/mm transmission holographic 
grating, and a 160 mm scan lens. The line scan camera had 10 µm square pixels in two rows 
and was 4096 pixels wide. The camera was read at a 70 kHz line rate using the full 4096 
pixels with a 13.1 µs exposure time. The total imaging range was 3.1 mm in tissue with a 
measured axial resolution of 2.9 μm in tissue after spectral shaping. Using a 70/30 fiber 
coupler, the power of the OCT beam at the cornea was 750 µW, consistent with American 
National Standards Institute (ANSI) standards safe exposure limits, and gave a sensitivity of 
97 dB. The imaging interface had galvanometer scanners with 5 mm mirrors (Cambridge 
Technology 6215H), an 80 mm scan lens, and a compound 30 mm effective focal length 
ocular lens, resulting in a beam diameter of 1.8 mm incident on the cornea. The theoretical 
retinal spot size calculated with ZEMAX and a standard eye model was ~20 µm. 

For the second system, a different broadband SLD (Superlum) centered at 860 nm with a 
FWHM bandwidth of 137 nm was used in order to increase the imaging speed as well as the 
system efficiency. For this configuration, the camera was read at a line rate of 91 kHz using 
the center 3072 pixels with an exposure time of 9.8 µs. An 80/20 fiber coupler used for this 
configuration to limit the incident power of the OCT beam to 750 µW. Otherwise, the second 
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system was similar to the first. The second system was designed with emphasis on optimizing 
efficiency and sensitivity, and sensitivity was improved to 98 dB despite the faster imaging 
speed. The total imaging range remained the same at 3.1 mm in tissue with a measured axial 
resolution of 3.2 μm in tissue after spectral shaping. 

 

Fig. 4. Schematic of the spectral / Fourier domain ultrahigh-resolution OCT systems. PC: 
polarization controller, DC: dispersion compensation glass, RM: reference mirror, GS: 
galvanometer scanner pair, DG: diffraction grating, SLD: superluminescent diode, CMOS: line 
scan camera. Fiber couplers of 70/30 and 80/20 were used for the first and second systems, 
respectively. 

3.2 System calibration and data processing 

In order to achieve best possible resolution allowed by the spectrometer and light source at all 
depths, it is critical to decouple the dispersion mismatch from wavelength-to-camera pixel 
mapping during spectrometer recalibration. For that purpose, the spectrometer was calibrated 
using an approach similar to that described in reference [20]. Interferometric fringes were 
recorded by placing a mirror at two different delay positions in the sample arm. The two 
interferometric fringes were Hilbert transformed to generate phase curves as a function of 
pixel number. By subtracting the two phase curves, the phase as a function of pixel number, 
but without dispersion mismatch, was generated. The new sampling positions to linearize the 
interferometric fringe in wavenumber could be generated by dividing the total phase range by 
the final number of samples and interpolating the sample positions corresponding to the phase 
values with uniform intervals. It should be noted that the approach in reference [20] can also 
be used for finding the dispersion mismatch in the OCT system. However, unlike our 
approach discussed here, it is not intended for sample-dependent dispersion mismatch 
because it requires a calibration mirror. 

For all data acquired in this study, the spectrometer output was processed by cubic spline 
interpolation to linearize the interference signal in wavenumber. The recalibrated 
interferometric signals were Fourier transformed after numerically compensating for the 
dispersion mismatch. Zero padding was sometimes performed before Fourier transformation 
in order to improve layer visualization. 

4. Results and discussion 

The approach to extract the dispersion mismatch described above was applied to spectral / 
Fourier domain OCT images. In OCT images of the retina, there are always multiple 
scatterers in a given A-scan, and the effect of speckle should be considered carefully in order 
to apply this method successfully. The first ultrahigh resolution OCT system was used to 
acquire the B-scan with 2048 A-scans as shown in Fig. 5(a). No water cell was used in the 
reference arm in order to intentionally demonstrate that the approach is capable of extracting 
a relatively large dispersion mismatch. The method was applied to the A-scans near the center 
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of the fovea. Before implementing the method, the A-scans were zeroed everywhere except at 
the bright layers near the retinal pigment epithelium (RPE), and inverse Fourier transformed 
to increase the signal-to-noise ratio of the spectral interferograms and remove signals from 
undesired layers. The depth range where the A-scan was used is approximately indicated by 
the yellow dotted lines in Fig. 5(a). The resulting spectral interferograms were used as the 
starting point for the approach. 

 

Fig. 5. (A) An original OCT B-scan image of a normal human retina. (B, C, D) OCT B-scans 
numerically dispersion compensated with the mismatches shown in (E, I, J). The white arrow 
in (D) indicates the external limiting membrane (ELM). (E-I) Dispersion mismatches extracted 
from different numbers of A-scans. (J) was obtained by filtering (I) with a Savatzky-Golay 
filter. For (E-J), the y-axis indicates phase in radian and the x-axis sample number. 

Figure 5(e) shows the extracted dispersion mismatch from a single A-scan. Note that there 
are several abrupt jumps in the extracted dispersion mismatch due to noise and speckle, which 
can be understood in terms of the short-time Fourier transforms described earlier. When this 
mismatch is used for numerical dispersion compensation, the OCT point spread function 
splits, as can be seen in Fig. 5(b). Note that the image became sharper compared to Fig. 5(a), 
although image feature appear split multiple times in depth. This is not surprising considering 
the effect shown earlier in Fig. 3(b). Figures 5(f)-5(i) show the averages of dispersion 
mismatches extracted from different numbers of A-scans in order to reduce speckle. The 
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extracted dispersion mismatch is averaged according to the number of A-scans indicated. 
Note that as larger numbers of A-scans are used for averaging, the abrupt jumps in the 
extracted phase are reduced. Figure 5(j) was obtained by filtering Fig. 5(i) with a Savitzky-
Golay filter (polynomial order: 1, window size: 401, number of samples per A-scan: 4096) in 
order to further suppress the effect of speckle. Figures 5(c) and 5(d) show the numerically 
dispersion compensated B-scans using the extracted dispersion mismatches shown in Figs. 
5(i) and 5(j), respectively. Both Figs. 5(c) and 5(d) became noticeably sharper than the 
original image. However, Fig. 5(d) resulted in a cleaner image as can be seen by examining 
the area below the external limiting membrane (ELM). It is important to emphasize that the 
extracted dispersion mismatches are averaged for speckle reduction, while the spectral 
interferograms are not averaged before extracting the mismatch. It should also be noted that 
the purpose of averaging is not to increase signal-to-noise ratio, but to reduce the effects of 
speckle. 

 

Fig. 6. (A) An original OCT B-scan image of a normal human retina. Dispersion was 
approximately matched with a water cell in the OCT reference arm. (B) An OCT B-scan 
numerically dispersion compensated with the dispersion mismatch extracted from a single A-
scan near the position indicated by the blue box in (A). Only the IS/OS was used for dispersion 
mismatch extraction. (C) An OCT B-scan numerically dispersion compensated with the 
dispersion mismatch extracted from a single A-scan near the position indicated by the red box 
in (A). The entire NFL was used for dispersion mismatch extraction. (D) The dispersion 
mismatch was extracted from 20 A-scans near the position indicated by the red box in (A) and 
averaged and filtered to reduce speckle. 

In practice, a water cell is typically used in the reference arm for retinal imaging in order 
to match dispersion from the vitreous of the eye. Therefore, it is important to test whether this 
approach can be also used to find a smaller amount of dispersion mismatch. Figure 6(a) is an 
OCT B-scan image of a normal human retina consisting of 2048 A-scans, acquired with the 
first ultrahigh resolution system, but with a water cell inserted in the reference arm to 
approximately match dispersion. Figure 6(b) shows a B-scan numerically dispersion 
compensated with the dispersion mismatch extracted from a single A-scan near the position 
indicated by the blue box in Fig. 6(a). Only the inner segment / outer segment junction 
(IS/OS) was used for extracting the dispersion mismatch. Averaging multiple A-scans did not 
help in this case because IS/OS acted as a good single scatterer with minimal speckle. Figure 
6(c) shows a B-scan numerically dispersion compensated with the mismatch extracted from a 
single A-scan near the position indicated by the red box in Fig. 6(a). In this case, the entire 
nerve fiber layer (NFL) was used to extract dispersion mismatch. Because the NFL is thick, 
there are multiple scatterers in a given A-scan. Therefore, the extracted dispersion mismatch 
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has artifacts due to speckle. Figure 6(d) shows a numerically dispersion compensated image 
with an averaged dispersion mismatch extracted from 20 A-scans near the position indicated 
by the same red box in Fig. 6(a). The extracted dispersion mismatch was filtered with a 
Savatzky-Golay filter (polynomial order: 1, window size: 401, number of samples per A-scan: 
3072) before it was used for numerical dispersion compensation. As can be seen, averaging 
and filtering the extracted phase reduces speckle and achieves more accurate extraction of the 
dispersion mismatch. This result demonstrates that this approach can be applied to diffuse 
multiple scatterers as long as the speckle is appropriately managed. 

 

Fig. 7. (A) An original OCT B-scan image of a patient with dry AMD. Dispersion was 
approximately matcched with a water cell inserted in the OCT reference arm. (B) An OCT B-
scan numerically dispersion compensated with the averaged and filtered mismatch extracted 
from 200 A-scan near the position indicated by the yellow box in (A). 

Finally, the approach was applied to images with retinal pathology. Figure 7 shows an 
OCT retinal image acquired from a patient with dry age-related macular degeneration (AMD) 
obtained with the second ultrahigh resolution OCT system used at the New England Eye 
Center. The B-scan image consisted of 16,000 A-scans over 6 mm. A water cell was used in 
the reference arm for approximate dispersion matching. For this scan pattern, 200 A-scans 
near the yellow square in Fig. 7(a) were used to extract the dispersion mismatch. Because of 
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the pathology, it was not possible to separate the IS/OS and the retinal pigment epithelium 
(RPE), and the entire diffuse bright band near the RPE was used, as indicated by the yellow 
box. Therefore, a relatively large number of A-scans were required to extract the dispersion 
mismatch. Another reason that a larger number of A-scans were required is that the scan 
pattern was very dense and the relative difference between neighboring A-scans was 
proportionally smaller in terms of speckle. Figure 7(b) is a B-scan that is numerically 
dispersion compensated with the extracted dispersion mismatch averaged over 200 A-scans 
and filtered with a Savatzky-Golay filter. As can be seen from the zoomed views of Figs. 7(a) 
and 7(b), the image became sharper using numerical dispersion compensation. The effect of 
dispersion compensation can be seen by examining the thickness of Bruch’s membrane near 
the center of the fovea as indicated by arrows. 

There is a very recently published approach that uses the cross-correlation of sub-
bandwidth images to characterize and compensate for dispersion as well as sample axial 
motion artifacts [14]. Although this approach is more closely related to the approach reported 
here than other approaches mentioned in the introduction in that it uses short-time Fourier 
transforms, there are still important differences. The approach described in this manuscript 
does not use cross-correlation of images which can be time consuming especially if it is 
necessary to achieve sub-pixel accuracy. We also demonstrated that short-time Fourier 
transforms at multiple wavenumbers can be replaced by single Hilbert transformation, which 
dramatically reduces computational time. Finally this manuscipt demonstrate that speckle in 
short-time Fourier transforms can pose additional challenges and proposed an approach to 
reduce its effects and obtain high quality dispersion compensation. 

5. Conclusion 

Using a mathematical analogy between the Shack-Hartmann wavefront sensor and Fourier 
domain OCT, we present an approach to extract the dispersion mismatch between the sample 
and reference in spectral / Fourier domain OCT. By carefully considering the effect of 
speckle, which is a common phenomenon occurring in both wavefront sensing and dispersion 
measurement, the dispersion mismatch was successfully extracted in A-scans with diffuse 
multiple scatterers as well as a single scatterer. In principle, different approaches for 
dispersion compensation, including the approach described in this manuscript should 
converge to a single equivalent solution, which should enable effective compensation of 
dispersion mismatch. However, the approach described here attempts to extract the dispersion 
mismatch in a more physically intuitive way, rather than optimizing a metric function. 
Although this manuscript applies the Shack-Hartmann wavefront sensor analogy to OCT 
dispersion measurement and compensation, the mathematical analogy also suggests analogs 
in other applications. For example, it may be possible to extend the approach introduced here 
to two-dimensions and apply it for characterizing and numerically compensating optical 
aberration in holography or OCT. 
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