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Abstract
Topologically complex proteins fold by multiple routes as a result of hard-to-fold regions of the
proteins. Oftentimes these regions are introduced into the protein scaffold for function and
increase frustration in the otherwise smooth-funneled landscape. Interestingly, while functional
regions add complexity to folding landscapes, they may also contribute to a unique behavior
referred to as hysteresis. While hysteresis is predicted to be rare, it is observed in various proteins,
including proteins containing a unique peptide cyclization to form a fluorescent chromophore as
well as proteins containing a knotted topology in their native fold. Here, hysteresis is
demonstrated to be a consequence of the decoupling of unfolding events from the isomerization or
hula-twist of a chromophore in one protein and the untying of the knot in a second protein system.
The question now is- can hysteresis be a marker for the interplay of landscapes where complex
folding and functional regions overlap?
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The crux of the protein folding problem lies in the elucidation of a dominant folding
pathway from the astronomical number of protein conformations that the Levinthal Paradox1

predicts from a completely random search. The current view is that a typical protein, even a
“simple folder” like RNAseA2, has numerous folding pathways. One consequence of this is
that the native state, and thus, the folding pathway, is minimally affected by most mutations
in the primary sequence of a protein3. The idea of a protein having an energy bias towards
the native state, multiple pathways to reach that native state, and resilience to mutation has
led to the funneled energy landscape theory. Funneled energy landscape theory, or, “folding
funnels”, predicts that an unfolded protein will have many folding pathways available,
although only one or few dominate the folding process45. To function properly, robust
folding is a necessity, and funneled folding has evolutionary pressure to be devoid of deep
traps, leading to a smooth, minimally frustrated landscape. However, in larger and multi-
domain proteins, folding may become more complicated where intermediates, both kinetic
and thermodynamic, may be detected. These intermediates are a result of “roughness”
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within the folding funnel. If a minimally frustrated funnel is the sole “goal” in protein
folding, where does observed frustration come from?

Larger, more topologically complex proteins, may fold by multiple routes as a result of
hard-to-fold functional regions of the proteins6. These functional regions introduce
frustration or roughness to the otherwise smooth, funneled landscape. While in some cases,
functional regions are defined by single amino acids or group of interacting amino acids
located in loops or active sites that relay a signal, in other instances function may not be as
clearly defined, as structural features that impart function are not optimized for folding.
However, evidence is accumulating that functional regions of natural proteins do not
significantly aid folding and might, in fact, interfere with it; in other words, folding and
function may conflict within the context of a smooth energy landscape as conserved and/or
functional regions may not be optimized for folding,758. Thus, it is possible that the most
difficult or stressful regions to fold in a protein are functional sites97. Details within the
protein sequence help to determine the folding route to preserve the functional fold. Thus,
functional loops that cause complexity and trapping can modulate folding routes and
rates1011. While functional regions show little effect on folding of smaller, more two state-
like proteins12, such interactions make the overall fold topology significantly more
complicated for larger ones10.

Green fluorescent protein (GFP) is a 228-residue protein originally discovered in the
jellyfish Aequorea Victoria13 that now is popularly used as a fluorescent label14. GFP has
been employed in several novel techniques including acting as a reporter for gene
expression15, organelle tracking in vivo, and folding1617. Reengineering of GFP has also led
to split-GFP protein-protein interaction reporters181920, and pH reporters21. Mutations of
residues near the chromophore have created a spectrum of colors for use in labeling22, as
well as utilization of fluorescent proteins from other organisms2324. GFP consists of an 11-
stranded β-barrel surrounding an α-helix containing the fluorescent chromophore (Fig. 1)25.
The lid of the barrel contains 3 distorted α-helices on one side, and an exceedingly distorted
helix on the other. The barrel is thought to sequester the chromophore from bulk solvent to
avoid fluorescent quenching. The unique structure of GFP creates a large average loop
length, or contact order26; high contact order is linked to folding complexity and slow
folding27.

The fluorescent moiety in GFP is a p-hydroxybenzylidene-imidazolinone chromophore
formed from cyclization, dehydration, and oxidation reactions of the polypeptide
backbone2829. After folding, chromophore formation occurs to release strain on a “kink”
within the internal α-helix30; presumably, the α-helix kink is formed from interactions
between the barrel staves and the central helix. While the highly conjugated rings of the
chromophore lead to fluorescence, the ring is thought to exist in a non-planar state within
the barrel31. Furthermore, the chromophore is thought to isomerize through a “hula-twist”
cis-trans isomerization32, which maintains the volume of the chromophore, allowing
isomerization within the barrel. This process is linked to kindling3334 and photo-switchable
proteins, in which fluorescence can be turned on and off by the absorbance of certain
wavelengths3536.

Initial work on GFP folding highlighted slow observed unfolding/refolding kinetics and non-
coincident equilibrium transition curves3738 as well as slow (over months) changes in
transition curves39. These results are indicative of a rough folding energy landscape in GFP
with potentially large folding barriers. Even in a robustly folding GFP variant, denaturation
must occur at 95°C in 6M urea; once unfolded, GFP will remain unfolded in 6M urea. Using
this denaturation protocol, GFP may exist in both a folded or unfolded state in 6M urea,
depending on whether it has been heated first40. The implication is significant as it suggests
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that GFP folding exhibits hysteresis, a unique and important phenomenon indicative of
coupled events in folding. A rigorous check of both unfolding and refolding transitions of
GFP verifies this occurrence (Fig.2)41.

While the folding of GFP has been comprehensively reviewed previously42, recent studies
of GFP folding may have further, functional implications43194445464739. A rigorous
examination of GFP in which each β-strand is “left out” shows that β-strand 7 is the most
amenable to removal and later annealing47. These results show that GFP is able to fold down
a path in which β-strand 7 is the final step in barrel closure. Consistent with this finding, it
has been recently shown that GFP is resistant to mechanical degradation where pulling and
degradation484950 from either β-strands 7 or 11 indicate a near-fully folded molecule where
either β-strand participates in the final folding step51. A similar experiment in pulling from
β-strand 6 indicated a loss of the tertiary fold51.

The overall topology of GFP and its link to folding and function was studied by “rewiring”
GFP via exchanging the loops of the lid of the protein to radically change how the barrel
staves were linked to each other, and thus, the overall topology52. Here, rewired variants of
β-strands 1–6 were non-fluorescent, and appeared to misfold according to CD spectra,
consistent with previous results45. Furthermore, disruption of β-strands 1–6 likely perturbed
the lid of GFP, which is linked to chromophore formation4153, and locking of the barrel into
a final, correct native state54. Rewiring the remaining β-strands of GFP, while maintaining
the native connections of β-strands 1–6, showed native-like fluorescence, given long enough
linkers between the β-sheets. Interestingly, the circularly permutated rewired GFP also
withstood breaks on either end of the central α-helix, implying that helix strain required for
chromophore formation came from the outer barrel, and is not transmitted through the helix
by the lids. More recent work on denaturation of GFP55 indicate that chromophore
formation is coupled to early folding events; here, lack of a mature chromophore led to more
two-state like behavior in folding. Thus, chromophore formation/stabilization, the functional
aspect for this molecule, appears to be important first steps in the folding of GFP. Similar
results have been observed in other large, complex proteins where functional regions add
roughness to the folding landscape and are early determinants in route selection1056.
Interestingly, while functional regions add complexity to folding landscapes, they may also
contribute to a unique kinetic behavior related to the stability of the system.

Hysteresis is a property in which a system does not immediately respond to the stresses
applied to it, which may arise from a bifurcation in the energy landscape, as observed in
pulling experiments of GFP48. This, in turn, leads to a bi-stable system, where the observed
equilibrium is dependent not only on the final conditions, but also the initial conditions
(memory of the system). Simply stated, hysteresis is a situation in which the state of the
system depends not only on its current conditions, but also its history; thus, a hysteretic
system is pathway dependent. Hysteresis is a kinetic effect manifesting itself within
“equilibrium” data. Typically, one measures the folding and unfolding kinetics over a range
of denaturant concentrations by multiple techniques and waits greater than 5 half-lives times
the slowest reaction (>97%) before measuring the thermodynamic stability of a protein57. It
is problematic in folding studies, as full reversibility is a requirement for many analyses.
However, observable hysteresis results from a separation of time-scales between two
required processes in folding or unfolding, revealing a further level of complexity within the
free energy landscape. Hysteresis occurs when experimental observation lies between these
time scales, and is abrogated when observation lies outside of the two time-scales (e.g.
hysteresis disappears at infinite time). Thus, experiments are conducted at a `pseudo-
equilibrium' state for hysteresis-dependent proteins.
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Initially, it was suggested that the non-coincidence of equilibrium transition curves in GFP
was linked to very slow folding and unfolding kinetics39. However, upon further analysis,
folding kinetics simulations predicted equilibration after two months in which both the
unfolding and refolding transition curves would shift towards the center of the hysteresis
“zone”58, approaching superimposablity. When testing chromophore fluorescence, native
tryptophan fluorescence, or circular dichroism of GFP, hysteresis was observed, suggesting
that hysteresis is linked to the native structure, not just one probe. Upon closer inspection at
apparent equilibrium, the unfolding curve continued to shift towards the refolding curve
over three months, while the refolding curve remained constant; evidence that another, non-
folding process limits denaturant-induced destabilization. Remarkably, all hysteresis was
abolished, and the unfolding transition coincides with the refolding transition, when the
chromophore was not present either through catalytic mutation (R96A mutant) or structural
requirements (M88Y/Y74M mutant) clearly indicating that hysteresis is linked to the
chromophore41. These results further suggest a functional relationship with the
chromophore. Further examination of the complex folding landscape of GFP revealed that
hysteresis arises from attempting to form the β-barrel around a chromophore, where the
barrel requires a precise isomerization and torsion of the chromophore; in the absence of the
chromophore (de novo folding) folding is greatly simplified, and hysteresis is abolished, as
the strain of isomerization is eliminated. Interestingly, fluorescent proteins tend to contain
chromophores in a cis isomerization while structurally analogous but non-fluorescent GFP-
like proteins contain a chromophore in a trans isomerization53, a key structural difference in
the `functional' relationship of these molecules. To this end, chromophore packing and the
imposed strain in the native state, and the resulting hysteresis, are linked in both the folding
and functional aspects of GFP. Consistent with this hypothesis, mutations that disrupt the
formation of the chromophore lead to a well-folded protein, but abolish the observed
hysteretic effect3041.

While hysteresis is rare, it has been observed in the folding of other systems, although
typically in multi-domain or multimeric proteins5960616263. In these complex systems,
differences in energies of the folding transition ensemble lead to hysteresis as unfolding are
controlled by domain transitions, while refolding occurs much more cooperatively. Titin, a
modular repeat protein, exhibits hysteresis in single-molecule stretching experiments, where
hysteresis is observed in stretch-release cycles attributed to domain unfolding/refolding6064.
Collagen, another single-domain protein, exhibits hysteresis in both thermally and
chemically induced transitions, linked to proline-rich regions62; refolding requires slow
annealing from loop rearrangement while denaturation is very cooperative once collagen
stability is broken. Both proteins exhibit similar hysteresis characteristics: unfolding and
refolding occur through different pathways; one direction in a single, global transition while
the other direction transitions in a domain-wise or stepwise process. Other instances of
hysteresis have also been observed in aggregation and association events in proteins656667

where stable conformations exist on the free energy landscape, consistent with a rough or
possibly dual-basin landscape. In agreement with the principle of hysteresis, proteins that
are highly stable with complex topologies, like GFP, do not appear to easily regain their
native states once disruption of their tertiary structure has taken place54. While the current
views of hysteresis are predicated on native states that are well represented in biology (i.e.,
β-barrels, triple helix), do other protein topologies share this property?

The existence of proteins containing a unique, intricate, knotted topology in their native fold
was once considered unlikely or even impossible, and knotted topologies were discarded
from structure prediction and electron density68. Since then, proteins with simple and
complicated knots, some with up to 6 crossing points, have been discovered and
characterized69. Today several distinct protein families with conserved knotted topology are
recognized70. While the functional role of knotting is not yet resolved, some studies
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indicated its role in stabilization of functional regions71727370. YibK and YbeA, two knot-
containing methyltransferase proteins, have been extensively studied both in silico74, and in
vitro757677. Molecular dynamics simulations with minimal energetic frustration show
multiple basins and off-pathway intermediates7478. Interestingly, these non-native basins
correspond to near-native structures without threaded knots75, analogous to the dual-basin
energy landscape observed in GFP58, which has high contact order but does not contain a
knot. In silico, both backtracking and large topological barriers are evidence of a complex
energy landscape and are implicated in the folding of both YibK and YbeA74.

More recently, characterization and identification of the folding mechanism of knotted
proteins highlight complex interactions7679808182717283. Interestingly, a protein can self-tie
from a newly translated polypeptide chain despite the complexity of the knotted structures,
where knot formation is a post-translational, rate-limiting step in folding84. While it has
been suggested that threading the knot may be impossible to observe during in vitro
denaturation studies, as the knot persists in the denatured state75, the inability to untie the
knot results in a significant gap in the full description of the free energy landscape for
knotted proteins. Initial results using a structurally homologous YibK-like methyltransferase
(PDB 1O6D) (Fig.3) in kinetic unfolding simulations with structure-based models8574 are
unambiguous and demonstrate that unfolding of 1O6D to a fully unfolded, untied
conformation is achieved in a stepwise process (Fig.4A). Unfolding of the secondary
structure elements precedes and is decoupled from untying of the knotted protein backbone.
The untangling process is at least an order of magnitude slower than protein unfolding.
These simulations clearly show, in agreement with translational experiments, that untying of
the knot is the rate-limiting step in knot formation/folding. This indicates that given enough
time, the protein can be unfolded and the knot untied (Fig.4A). Moreover, recent work has
directly highlighted how complex the unfolding landscape is for knotted proteins86. A
similar mechanism of unfolding is observed in all-atom simulations77. Interestingly, the
single molecule approach with SBMs to investigate the energy landscape of knotted protein
consistently reveals a step-wise unfolding process for several proteins with the homologous
α/β fold86. All these simulations suggest that experiments performed under previous
conditions only probe the reversibility of unfolding/refolding of the knotted chain8775.
Furthermore, they demonstrate that extended times in denaturing conditions are necessary to
probe knot untying and true equilibration between native-knotted and unfolded-untied is
extremely difficult to achieve. Consistent with this prediction and the apparent hysteric
behavior, 1O6D exhibits an unconventional landscape where unfolding and refolding
equilibrium studies are nonsuperimposable (Fig.4B), despite exhaustive sample incubation
(Fig.4C). Here, hysteresis is speculated to be a consequence of the decoupling of unfolding
events (loss of secondary/tertiary structure) from the untying of the knotted protein
backbone (Fig. 4D). This is analogous to observations of GFP, in which folding is decoupled
from chromophore isomerization, leading to two kinetic steps with distinctly different
timescales.

While the symptoms of hysteresis may be diverse, the results are driven by the free energy
landscape. As evolution drives robust folding, forming a minimally frustrated landscape
where both kinetic and thermodynamic traps are small compared to the overall depth of the
native basin, hysteresis presents itself as a second basin, or trap, clashing with the minimal-
frustration concept. However, as landscape roughness has been recently linked to protein
function10, the `smoothness' of the folding funnel may have been redefined. In fact, recently,
examples of functional regions adding frustration have been demonstrated with both
experimentally10 and theoretically1188 lending credence to the idea of overlapping
landscapes (folding and function). For GFP, differences in the folding/unfolding pathway is
linked to protein stability, proline and chromophore isomerization. For titin, different routes
to unfold and refold multiple domain chain is related to viscoelastic properties which allow
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muscle fiber to increase the range of protein extension and increase flexibility60. In the case
of aggregation or assembly, a second basin of the free energy landscape exists as an off-
pathway trap89. While not linked directly to function, in vivo folding may utilize molecular
chaperones to avoid off-pathway aggregation. The knotted region within knot proteins also
appears to play a functional role in the topology of the protein71727370. As the study of
protein structure and folding shifts into more complicated topologies, the potential for
complex energy landscapes increases. While evolution favors minimally frustrated and
simpler landscapes, protein topology and/or function add complexity or roughness, leading
to phenomena such as hysteresis. Here, the presence of hysteresis in folding is on a complex
energy landscape with folding linked to a slow search step toward the active conformation,
acting as a marker for processes like isomerization or backbone knotting. During this second
step, folding is no longer limited by a conventional folding mechanism, but the required
slow search to native. Interestingly, isomerization and post-translational modifications are
not the only factors that alter the energy landscapes of proteins and result in hysteresis.
Synonymous or “silent” single nucleotide polymorphisms in coding DNA (which does not
change the amino acid sequence of the protein product) can result in a protein with altered
substrate specificity90. We suggest this protein, too, will exhibit a hysteretic or dual-basin
energy landscape as rare codons influence translation rate, impact protein
folding919293949596, and ultimately function. It will be interesting to explore the question of
whether barrier controlled, fast-folding followed by a prefactor-controlled slow search step
to native58 is more common than previously believed.
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Figure 1.
(A) A rough energy landscape can lead to observed hysteresis. Non-coincidence of
equilibrium unfolding (blue) and refolding (red) curves are evidence of a complex energy
landscape. Hysteresis is a property in which a system does not immediately respond to the
stresses applied to it, which may arise from a bifurcation in the energy landscape, which
leads to a bi-stable system. Here, the observed equilibrium is dependent not only on the final
conditions, but also the initial conditions (memory of the system). A simplified landscape is
shown at selected parts of the hysteresis curves to show how a hysteresis cycle can arise. (B)
Hysteresis is a kinetic effect manifesting itself within “equilibrium” data. At 5 half-lives,
folding (red) and unfolding (blue) are considered complete. In a non-hysteretic (simple)
folding scheme (upper right schematic), equilibrium curves overlay and are stable. In
proteins that exhibit hysteresis (lower left panel), “equilibrium” folding and unfolding
curves are non-equivalent after 5 half-lives, and may continue to drift (lower right) as a
second, non-folding kinetic step limits denaturation.
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Figure 2.
GFP exists as a highly regular β-barrel surrounding the fluorescent chromophore (green). A
splay diagram presents and numbers the β-strands as discussed in the text.
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Figure 3.
The thermophilic methyltransferase 1O6D is a knotted protein. A splay diagram simplifies
the structure to focus on the knotted topology.
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Figure 4.
Theoretical and Experimental Data both Suggest Time-Dependent Unfolding of the Knotted
Polypeptide Chain (A) The mechanism of unfolding shows two distinct steps, where
unfolding of the secondary structure occurs first, followed by untying of the knot. The
unfolding and untying events appear on distinctly different timescales and are highlighted in
yellow. (B) Denaturant-induced unfolding (blue) and refolding (red dashes) measured by
circular dichroism (CD) spectroscopy. The unfolding (blue) and refolding (red dashes)
transitions for 1O6D show apparent hysteresis (the nonsuperimposability of the curves),
consistent with the uncoupling of unfolding and untying of the knotted protein and the shift
in the folded ensemble. The fit of the data was to a two-state model. Given enough time,
these curves would coalesce. (C) Observed experimental refolding kinetics as a function of
time in the denatured state, monitored by CD spectroscopy. Protein was unfolded at 6.0M
denaturant (Gnd-HCl) for the given amount of time, and refolding was initiated by dilution
to a final Gnd-HCl concentration of 3.2M. As predicted, changes are observed in the folding
kinetics, consistent with untying the knot in the unfolded ensemble, and occur over a period
of 6 months. The fit of the data was to a single-state (green trace) and two-state (black trace)
model, respectively. (D) A schematic drawing of the “double-jump” experiment used in (C)
to test the effect of the persistence of the knot in the denatured state on the refolding
kinetics. In this scenario, extended times in the denatured state are necessary for untying of
the unfolded protein.
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