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By differential screening of a Xenopus egg cDNA library, we selected nine clones (Egl to Eg9) corresponding
to mRNAs which are deadenylated and released from polysomes soon after fertilization. The sequence of one
of these clones (Eg5S) revealed that the corresponding protein has the characteristic features of a kinesin-related
protein. More specifically, Eg5 was found to be nearly 30% identical to a kinesin-related protein encoded by
bimc, a gene involved in nuclear division in Aspergillus nidulans.

For most animals, the developmental period following
fertilization is characterized by a state of very rapid cellular
proliferation (6). In the case of xenopus, the first cleavage
takes place 1.5 h after fertilization and is followed by 11
almost synchronous cell divisions which occur every 30 min
(23). The onset of transcription is clearly detected only after
cleavage 12 at a stage called the midblastula transition (23).
In the presence of dactinomycin, embryos develop up to the
midblastula transition, whereas this development is blocked
by puromycin or cycloheximide (3, 20). Similar results have
been obtained for maturation, which is independent of new
transcription but requires de novo translation (15). Qualita-
tive analysis of the proteins synthesized in oocytes (stage
VI), in unfertilized eggs, and in embryos has shown that
during maturation and after fertilization, new proteins ap-
pear but others are no longer synthesized (5, 19, 29). This
suggests that the synthesis of specific gene products neces-
sary for maturation, for the metaphase block in unfertilized
eggs, and then for rapid proliferation is regulated at the
translational level from the bulk of maternal mRNA. By
differential screening of a cDNA library prepared with
poly(A)* RNA from unfertilized eggs, we isolated 11
nonoverlapping sequences which undergo either adenylation
or deadenylation after fertilization (26). Nine of them which
constitute the Eg family correspond to RNAs which are
specifically deadenylated (24-26) and released from poly-
somes after fertilization (24, 26). In a previous work, we
have shown that Egl has very high homology to p34°¢<2 but
is clearly functionally different from the kinase subunit of the
maturation-promoting factor (24). In the present report, we
describe the characteristics of EgS, which clearly belongs to
the kinesine-related protein family.

Kinesin was first discovered during studies of organelle
transport in giant squid axons (1, 30). Subsequently, kinesin
has been found in a variety of organisms and cell types,
including avian and mammalian neuronal tissues (4, 30), sea
urchin eggs (28), cultured cells (22), and Drosophila mela-
nogaster (27). Biochemical studies of kinesin protein re-
vealed that it is a tetramer consisting of two heavy and two
light chains (2, 14). The gene that codes for the drosophila
heavy chain has been cloned and characterized (33, 34).
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More recently, genes that encode kinesin-related proteins
were identified by genetic criteria in D. melanogaster (7, 35)
or by molecular genetic critera in Saccharomyces cerevisiae
(18), Aspergillus nidulans (8), D. melanogaster (16), and
Schizosaccharomyces pombe (11).

The KAR3 mutant of S. cerevisiae is defective in kary-
ogamy (18). Mutations in the bimc gene of Aspergillus
nidulans prevent spindle pole body separation and nuclear
division (8). In S. pombe, cut7* is referred as a gene
involved in spindle formation (11). The product of the
drosophila claret gene is clearly implicated in chromosome
segregation and is active in meiosis (7). The nod gene is
required for distributive segregation of nonexchange chro-
mosomes during meiosis in D. melanogaster (35).

The sequencing strategy, the nucleotide sequence, and the
predicted amino acid sequence of Eg5S are shown in Fig. 1A
and B. The cloned Eg5 cDNA is 3,651 nucleotides long and
contains 193 nucleotides of 5’'-flanking sequence, an open
reading frame of 3,180 nucleotides, and a 3'-untranslated
region of 278 nucleotides which contains a potential poly-
adenylation signal (AAUAAA) at nucleotide position 3614 to
3619. The open reading frame codes for a predicted polypep-
tide 1,060 amino acids long with a relative molecular mass of
119,332 Da. The secondary structure predicted (10, 32) for
EgS protein is shown in Fig. 1C. The predicted Eg5 protein
has two globular domains separated by an a-helical region,
which is a characteristic of all known kinesin and kinesin-
related proteins. Like all of these proteins, EgS also pos-
sesses a putative motor domain, which is shown in Fig. 2
(from amino acids 1 to 358). Figure 2 also shows the
similarities of the motor domain encoded by Eg5 (defined as
amino acids 1 to 358, corresponding to the end of Kar3) to
the proteins encoded by bimc (8), the drosophila kinesin
heavy chain gene (34), cut7* (11), claret (7), and KAR3 (1),
which are, respectively, 53.3, 49.7, 38.9, 29.9, and 28.6%. At
amino acid positions 92 to 107, Eg5 possesses a putative
ATP-binding site (IFAYGQTXXGKTXTM) which is con-
served in all five sequences.

As in the drosophila and squid kinesin heavy chains (13,
34) and the nod (35)-, bimc (8)-, and cut7* (11)-encoded
proteins, the proposed motor domain of Eg$ is located at the
amino terminus. In contrast, in the KAR3 (17)- and claret (7,
33)-encoded proteins the mechanochemical domain is situ-
ated in the carboxy-terminal region. The sizes of the proteins
encoded by EgS5, bimc, cut7*, and the drosophila heavy-
chain gene are in the same range, at 1,060, 1,211, 1,073, and
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975 amino acids, respectively. There is no obvious similarity
between the amino acid sequences of Eg5 and the drosophila
heavy chain in the carboxy-terminal regions of the mole-
cules. By contrast, as shown in Fig. 2B, significant similarity
was found among the proteins encoded by Eg5, cut7*, and
bimc. In particular, from amino acids 911 to 956, more than
35% of the Eg5- and bimc-encoded amino acids are identical
and more than 50% are of the same family. The similarity
extends beyond sequence comparisons; in particular, the
structures of the central regions of the proteins encoded by
Eg5, bimc and cut7* are very closely related, which could
suggest similar functions for these gene products. In a
previous work (26), we have shown that Eg5 RNA transla-
tion is regulated during very early development. In eggs, the
RNA is found in both the poly(A)* fraction and polysomes.
After fertilization, Eg5 RNA is deadenylated and concomi-
tantly released from the polysomes. To know when Eg5
RNA appears and when it is adenylated during oogenesis,
we performed Northern (RNA) analysis of total RNAs
extracted from oocytes (stages I to VI), eggs, and premid-
blastula transition embryos by using a 3?P-labeled Eg5
cDNA probe. Considering that a fixed quantity of total RNA
(10 ng) was used and that rRNA constitutes a progressively
larger proportion of the total RNA during oogenesis (i.e.,
25% in stage I oocytes versus 90% in stage VI oocytes), the
decrease in the autoradiogram signals observed in Fig. 3A
reflects the dilution of these transcripts in the pool of total
RNA. Taking this into account, quantitation of autoradio-
grams from these Northern analyses confirmed that the
number of these transcripts per oocyte or embryo was
approximately constant from stage III of oogenesis to the
midblastula transition (Fig. 3B). Closer examination of the
data (Fig. 3A) shows that EgS transcripts appear to be larger
in eggs than in either oocytes or embryos, suggesting that the
RNA is adenylated only in eggs. When poly(A)* and
poly(A)” RNAs were separated from the total RNAs ex-
tracted from oocytes at different stages and analyzed by
Northern blotting with EgS as the probe, we never found Eg5
in the poly(A)* fraction (Fig. 3C). Moreover, in its 3'-
untranslated region (at nucleotide positions 3430 to 3436),
Eg5 RNA possesses a sequence motif [UUUU(A)AU] sim-
ilar to those shown to be necessary for maturation-specific
adenylation of Xenopus mRNA (9, 17). This supports the
hypothesis that during maturation EgS translation is regu-
lated through adenylation, as recently reviewed (12, 31), and
also suggests that the protein is present in eggs but not in
oocytes. Antibodies against bovine kinesin reveal a pair of
120-kDa polypeptides in a crude Xenopus egg extract (28).
After fertilization, Eg5 RNA is no longer detected in poly-
somes, suggesting that its further translation is not necessary
for early development. This is in agreement with the notion
that the 12 rapid cell divisions which follow fertilization

FIG. 1. Nucleotide sequence of Egl cDNA and predicted amino
acid sequence of the protein. (A) Restriction map and sequencing
strategy. The arrows denote the extent and direction of sequence
reading of each fragment. (B) Nucleotide and amino acid sequences.
The nuclear polyadenylation signal is indicated by solid underlining
(nucleotide positions 3614 to 3619). The putative cytoplasmic poly-
adenylation sequence specific for maturation is indicated by broken
underlining (nucleotide positions 3430 to 3436). (C) Secondary
structure prediction for EgS protein. The secondary structure of Eg5
protein predicted by the method of Garnier et al. (10) is shown.
Regions predicted to be B turns (GOR turns), o helices (GOR alpha
helices), or B sheets (GOR beta sheets) are indicated by the elevated
segments.
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FIG. 2. The predicted amino acid sequence of the motor domain
of Eg$ is aligned with those encoded by Aspergillus bimc, S. pombe
cut7*, the drosophila kinesin heavy-chain gene, saccharomyces
KAR3, and drosophila claret. The numbers of the residues at which
the bimc, cut7*, claret, and KAR3-encoded proteins extend in the
amino-terminal direction and the drosophila heavy chain extends in
the carboxy-terminal direction are in parentheses. Alignment of the
carboxy-terminal parts of the EgS-, bimc- and cut7*-encoded mol-
ecules is also shown. Identical residues are boxed. The central
regions of the EgS-encoded protein (from amino acids 366 to 535)
and the bimc-encoded protein (and also the cut7*-encoded protein,
to a lesser extent) show conserved amino acids (dots) spaced by six
amino acids. Most of these conserved amino acids are leucines.
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FIG. 3. (A) Northern blot analysis of total RNAs extracted from
oocytes (stages I to VI), unfertilized eggs (UFE), and embryos 4, 6,
8, and 10 h after fertilization. Samples of RNA (10 pg) were
separated on agarose gel containing 6% formaldehyde and blotted
onto nylon membrane (Hybond [Amersham]). Purified inserts were
32p Jabeled with random primers to a specific activity of 5 X 10® cpm
ng~!. Hybridization was carried out in 50% formamide-1% sodium
dodecyl sulfate-10x Denhardt’s solution-10% dextran sulfate-1%
PP-1 M NaCl-0.05 M Tris-HCI (pH 8) at 42°C overnight. Filters
were extensively washed in 2x SSC (1x SSC is 0.15 M NaCl plus
0.015 M sodium citrate)-0.5% sodium dodecyl sulfate at 65°C. (B)
Quantitative analysis of Eg5S RNA during oogenesis and very early
embryogenesis. MBT, midblastula transition. (C) Total RNAs were
extracted from oocytes (stages I and II, III and IV, and V and VI)
and unfertilized eggs (UFE). Poly(A)™* was separated from poly(A)~
by oligo(dT) chromatography. Samples [10 pg of total RNA, 10 pg
of poly(A)~ RNA, and 200 ng of poly(A)* RNA] were analyzed by
Northern blotting as described for panel A.

could only be under the translation control of cyclins, as
suggested by in vitro experiments using egg extracts (21).
Moreover, the fact that Eg5 RNA was not detected in adult
tissues (26) suggests that it is involved in cell proliferation.
Taking these points into account, and also the similarity
among Eg5, cut7*, and bimc, one can postulate that Eg5-
encoded protein is involved in nuclear division and may be
the counterpart of bimc-encoded protein in xenopus.

Nucleotide sequence accession number. The sequence de-
scribed here has been assigned EMBL accession no. X
54002.
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