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Abstract
Objective—Hierarchical processing of auditory sensory information is believed to occur in two
streams: a ventral stream responsible for stimulus identity and a dorsal stream responsible for
processing spatial elements of a stimulus. The objective of the current study is to examine neural
coding in this processing stream in the context of understanding the possibility for an auditory
cortical neural prosthesis.

Approach—We examined the selectivity for species-specific primate vocalizations in the ventral
auditory processing stream by applying a statistical classifier to neural data recorded from
microelectrode arrays. Multi-unit activity (MUA) and local field potential (LFP) data recorded
simultaneously from AI and rostral PBr were decoded on a trial-by-trial basis.

Main Results—While decode performance in AI was well above chance, mean performance in
PBr did not deviate >15% from chance level. Mean performance levels were similar for MUA and
LFP decodes. Increasing the spectral and temporal resolution improved decode performance;
while inter-electrode spacing could be as large as 1.14 mm without degrading decode
performance. Significance: These results serve as preliminary guidance for a human auditory
cortical neural prosthesis; instructing interface implementation, microstimulation patterns, and
anatomical placement.

1. Introduction
The cochlear implant is the most widely used neural prosthesis. This device artificially
reproduces hearing in a deaf person by stimulating the cochlea with pulses of electric
current. Some deaf patients, however, don’t have an auditory nerve that extends to the
cochlea because of recession of the auditory nerve over time, cochlear ossification, or
cranial nerve tumors. These patients require an alternative to the cochlear implant. Two such
devices, which interface with subcortical nuclei, are currently being tested [1, 2]. Another
possible avenue for eliciting auditory perception from stimulation of the nervous system
could be through the auditory cortex.

Microstimulation of primary auditory cortext (AI) has been shown to elicit the correct
behavioral responses in rats and cats trained to detect and discriminate pure tones [3, 4].
Stimulation of human auditory cortex has most commonly suppressed sound perception[5].
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However, in the absence of sound stimuli, stimulation of Heschl’s gyrus has elicited sound
percepts [6]. Similar stimulation of human superior temporal gyrus (STG) with large, low-
impedance electrodes has produced a variety of sensory percepts, most of them complex and
holistic [7-9]. For example, one patient, when stimulated on the medial temporal lobe,
reported hearing music; another, when stimulated on the STG, heard “a mother calling her
little boy” [8]. Other patients have reported hearing ‘“buzz,” “hum,” “knocking,” “crickets,”
and “wavering” when stimulated on the STG[7]. Whether stimulation on smaller,
penetrating electrodes could elicit more consistent perceptions remains to be tested. Yet,
understanding how auditory information is encoded in these early auditory cortical areas
will provide guidance on neural prosthetic design and use.

Visual cortex is organized into hierarchical processing streams. Spatial elements of visual
stimuli are processed in a dorsal stream, while the identity of visual stimuli is processed in a
ventral stream [10, 11]. Neuroanatomical and lesion studies suggest a similar separation of
spatial location and stimulus identity pathways in the auditory system [12-17].
Neuroanatomical studies of the rostral belt and parabelt (PBr) support hierarchical
organization in a ventral stream that extends along the STG, as these regions share
reciprocal connections with ventrolateral prefrontal cortical areas (vlPFC) that are highly
responsive to species-specific vocalizations [18]. PBr, in particular, has reciprocal
connections with vlPFC as well as adjacent belt areas, superior temporal sulcus, and areas
further rostral on the superior temporal plane (STP) [19, 20].

Whereas there is compelling neurophysiological evidence for a spatial processing stream in
audition [21], physiological studies of a stimulus identity auditory stream have failed to
develop a clear picture of how acoustic information is transformed through the cortical
circuit. Much like inferotemporal cortex for vision, increasingly rostral areas on the STP
showed increasingly sparse representations of natural stimuli and monkey vocalizations
[22]. Much of the evidence for a ventral stream stems from a study showing increased
selectivity for monkey calls at more rostral locations in belt auditory cortex and increased
selectivity for the location of a sound at more caudal locations [23]. Other studies have
shown less selectivity via robust responses to vocalizations across auditory cortical areas,
and imaging has shown areas further anterior on the STP to be selective for vocalizations
[24]. Most auditory cortical data has been collected from core and belt regions, with sparse
sampling along the STP and no recordings yet in PBr. There is need for further study of
auditory cortex on the STG, especially in the context of a neural prosthesis, as the ventral
auditory stream is likely important for constructing auditory percepts.

Decoding stimulus identity from neural responses is one way to examine stimulus selectivity
along the processing stream. This methodology, however, has yielded conflicting results.
Auditory research using linear classifiers on action potential (AP) data has shown less
selectivity in successive areas along the processing stream. The linear pattern discriminator
(LPD) is a commonly used decoding technique in auditory research [25]. Using LPD on
MUA data in awake macaques, a set of four vocalizations was decoded with approximately
90% accuracy in each of two core areas and three belt areas [26]; however, further along the
ventral stream, neurons in vlPFC had lower decode performance than Belt neurons [27].
Decode performance of vocalizations in vlPFC was higher when using linear functions of
the probabilistic output of a hidden Markov model, as opposed to linear functions of the
spectrotemporal elements of the monkey vocalizations, as in LPD [28]. Why decode
performance decreases along the ventral auditory processing stream remains an open
question that has implications for neural prosthesis development. Greater understanding of
how neural coding of stimulus identity at successive stages in an auditory identity
processing stream will provide guidance on how to implement a cortically based auditory
prosthesis.
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Incorporating knowledge of neural coding into stimulation can improve prosthetic
performance [29]. Therefore, as a first step towards designing a neural prosthesis based upon
cortical microstimulation, we decoded neural signals recorded on chronically implanted
microelectrode arrays during species-specific vocalizations. The impact of spatial, temporal,
and frequency parameters on decoding performance were examined. Here we examine
selectivity of MUA and local field potentials (LFP) for stimulus identity in an awake,
behaving primate to better understand the possibility for an auditory cortical neural
prosthesis. This study used macaque vocalization stimuli to examine discriminability of
auditory stimulus identity in two cortical areas in the ventral processing stream. While there
was no direct auditory cortex stimulation in this study, we show that decoding stimulus
identity from auditory cortex has implications for basic auditory cortical physiology and
provides guidance on the implementation of a cortically based auditory neural prosthesis.

2. Research methods
2.1 Research subject

The neural data examined in this study were recorded from 192 electrodes (96 per electrode
array) in two cortical areas in one male rhesus macaque over a period of five months. All
experiments were performed according to NIH guidelines for animal care and use and with
approval from the University of Utah Institutional Animal Care and Use Committee.

2.2 Micro-electrode array implantation
Penetrating microelectrode arrays (Blackrock Microsystems, LLC, Salt Lake City, UT) were
implanted in AI and rostral PBr (figure 1). The monkey’s temporalis muscle was detached at
the top of the skull and retracted, and a craniotomy was made to expose the superior
temporal and inferior frontal lobes. The parietal lobe was carefully dissected away from the
temporal lobe, exposing a small area on the STP. The parietal lobe was retracted from the
surface of the STP, and the AI microelectrode array was inserted by hand at about 5 mm
rostral to the inter-aural axis in stereotaxic coordinates, and from 3 to 5 mm within the
lateral fissure. The PBr array was then implanted with a pneumatic insertion device on the
surface of the STG [30]. We were unable to use the pneumatic insertion device to insert the
lateral fissure array, as the parietal lobe prevented perpendicular access to the medial
superior temporal plane. The craniotomy was sealed and temporalis muscle reattached.

2.3 Experimental paradigm
Seven macaque vocalization exemplars [31] were delivered free field through a piezoelectric
speaker (ES1, Tucker Davis Technologies, Alachua, FL) randomly. There was at least 1
second between each stimulus presentation. Stimuli were presented while the monkey sat in
an acoustically, optically, and electromagnetically shielded chamber (Acoustic Systems,
Austin, TX).

Task control software was custom-built using LabVIEW (National Instruments, Austin, TX)
and run in real time on a National Instruments PXI-embedded computer system. Digital
markers and analog waveforms of auditory stimuli were recorded synchronously with the
neural data.

2.4 Data collection and preprocessing
Neural data were recorded with a Cerebus System (Blackrock Microsystems).
Electrophysiological signals were high-pass (0.3 Hz, one pole) and low-pass (7500 Hz, three
pole) filtered and pseudo-differentially amplified with a gain of 5000×. High-frequency
MUA data were digitally filtered (eight pole, high-pass 250 Hz, low-pass 7.5 kHz) and
sampled at 30 kHz. Individual spikes were detected offline using t-distribution E-M sorting
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[32]. Any MUA waveform that exceeded −3.5 RMS times the high pass filtered voltage
signal was included as part of the MUA signal for the electrode on which the waveform was
recorded. Large motion artifact waveforms, and waveforms with a shorter inter-spike
interval than 1 millisecond were excluded from any analyses. The broadband data were
recorded at 30 kHz and later filtered and down-sampled to 2 kHz for analysis of the LFP.

LFPs were recorded on 96 electrodes for 144 trials per class in AI (1008 total trials) and on
95 electrodes for 112 trials per class in PBr (784 total trials) over multiple days. To common
average re-reference our LFP data, the average voltage from all electrodes for each trial was
subtracted from the trial-by-trial response of each individual electrode. Spectrograms were
calculated using multitapered analysis with a time-bandwidth product of 5, 9 leading tapers,
200-msec windows, and 10-msec step sizes. Spectrograms with either 77 or 304 frequency
bins ranging from 0 to 300 Hz were calculated, to examine the effect of frequency resolution
on decode performance.

MUA analysis utilized the same trials used for LFP data (1008 in AI and 784 in PBr). For
MUA data, only the electrodes with a significant difference in change in the average firing
rate (Wilcoxon rank-sum test, P<0.05) between 500 milliseconds before the beginning of the
vocalization and 500 milliseconds after the beginning of the vocalization were included in
the analysis (65 electrodes in PBr and 62 electrodes in AI). Multitapered spectrograms and
peri-stimulus time histograms (PSTHs) were generated using an open source neural analysis
package [33]. Single-trial PSTHs and spectrograms were generated separately for four
durations after the beginning of each vocalization (200, 400, 800, and 1600 msec). PSTHs
were calculated using Gaussian kernels of five widths (5, 10, 25, 50, and 100 msec). These
kernel widths constitute the five temporal resolutions we used in examining the effect of
temporal resolution on decode performance.

2.5 Feature selection and processing
We extended the method of Kellis et al. [34] that simultaneously incorporates features
representing dynamics in time, space, and frequency to apply to both MUA data and LFP
data. We use the term class to refer to one type of conspecific vocalization (e.g., “grunt”)
and the term trial to refer to one instance of a vocalization being played for the monkey.

To select training features for LFP data, two-dimensional spectrograms were calculated for a
subset of seven trials from each class and each recording channel (figure 2). These
multidimensional data were unwrapped to produce a two-dimensional matrix in which each
row contained all the time and frequency features from all channels for a single trial. The
feature matrix was z-scored, orthogonalized using PCA, and projected into the principal
component space using a sufficient number of leading principal components to retain 95%
of the variance in the data. A subset of seven trials from each class, directly following the
training trials in time, was selected for testing the classifier, and spectrograms were
calculated for each class and each recording channel (142 training and testing sets in AI and
110 training and testing sets in PBr). These data were unwrapped into a two-dimensional
matrix, z-scored, and projected into the principal component space calculated during
training.

As with the LFP-based decode, seven trials from each class were selected for training and
seven trials following the training trials in time for each class were used as testing data for
MUA data (142 training and testing sets in AI and 110 training and testing sets in PBr). For
both training and testing, MUA data were collected into a large two-dimensional matrix
where each row represented all firing rate data from all channels for a given trial. The data
were then z-scored, orthogonalized, and projected into the principal component space using
the aforementioned process for LFP data.
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2.6 Evaluation
Using features derived from either MUA or LFP, data were classified on a trial-by-trial basis
using linear discriminant analysis (LDA) [35] (supplementary figure 1). All possible
combinations of two through seven classes were evaluated. Only one outcome exists for a
combination of seven classes; otherwise, mean, median, standard deviation, interquartile
range (IQR), and the 95% confidence interval were computed. We also evaluated
performance for each single electrode on the AI microelectrode array and for varying
numbers of electrodes (4, 7, 14, 24, 48, and 95 electrodes for LFP; and 4, 8, 16, 31, and 62
electrodes for MUA). These electrodes were chosen by successively removing twice as
many electrodes between those used for the decode, while maintaining an even spatial
sampling. Maps of electrodes we used for decoding in these conditions are shown in figure
4(d) and 4(f). These combinations, as well as class-by-class comparisons, were evaluated for
the best performing durations after data onset (for MUA and LFP data) and best temporal
resolutions (for MUA data).

Classification accuracy was measured against the level of chance, which was defined as
equal likelihood for all classes. Chance performance therefore ranged from 50.0% for two
classes to 14.3% for seven classes. Consistent classification above the level of chance
indicated that the decode was finding and operating on relevant features from what could
otherwise be stochastic physiological data.

2.7 Information theoretic analysis
We examined the mutual information between the vocalizations and the responses in AI and
PBr. Probability distributions p(s), p(r), and p(s,r) were taken from confusion matrices of
pair-wise classification frequencies for all MUA- and LFP-based decodes, where p(s) is the
sum across one dimension divided by the total number of trials, p(r) is the sum across the
other dimension divided by the total number of trials, and p(s,r) is the diagonal divided by
the total number of trials. The equation

was then evaluated for these probability distributions. This analysis was performed for every
pair-wise classification for all neurons for MUA-based decodes and all electrodes for LFP-
based decodes. Mutual information was also calculated between stimulus and response for
the five different kernel widths used for MUA-based decodes.

3. Results
3.1 Decode performance in AI relative to PBr for both MUAs and LFPs

Decode performance in AI was above chance, whereas decode performance in PBr for both
MUAs and LFPs was near chance. For MUA-based decodes, the best decode performance in
AI was 93.7±10.5% (mean±std) (IQR: 7.9%;95%confidence interval: 65.9%≤μ≤100%) for
pair-wise comparisons (all pair-wise comparisons are shown in Supplemental figure 2) and
73.2% for seven classes. The best MUA-based decode performance in PBr was 51.6±16.6%
(IQR: 17.7%; 95% confidence interval: 25.8%≤μ≤90.8%) for pair-wise comparisons and
28.6% for seven classes. For LFP-based decodes, best performance in AI ranged from
83.5±14.1% (IQR: 19.9%; 95% confidence interval 41.3%≤μ≤97.8%) for two classes to
57.3% for seven classes. The best LFP-based decode performance in PBr was 53.8±09.3%
(IQR: 12.1%; 95% confidence interval: 36.8%≤μ≤65.2%) for two classes to 21.2% for
seven classes (figure 3).
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3.2 Temporal and spectral classification dynamics
Since vocalizations were different lengths (mean length = 0.53±0.37 seconds), we felt it
necessary to examine the spectral and temporal parameters that may affect decoding
vocalizations from AI and PBr. To examine temporal aspects of stimulus decoding, we
applied the decode to data of different durations and temporal resolutions. Each temporal
resolution for single-trial PSTHs is represented by a different hue line in figure 4(a). In AI,
MUA-based decode performance improved with increased temporal resolution (figure 4(a)).
The 5-msec temporal resolution outperformed other temporal resolutions (mean
performance over data durations = 59.8±6.6%). MUA-based decode results were
consistently near chance in PBr, regardless of data duration or kernel width (figure 4(a)).
The best performing MUA-based decode in PBr was for the 1600-millisecond data duration
and both the 50 and 25 -millisecond temporal resolutions (28.5±0.1 for 50-millisecond
temporal resolution and 28.5±0.04 for 25-millisecond temporal resolution).

Temporal dynamics of LFP-based decodes were similar to temporal dynamics of MUA-
based decodes. In A1, LFP-based decodes performed best with the 800-millisecond data
duration and in PBr decodes performed best with the 400-millisecond data duration
(47.3±0.02%) and 22.4%±0.1%, respectively). To examine influence of spectral resolution
on classification results, we decoded vocalizations using spectrograms with two different
spectral resolutions. Increasing frequency resolution in the spectrograms improved LFP-
based decode performance in both AI and PBr (figure 4(b). While PBr results remained near
chance overall, the 400-msec data duration for increased frequency resolution reached
22.6±0.01% performance. In AI, higher frequency resolution also improved performance.

3.3 Spatial classification dynamics
Since decode performance was above chance in AI, we further explored decodability on the
AI microelectrode array to better understand the topography for interfacing with AI. The
decodability of each electrode on the array was examined by executing the LFP and MUA -
based decodes for each individual electrode. Best electrode performance for seven classes
ranged from 47.8% (one electrode) to below 15% (each of 46 electrodes) for LFP-based
decodes and from 48.6% (one electrode) to below 15% (each of 31 electrodes). The majority
of electrodes performing better than chance were on the medial half of the electrode array
for LFP-based decodes (figure 4(c)). MUA performance was more variable across the array
(figure 4(e)).

To examine the spatial scale of information processing in AI we explored LFP and MUA -
based decode performance for fewer, and more sparsely spaced, electrodes on the electrode
array. For LFP-based decodes, classifier performance was similar to performance using all
electrodes for all electrode densities of 0.88 electrodes/mm2 and above (14 electrodes).
Performance dropped for 7 electrodes (0.44 electrodes/mm2) to 34% and again for 4
electrodes to 23% (0.25 electrodes/mm2) (figure 4(d)). Therefore, the minimum spacing
required to maintain decode performance in AI is the inverse of the electrode density,
(1/0.88 electrodes/mm2) or 1.14 mm2/electrode.

3.4 Mutual information
To examine information content over all neural responses recorded in AI and PBr, we
calculated the mutual information between stimulus and response in the two cortical areas.
Mutual information between stimulus and response was calculated for all MUA-based
decodes for each temporal resolution. Decode performance in PBr was consistent among
temporal resolutions and data durations for MUA-based decodes (figure 5(a)). Mutual
information increased in AI for longer data durations and higher temporal resolutions (figure
5(a)).
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To compare information content in MUA- and LFP-based decodes, mutual information
between stimulus and response was then calculated for the best-performing temporal
resolution for MUA-based decodes (5-msec temporal resolution) and best frequency
resolution LFP-based decodes (1024-point) in both AI and PBr. We found that responses in
PBr contained little information about the stimulus for all data durations (0.65±0.11 bits for
LFP-based decodes and 0.76±0.02 bits for MUA-based decodes). AI decodes contained
more information for longer data durations and contained more information than PBr
decodes overall (figure 5(a)). MUA responses in AI contained more information than LFP
responses in AI (0.56±0.13 difference in bits across data durations).

4. Discussion
We have investigated the nature of LFPs and MUAs from AI and PBr in the context of
conspecific vocalization stimulus to explore the potential for interfacing an auditory neural
prosthesis directly with the neocortex. We observed that AI provided greater
discriminability between vocalizations than PBr using linear statistical classification. We
found that the decode performance was dynamic in space, time, and frequency. Increased
temporal resolution improved MUA-based decode performance, and greater spectral
resolution improved LFP-based decode performance. From this primary result, we suggest
that information coding in AI relies on precise dynamics in both time and frequency
domains. Spatial analyses estimated a lower limit of electrode spacing at 1.14 mm2 for
electrophysiological interface with AI. While increased spectral resolution improved LFP-
based decode performance in PBr, most of the PBr decodes remained near chance. The
process of implantation and data acquisition undertaken for this work illustrates the potential
for chronic electrophysiological interface with awake, behaving primate AI over a period of
months, similar to the type of interface that would be used for a cortical neural prosthesis.

4.1 Temporal precision of MUA responses
We found that increased temporal precision yields superior decode results in AI. We also
found the highest information content for temporal resolutions of less than 10 milliseconds.
Two of the three auditory linear pattern discriminator AP decode studies in macaques have
shown increased performance for higher temporal precision (using binned spikes rather than
Gaussian kernels) [26, 36]. These results also are in accord with decodes of marmoset
vocalizations, where the greatest mutual information from primary auditory cortical neurons
utilized bins smaller than 10 milliseconds [25], and with previous studies of temporal
integration in AI in the marmoset and macaque showing high spike timing reliability and
short latencies in AI [37, 38]. We can therefore conclude that high temporal precision is an
important feature of stimulus coding in AI.

4.2 Effect of Duration on decode performance
We have shown that increased data durations in AI improved decode results and provided
increased information content up to the 800-millisecond data duration, however information
about the stimulus increases in AI up to 1600 milliseconds for both MUA and LFP. This
suggests that linear spectrotemporal encoding in AI relies on the temporal precision of firing
rates, as opposed to vocalization duration. The best MUA-based decode performance in PBr,
however, utilized the 400-millisecond data duration. Whether this means that PBr could be
utilizing a firing rate-based coding schema remains to be determined. Effects of data
duration may also be a product of working memory capacity, as opposed to auditory
processing.

One possible limitation of this study holds true for all auditory decodes of natural stimuli
that vary in length: The varying length of vocalizations could be a potential source of
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artificial discriminability among vocalizations. Trial-averaged spectrograms from both AI
and PBr showed a broadband burst of activity coincident with the vocalizations’ end, which
could contribute to principal component reconstruction and therefore skew the results.
However, the raw data suggest that this is not the case. PBr spectrograms demonstrated
bursts of low frequency power at the beginning of the vocalizations, and high frequency
power at the end of the vocalizations, and therefore represented the duration of the
vocalization in the raw responses. If these indicators of vocalization length accounted for
artificial discriminability between classes, decodes in PBr would perform much better than
the current results suggest. PBr showed very little decodability despite the presence of the
spectral information about vocalization length. The AI spectrograms show far more structure
during the call, which may account for more overall between-class variance and temporal
precision than the features associated with the end of vocalizations. This overall variability
is likely what PCA is operating on in the decode.

4.3 Frequency resolution of LFP responses
Previous LFP decodes have focused on motor and visual modalities using similar
classification methods as the current study [39, 40]. These and other LFP decodes selected
features on the basis of defined neural bands. For example, spectral data near the gamma
range were the most useful for decoding rat limb movements (70-120 Hz) [39], bi-stable
visual perceptions (50-70 Hz) [40], and high-frequency LFP (100–400 Hz) provided the
most information about monkey limb position [41]. Our study used frequencies between
zero and 300 Hertz as features in the decode. We show that increasing the frequency
resolution of the spectrograms used in the decode from 400 to 1024 points improves decode
performance. Performance was increased in both AI and PBr when frequency resolution was
increased.

A recent study reconstructed auditory stimuli that human patients heard using LFP recorded
from the surface of the posterior STG with high-density micro-electrocorticographic
(μECoG) electrodes as well as standard clinical ECoG electrodes [42]. This study found
using high gamma band (75-150 Hz) LFP produces the highest accuracy in reconstructing
auditory stimuli. In addition, stimulus reconstruction accuracy was improved using a
nonlinear model, which was based on spectrotemporal modulations, when compared with a
linear spectrogram. This result indicates that encoding in PBr may utilize nonlinear encoding
schemes, or PBr may represent spectrotemporal modulations in a stimulus more than linear
changes in spectrotemporal features of a stimulus. This type of encoding scheme, as well as
sparse representations in PBr, or the possibility that vocalizations are not the optimal stimuli
for PBr, could account for why PBr decodes were close to chance.

4.4 Spatial scale and electrode density
The LFP-based decode results over electrode densities provide evidence for a lower limit on
functional electrode density for electrophysiological recording of about one electrode per
square millimeter (inter-electrode spacing of 1.14 mm). This inter-electrode spacing is larger
than those utilized in many penetrating electrode arrays, yet smaller than ECoG inter-
electrode spacing (~1 cm) and the reported lower limit on spacing is smaller than
measurements of LFP activation in acoustic space[45]. The lower limit for electrode spacing
found in the current study is almost double the optimal spacing predicted by spatial spectral
models, which report a best electrode spacing of 0.6 mm [46]. The reported spacing is,
however, on par with μECoG electrodes, which show independent processing at 1- and 1.4-
mm electrode spacing [34].

We show that MUA-based decode performance increases as more channels are added to the
decode, at a higher density. Whereas classification accuracy for MUA-based decodes over
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all electrodes is almost 30% higher than the best individual electrode, LFP-based decodes
over all electrodes is near the best electrode performance. This result indicates that
variability over electrodes is adding to decode performance to a greater extent in the MUA-
based decode than in the LFP-based decode. The smaller spatial scale of information from
neurons provides more channels of information.

Electrical micro-stimulation of the cerebral cortex is likely to act at the scale of LFP and
cortical columns, rather than the scale of individual neurons. Recent work has shown that
stimulation thresholds in visual cortex are lower when more channels are used for
stimulation, and that it was possible to evoke spatially distinct visual percepts with micro-
stimulation of ~1 mm2 of primary visual cortex [43, 44]. While the spatial resolution results
presented here are inadequate for determining perceptual resolution of electrical micro-
stimulation of auditory cortex, these results provide the first fixed geometry electrode array
study of primate AI and provide some insight into characterizing spatial elements of an
electrical interface with AI. How spatial and temporal parameters of micro-stimulation of
auditory cortex affect perceptual discrimination remains an open question that needs to be
examined through micro-stimulation of auditory cortex.

4.5 Implications for an auditory cortical neural prosthesis
Although the cochlear implant is a successful neural prosthesis for the treatment of deafness,
there is some need for an auditory neural prosthesis that can bypass the auditory nerve.
There are at least a hundred cases per year in the United States of cochlear nerves being
destroyed by neuromas brought on by neurofibromatosis type II. These patients would be
excellent candidates for a cortical auditory neural prosthesis. In addition to showing
functionality of the type of neural interface that could be used in a stimulating cortical
prosthetic, the current study provides insight into the physiology of the auditory ventral
stream that is useful for design and use of a neural prosthesis. Through exploration of
cortical coding we address several aspects of implementing an auditory cortical prosthesis.

While microstimulation of AI in trained rats has been shown to elicit behavioural responses
similar to those elicited by tones [3], whether this stimulation evokes auditory perception
that is useful in constructing an auditory object remains to be determined. Intracortical
microstimulation that allowed for discrimination behaviour in rats used a 200-Hz stimulation
rate [3]. The current study suggests that high temporal precision is an important feature of
coding in AI. Rapidly dynamic temporal stimulation patterns may therefore prove more
successful for encoding information in an auditory cortical neural prosthesis.

In addition to potentially meeting the needs of a patient group without an auditory nerve, an
additional benefit is the possibility for achieving increased frequency resolution through
interface with core auditory cortex. This concept is derived from the large accessible area of
core auditory cortex (approximately 24 mm2 in humans and 20 mm2 in macaques) [47]. It is
possible to fit several 96-electrode microelectrode arrays on the human core auditory cortex,
thereby oversampling the tonotopic map in two core areas (AI and rostral core) [47].
Between the lower limit on electrode density determined by electrophysiology in this study
and the actual density of the electrode arrays we used, 112 to 768 electrodes could be fit on
macaque core auditory cortex.

Because of vascularization and cortical folding, application of penetrating electrode arrays
in the human auditory cortex may face challenges, yet methods exist to implant depth
electrodes with microelectrode contacts similar to those in a μECoG, which can take
advantage of the full tonotopic map in humans [48]. Early human visual prostheses utilized
surface electrode grids to evoke phosphenes from stimulation of primary visual cortex [49]
and macroelectrodes on STG to evoke varied auditory perceptions [8]. Stimulating with
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high-density μECoG in primary cortical areas may be a functional alternative to using
penetrating electrode arrays, which may have complex interactions with the cerebral cortex
[43]. A recent study, which could have particular application to primate AI, provided proof
of principle for stimulating the brain with a high-density μECoG inside a sulcus [50].

There has been a great deal of work done on implantable neural prostheses for the cochlear
nucleus, as well as the inferior colliculus, to address the need to bypass the auditory nerve.
The potential benefits of bypassing these areas and stimulating the cortex directly are
surgical ease, patient safety, and increased frequency resolution. This study suggests that
high, dynamic stimulation rates in AI could be a feasible solution for dramatically increasing
the channel counts and frequency resolution with a cortical auditory neural prosthesis.

5. Conclusions
We have examined auditory stimulus coding at early stages along the hierarchical
processing stream in neocortex in order to assess the possibility for a cortically based
auditory neural prosthesis. We report a lower limit on electrode spacing for
electrophysiological recording interface with AI, encoding in AI may improve with higher-
resolution temporal and spectral information, and linear spectrotemporal coding for stimulus
identity is higher in AI than PBr. These results together serve as a design input for a human
auditory cortical neural prosthesis, and provide guidance on interface design,
microstimulation parameters, and anatomical placement.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Microelectrode array implantation in AI and PBr looking from the caudolateral perpective.
(a) Retraction of the parietal lobe to expose the microelectrode array implanted several
millimeters within the lateral fissure (white dashed box) (b) The implanted microelectrode
array in PBr after AI array implantation. Acronyms: CS: Central Sulcus, LF: Lateral Fissure,
STS: Superior Temporal Sulcus, A: Anterior, D: Dorsal. Averaged evoked potentials across
the array frootprint in AI (c) and PBr (d) in response to 15 presentations of the harmonic
arch vocalization. Each evoked potential represents 1.8 seconds of averaged LFP data
starting 0.2 seconds before stimulus onset. Amplitude scale bar extends from -500 to 300
microvolts in (c) and -300 to 200 microvolts in (d).
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Figure 2.
Neural data used for classification for each vocalization. (a) Spectrograms of sound stimuli
for each vocalization. (b) Trial-averaged spectrograms of LFP responses to vocalizations for
a single channel and trial-averaged PSTHs for Multiunit responses for AI. (c) Trial averaged
spectrograms of LFP responses to vocalizations for a single channel and trial averaged
PSTHs for MUA responses for PBr. All PSTH kernel widths are 25 msec.
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Figure 3.
Best classifier performance for MUA and LFP-based decodes. The top two panels show box
plots for MUA-based decode performance for AI and PBr, while the bottom two show LFP-
based decode performance. Mean performance is indicated by red lines across combinations
of vocalizations for two through seven classes. Red crosses indicate outliers. Thick dotted
lines indicate chance performance across vocalization combinations.
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Figure 4.
Decode performance over time and space. (a) Seven-class performance for MUA-based
decodes. Solid lines show performance for AI and dotted lines show performance for PBr.
(b) Seven-class performance for LFP-based decodes. Solid lines show performance for AI
and dotted lines show performance for PBr. Brown lines show performance for
spectrograms with the lowest frequency resolution. Copper lines show performance for
spectrograms with higher frequency resolution. Standard error bars are shown in (a), (b), (d),
and (f); which are only slightly larger than the line width. The dash-dotted line in (a), (b),
(d), and (f) indicates the level of chance. (c) LFP-based decode performance level for each
electrode for seven classes is superimposed onto a map of the AI microelectrode array.
“Ant” and “Mes” indicate the corners of the array that are pointing in the anterior direction
(Ant) and towards the midline (Mes) on the STP. “X” indicates electrodes that were not
connected. (d) LFP-based decode performance for different electrode densities across the
array. Seven-class performance is shown for different electrode configurations, which are
shown in black on the footprint of the AI electrode array for each electrode density tested.
(e) Performance level for each MUA channel superimposed onto a map of electrodes with
significant responses. “Ant” and “Mes” indicate the corners of the array that are pointing in
the anterior direction and towards the midline on the STP. “X” indicates electrodes that were
not connected. (f) MUA-based decode performance for different electrode densities. Seven-
class performance is shown for different electrode configurations, which are shown in black
on the footprint of the AI electrode array for each electrode density tested.
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Figure 5.
Information theoretic analysis. Solid lines show stimulus-response information content
across data durations for AI. Dotted lines show stimulus-response information content
across data durations for PBr. (a) Information content for five different kernel widths for the
MUA-based decode. Differentkernel widths are color coded. (b) Information content over
data durations using the best performing kernel width and frequency resolution determined
from Figure 4. Copper lines show information content across data durations for all MUA-
based decodes. Brown lines show information content across data durations for all LFP-
based decodes.
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