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Abstract
Computational analysis of cancer pharmacogenomics data has resulted in biomarkers predictive of
drug response, but the majority of response is not captured by current methods. Methods typically
select single biomarkers or groups of related biomarkers, but do not account for response that is
strictly dependent on many simultaneous genetic alterations. This shortcoming reflects the
combinatorics and multiple-testing problem associated with many-body biological interactions.
We developed a novel approach, MOCA (Multivariate Organization of Combinatorial
Alterations), to partially address these challenges. Extending on previous work that accounts for
pairwise interactions, the approach rapidly combines many genomic alterations into biomarkers of
drug response, using Boolean set operations coupled with optimization; in this framework the
union, intersection, and difference Boolean set operations are proxies of molecular redundancy,
synergy, and resistance, respectively. The algorithm is fast, broadly applicable to cancer genomics
data, is of immediate utility for prioritizing cancer pharmacogenomics experiments, and recovers
known clinical findings without bias. Furthermore, the results presented here connect many
important, previously isolated observations.
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Introduction
Cancer pharmacogenomics studies are important for discovering the molecular determinants
of drug response, and thus personalizing cancer treatment (1). Seminal work on the NCI-60
cancer cell lines (2, 3) and many subsequent efforts (4–7) highlighted specific genetic
alterations as drug targets or biomarkers of drug response. Recently, the Cancer Cell Line
Encyclopedia (CCLE) catalogued genomics and drug response data for nearly 1,000 cancer
cells lines (8), which might provide unprecedented power for discovering novel biomarkers.
While the clinical utility of these efforts is progressing, the majority of observed drug
response is poorly explained by current pharmacogenomics models (9).

*Correspondence: karchin@jhu.edu.

The authors declare no conflict of interest

Supporting Material:
Supporting material for this manuscript includes four supplementary files: a detailed description of all methods and implementation
(Supplementary methods); an excel spreadsheet containing all pairwise interactions, grouped by data type (Supplemental pairwise
interactions); an excel spreadsheet containing all three-body set interactions, grouped by drug (Supplemental set interactions); and
code used to produce all results from this manuscript, including detailed instructions for execution (44).

NIH Public Access
Author Manuscript
Cancer Res. Author manuscript; available in PMC 2014 March 15.

Published in final edited form as:
Cancer Res. 2013 March 15; 73(6): 1699–1708. doi:10.1158/0008-5472.CAN-12-3122.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



One shortcoming of contemporary cancer pharmacogenomics models might be a reliance on
single-gene biomarkers (9). There is growing evidence that response to cancer therapeutics
can be modulated by the concerted impact of multiple genetic alterations. For example,
resistance to targeted therapies can develop from alteration in off-target genes (10).
Conversely, additional potentiating alterations can be markers of sensitivity, or even guide
drug repositioning efforts (11). Taken together, these observations suggest that accounting
for many simultaneous alterations could optimize drugging protocols.

Computational methods are necessary for interpreting large pharmacogenomics datasets, and
typically rely on simplifying assumptions to make calculations tractable. Restricting analysis
to drug-gene pairwise interactions, clusters of correlated interactions, or the average
property of a collection of genes are all successful approaches for determining drug-
response biomarkers (3, 8, 12–14). However, these approaches cannot account for response
that is strictly dependent on many simultaneous alterations when the constituent pairwise
interactions are not statistically significant. Unfortunately, assessing the impact of many
simultaneous alterations can be computationally intractable. For instance, enumerating all
unique combinations of up to 10 genomic features, for a small genomics dataset containing
only 1,000 total features, requires ~1023 comparisons. Furthermore, multiple testing
correction for this many comparisons could be unreasonably conservative or unreasonably
slow.

Here, we develop a novel conceptual framework for combining many genomic alterations
into biomarkers of drug response, and incorporate the relevant functionality into our
Multivariate Organization of Combinatorial Alterations (MOCA) algorithm (15). Genomic
alterations are combined using the union, intersection, and difference Boolean set operations
and optimized to correlate with drug response. We apply the algorithm to a dataset of more
than 105 unique genomic features and 24 anticancer drugs across 416 samples from the
CCLE. The algorithm captures compelling, novel interactions and known correlates of drug
response not highlighted in recent studies using CCLE data with either simple Bayesian
modeling, MANOVA, or regularized multivariate regression approaches (8, 12).
Additionally, standard pairwise MOCA recovered many known single-gene markers of drug
response; however, multi-gene features have substantially higher correlation with drug
response than do single-gene features.

Conceptual Framework
Figure 1 illustrates the utility of Boolean set operations for discovering many-gene features
of drug response. In Figure 1A, neither f1 nor f2 is significantly correlated with drug
sensitivity; however, the union of features f1 and f2 shows significant correlation with drug
sensitivity. Here, the union operation suggests redundancy of biological function. For
instance, KRAS and BRAF mutation can drive cancer, but mutations in both genes are
rarely selected for in a single patient because their downstream output is redundant.
Therefore, the union of patients with either BRAF or KRAS activation might share a similar
phenotype (such as response to MEK inhibitors (16)). The union interaction might also be
relevant for drug repositioning. For example, erlotinib was developed to inhibit EGFR, but
subsequent studies found that erlotinib was also effective in some ERBB2-activated cancers
(17), suggesting that relevant targets of erlotinib inhibition are EGFR or ERBB2 activation.

The union operation is also useful for determining the subset of specific mutations, for a
particular gene, that optimally describes drug response. For instance, a single gene can have
multiple, unique mutations across samples, which can differentially contribute to drug
response. In that case, the predictive value of the feature will be optimal if it includes all
mutations that correlate with response, but excludes all mutations that do not.
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Figure 1B illustrates the utility of the intersection operation. Here, neither f3 nor f4 are
correlated with drug sensitivity. But, the intersection of genomic alterations in f3 and f4 are
significantly correlated with drug sensitivity. The intersection operation might be indicative
of biological synergy. For example, simultaneous activation of MYC and BLC2 proto-
oncogenes can have a transforming potential distinct from activation of either gene in
isolation (18).

We also consider the difference operation (Figure 1C). The difference operation can be a
proxy for drug resistance. For instance, EGFR mutation sensitizes some tumors to erlotinib,
provided KRAS is not mutated (19). See Materials and Methods and the supplemental text
(SI text) for a detailed description of all procedures and implementation.

Materials and Methods
We considered all data types available in the Cancer Cell Line Encyclopedia (8), which
included gene expression, CNA, mutation, and drug response. There were 416 cell lines
common to all four data types, which were considered in this analysis. In addition to
genomic features, tissue was considered a feature. P-values were calculated using Fisher’s
exact test (two tailed); features with a Benjamini and Hochberg FDR < 0.05 were considered
significant. We also calculated the statistical sensitivity, specificity, or a sum of both, for all
significant interactions.

MOCA created drug-response-optimized mutation features by taking the union of random
collections of site-specific mutations, for a particular gene, and comparing each random
collection to a particular drug. MOCA uses an optimization protocol to enrich the pool of
site-specific mutation features for those most correlated to the response of that particular
drug. A drug-response-optimized mutation feature was only considered for subsequent
analysis if it had an FDR < 0.05 and optimization of permuted data always had an FDR >
0.05 (to filter genes that could be optimized below the significance threshold by chance).

Creation of many-gene markers of drug sensitivity began by selecting an appropriate target
feature of response. Next, the target feature was combined with every other feature
(individually), using each of three Boolean set operations (union, intersection, and
difference). If, for instance, the union of feature x and the target feature had substantially
greater correlation with drug response than the target feature alone, then feature x was
considered for subsequent optimization; this criteria was applied to all union, intersection,
and difference feature-target feature combinations. Lastly, union, intersection, and
difference features were combined into many-gene features using an optimization protocol
similar to the one used to create drug-response-optimization mutation features. The
optimization procedure was important for focusing the search on features most correlated
with drug response. Employing an entirely random approach, or exhaustive approach, can
result in prohibitively conservative multiple testing correction because the number of tests
exceeds the significance of any individual interaction.

To validate the utility of many-gene markers for blind prediction of drug response, we
randomly divided CCLE data into training (80%) and testing (20%) datasets. We first used
the training data to identify putative single- and many-gene markers of drug response (i.e.,
drug-gene interactions with FDR-corrected Fisher’s P-values < 0.05). Next, we assessed the
predictive value (statistical sensitivity and specificity) of those single- and many-gene
markers on the holdout testing data. See SI Text for a detailed description of all procedures
and the accompanying Supplemental Data file for significant interactions and corresponding
statistics.
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Results and Discussion
We sought to determine genetic alterations and combinations of genetic alterations that are
markers of drug response in the CCLE. Correlations between drug response and genetic
alterations were considered significant if the corresponding FDR was less than 0.05. Herein,
we highlight alterations that are either known biomarkers in human cancer, or those that
present a compelling case based on human biology.

Single-gene biomarkers of drug response
We began with an exhaustive search for all significant pairwise correlations of drug
response with gene copy-number alteration (CNA), expression, mutation, and tissue type.
Expression-based biomarkers of drug response included many known correlations. EGFR
and ERBB2 expression were markers of erlotinib and lapatinib sensitivity, respectively (17).
Sensitivity to the IGF1R inhibitor AEW541 was significantly correlated with IGF1
overexpression (20). NQO1 was the most significantly correlated expression feature for 17-
AAG sensitivity; NQO1 is involved in the biosynthesis of the natural HSP90 inhibitor 17-
AAGH2 (21). HDAC1 and HDAC2 overexpression were exclusively associated with
sensitivity to the HDAC inhibitor panobinostat; additionally, HDAC5 and HDAC6
overexpression were significantly associated with panobinostat sensitivity (22). MDM2 and
MDM4 overexpression were highly correlated with sensitivity to nutlin-3 (23).

RTK inhibitors are among the most common targeted cancer therapeutics, but are often
ineffective owing to resistance (24). One proposed mechanism of resistance is so-called
kinase switching (24). In this paradigm, the targeted RTK is rendered nonessential via the
up-regulation of an off-target RTK. We find an intriguing network of potential kinase-
switching interactions among the significant expression-drug correlations. Figure 2 shows
the relationship of EGFR, ERBB2, c-MET, and PDGFRB expression, to the six RTK
inhibitors in the CCLE. As an example, EGFR underexpression is co-occurring with
sensitivity to five RTK inhibitors, and has mutually exclusive overexpression with
sensitivity to the ALK inhibitor TAE684.

CNA-based biomarkers included interesting correlates of drug response. KLF5 amplification
was exclusively associated sensitivity to the MEK inhibitor PD-0325901; KLF5 activates
the MEK/ERK pathway via EGFR stimulation (25). MITF amplification was exclusively
associated with sensitivity to PLX4720; MITF amplification and BRAF mutations are co-
occurring in human cancers and cancer cell lines (2). JAK3 amplification was mutually
exclusive with 17-AAG sensitivity, suggesting JAK3 amplification is a contributor to 17-
AAG resistance. Seven SERPINB genes (2, 3, 4, 7, 10, 12, and 13) had copy number
deletion mutually exclusive with RAF265 sensitivity, suggesting this family of genes is
important for potentiating CCLE cell lines to this RAF drug; this family of protease
inhibitors clusters on chromosome 18 and is associated with the malignant phenotype (26).

In some cases, tissue type was significantly correlated with drug sensitivity. Haematopoietic
and lymphoid tissue was the broadest marker of drug sensitivity, among tissue features,
predicting sensitivity to 15 of the 24 drugs. Similarly, PD-0325901 had the most cross-tissue
potency, and was correlated with large intestine, pancreas, and skin tissues. Conversely,
ovarian tissue was significantly resistant to the CDK4 inhibitor PD-0332991, and lung tissue
was resistant to panobinostat.

We used three types of mutation features: 1) gene-specific mutation features, which include
all gene-specific mutations in a single feature. 2) Mutation-specific mutation features, which
represent each specific mutation as a unique feature (e.g., TP53 H193R is its own feature).
3) Using an optimization protocol, a subset of mutation-specific mutation features that
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optimized correlation with drug response, for a specific drug-gene combination, were
combined into a single feature; these features are referred to as drug-response-optimized
mutation features throughout.

BRAF V600E potentiated cells to the RAF inhibitors PLX4720 and RAF265 and the MEK
inhibitors AZD6244 and PD-0329501; these four known interactions (27) were the only
significant mutation-specific mutation features identified. Six significant gene-specific
mutation features of drug response were identified, which included the four BRAF
interactions, as well as AZD624-sensitizing NRAS mutations (27) and mutual exclusivity of
nutlin-3 sensitivity and TP53 mutations; nutlin-3 inhibits the TP53 inhibitor MDM2, and is
known to selectively target cancers with wild-type TP53 (28).

Drug-response-optimized mutation features
Many drug-response-optimized mutation features are known or compelling correlates of
drug response that were not identified in previous studies using CCLE data (8, 12). EGFR
optimized mutation features were exclusively associated with sensitivity to all three CCLE
EGFR inhibitors. Figure 3A shows consensus EGFR mutations for each of the three EGFR
inhibitors; consensus mutations are those seen with the highest frequency during
optimization (see Creation of drug-response-optimized mutation features in the SI text). Of
the 52 CCLE EGFR mutations, MOCA converges on a few mutations as being primarily
responsible for sensitivity to all three CCLE EGFR inhibitors, including two deletions in
exon 19 (ELREA746del and ELR746del), Y1069C, and S768I. Notably, deletions at
position 746 and 747 create the highest known sensitivity to erlotinib and gefitinib (29).
Similarly, The EGFR S768I mutation sensitizes tumors to gefitinib (30). The EGFR
Y1069C consensus mutation is interesting because it correlated with sensitivity to all three
EGFR inhibitors, a site of phosphorylation, but not yet considered an oncogenic mutation or
biomarker of drug sensitivity. Interestingly, L858R and exon 19 deletions are the most
prevalent oncogenic EGFR mutations, but EGFR inhibitor response rates are twice as high
in tumors with exon 19 deletions (29); remarkably, MOCA recovers this differential
sensitivity (see Figure 3A).

ERBB4 optimized mutation features correlated with response to the EGFR inhibitors
erlotinib and lapatinib, and the HSP90 inhibitor 17-AAG. Of the 89 ERBB4 mutations in the
CCLE, the consensus mutations were mostly kinase domain mutations (Figure 3B). Of
ERBB family members, ERBB4 shares the greatest sequence homology with EGFR
(ERBB1), and is known to interact with some EGFR inhibitors. For instance, lapatinib
inhibits EGFR, ERBB2, and ERBB4 (31). Figure 3C shows superimposed crystals structures
of lapatinib-bound EFGR and lapatinib-bound ERBB4, highlighting the similar modes of
lapatinib interaction for both proteins. Comparing the similar binding orientation adopted by
the EGFR-erlontinib complex (Figure 3D), it seems plausible that erlotinib might also
interact with ERBB4. Indeed, recent experiments suggest that erlotinib, like lapatinib, is a
multi-specificity ERBB inhibitor that interacts with EGFR and ERBB4 (32).

Similar results were obtained for many drug-response-optimized mutation features. NFKB2
was one of the 18 optimized mutation features associated with sensitivity to the XIAP
inhibitor LBW242; XIAP is an antiapoptotic gene regulated by NFKB2 (33). EXT2
optimized mutation features were significantly correlated with lapatinib, erlotinib, and
AZD0530 sensitivity; EXT2 is involved in heparin sulfate biosynthesis and high serum
heparin sulfate concentration is associated with resistance to EGFR inhibitors (34). Of the
37 KRAS and 24 NRAS mutations in the CCLE, consensus mutations of MEK inhibitor
sensitivity are known RAS activation sites (16). ERK4 (MAPK4) was exclusively associated
with sensitivity to the MEK/ERK inhibitor AZD6244. PTEN optimized mutation features
were exclusively associated with sensitivity to the topoisomerase inhibitor irinotecan (35).
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Remarkably, HDAC1 optimization was exclusively associated with sensitivity to the HDAC
inhibitor Panobinostat (22). Of the 18 drug-response-optimized mutation features correlated
with the receptor tyrosine kinase inhibitor ZD-6474, seven were kinases (PRKDC, EGFR,
PRKAR1B, CLK3, PIK3C2B, PLK3, and EPHA5). MOCA finds that activating KRAS
mutations confer resistance to TKI258. This is intriguing because KRAS is downstream of
FGFR in the MEK/ERK pathway, and KRAS mutation was recently associated with FGFR
inhibitor resistance (36).

MOCA-derived drug-response-optimized mutation features address several limitations. For
example, approaches that restrict analysis to mutation- or gene-specific mutation features
would not recover these important correlations, including the differential potentiation among
EGFR mutations. Furthermore, database-driven approaches, such as restricting analysis to
mutations present in COSMIC (37), could miss novel but potentially important findings,
such as sensitizing EGFR mutations at the Y1069 phosphorylation site. And, the ERBB4
optimized mutation feature highlights the ability of unbiased approaches to identify relevant
targets for drug repositioning. All significant pairwise drug-gene correlations, including
drug-response-optimized mutation features, are in the accompanying Supplemental Data
file, along with corresponding P-value’s, false discovery rates (FDR’s), and statistical
sensitivity and specificity.

Collections of simultaneously altered genes as biomarkers of drug response
As the above results collectively highlight, single-gene markers can recover many known
correlations of drug response. However, these interactions fail to properly identify a
significant portion of both responders and non-responders. For instance, we found that
EGFR overexpression (EGFRExp+) was significantly correlated erlotinib sensitivity
(erlotinib+) in the CCLE (see Table 1). But, EGFRExp+ identifies erlotinib+ with a
specificity of 76.8% and a statistical sensitivity of 63.4%, meaning the EGFRExp+ marker
calls many false negatives and misses many true positives, respectively. A similar result was
obtained for the vast number of single-feature markers.

We sought to determine many-gene features that had increased correlation with drug
response, relative to the corresponding target feature alone. Here, we define a target as the
gene, or member of the pathway, that the drug was designed to inhibit (see Table S1 and SI
text for a list of targets used for each drug). Target features were combined with every other
feature, individually, using the union, intersection, and difference set operations, and
compared with the relevant drug response vector. Importantly, this approach does not
increase the number of interactions (combinatorial space) relative to the number of pairwise
interactions. We required these three-body interactions (i.e., drug, target, and another
feature) to have a P-value at least two orders of magnitude lower than the constituent
pairwise drug-target interaction. This conservative procedure returned a reasonably
parsimonious list of features, with many convincing and known correlates of drug response
not captured by pairwise MOCA calculations or previous statistical and machine learning
approaches applied to the same data (8, 12).

Table 1 highlights the increase in statistical sensitivity and specificity that can be obtained
with many-feature biomarkers of drug response. For instance, the union of EGFRExp+ and
ERBB4OptMut has a 6.7% increase in statistical sensitivity, relative to EGFRExp+ alone, for
identifying erlotinib response. Importantly, the ERBB4OptMut feature was the result of
optimizing the union of ERBB4 mutation-specific mutation features, which was required to
capture this known interaction. The union of EGFRExp+, ERBB4OptMut, and ERBB2Exp+

increases the statistical sensitivity for identifying erlotinib+ by more than 20% relative to
EGFRExp+ alone. This suggests some patients altered in ERBB2, but not necessarily EGFR,
might also benefit from erlotinib. Indeed, patients with ERBB2 alteration and not EGFR
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alteration can benefit from erlotinib treatment (17); notably, the interaction of ERBB2Exp+

and erlotinib+ alone is weakly correlated in the CCLE data, and was only identified when
considering many-gene features. Table 1 also shows erlotinib resistance arising from
ERBB3 underexpression and/or KRAS mutation; remarkably, ERBB3-deficient cancer cell
lines can exhibit erlotinib resistance (38) and KRAS mutation is a strong predictor of
erlotinib resistance (19). Importantly, KRAS mutation is weakly correlated with erlotinib
resistance in the CCLE, and this known mechanism of resistance would not be recovered
without considering many-body interactions.

This five-gene biomarker (fifth row, Table 1) results in a ~20% increase in statistical
sensitivity and ~5% increase in specificity. Therefore, this biomarker might be used identify
a substantially greater number of patients that could benefit from erlotinib treatment, rather
than considering the target (EGFR alteration) alone. And, that fewer non-responders would
be subjected to a treatment that might be ineffective. Figure 3E shows the distribution of the
individual and combined markers mentioned above.

There is some controversy regarding the role of MDM4 in sensitizing cancers to the MDM2
inhibitor nutlin-3. Some speculation arises from the structural homology of MDM2 and
MDM4 proteins, and the similar p53 binding interfaces (Figure 4A). A crystal structure of
MDM2 binding a nutlin-3 analog (nutlin-2) revealed a compelling mode of action for
nutlin-3, where p53 is displaced from the native p53-MDM2 interface; a similar mode of
action has been proposed for nutlin-3 binding MDM4 (see Figure 4A). Laurie et al. used
molecular modeling, binding assays, and retinoblastoma killing in rodent models to infer the
interaction of MDM4 and nutlin-3 (23). Conversely, using NMR competition experiments
and structural comparison, Popowicz et al. concluded that MDM4 and nutlin-3 do not
interact (39). And, Hu et al. found that MDM4 expression can cause nutlin-3 resistance in
tumor cells (40). In the CCLE, MOCA finds increased correlation of MDM4Exp+ with
nutlin-3+, compared with MDM2Exp+ (Table 2). However, taking either the union or
intersection of MDM2Exp+ and MDM4Exp+ appears to better resolve the origin of
potentiation in these cell lines. Taken together, the results in Table 2 suggest that either
MDM2Exp+ or MDM4Exp+ is sufficient to sensitize some cell lines to nutlin-3, but that
simultaneous up-regulation of both markers synergize to further sensitize some CCLE cell
lines. We highlight this as an open question, and contend that the CCLE contributes to the
emerging role of MDM4 expression, with respect to nutlin-3 sensitivity. Figure 4C shows
the distribution of the individual and combined MDM2 and MDM4 markers.

There were many other striking multi-genes features, all which significantly improved
correlation with drug response, relative to that drugs target alone. For instance, the union of
the BRAFV600E feature and the NRAS optimized mutation feature (NRASOptMut) improved
the statistical sensitivity for identifying response to the MEK inhibitor AZD6244 by more
than 25% relative to NRASOptMut alone. This suggests that the relevant biomarker for
response to this MEK inhibitor includes either BRAF or NRAS mutation; indeed, mutation
in either gene is known to potentiate cancers to AZD6244 (41). Similar to the erlotinib
example (Table 1), correlation with lapatinib response was greatly increased by a feature
that includes EGFROptMut, ERBB2Exp+, and ERBB4OptMut; lapatinib is an inhibitor of these
three ERBB family members (31). The union of HDAC5Exp+ and HDAC1OptMut increases
the statistical sensitivity for identifying response to the HDAC inhibitor panobinostat by
~33% relative to HDAC1OptMut alone; panobinostat is a strong inhibitor of both HDAC1
and HDAC5 (22).

During pairwise calculation, MOCA found significant correlation between IGF1R inhibitor
(AEW541) sensitivity and IGF1Exp+, but not IGF1RExp+. However, MOCA finds that the
union of IGF1Exp+ and IGF1RExp+ has significantly increased significance with AEW541+,
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relative to either alone. This result is important for two reasons: 1) it suggests that either
IGF1Exp+ or IGF1RExp+ is sufficient to potentiate some cancers for AEW541. 2) It shows
that combined features can identify important interactions that are missed comparing only
pairwise interactions. Additionally, the intersection of RAD51Exp+ and IGF1Exp+ enhances
the specificity of AEW541+ identification; RAD51-mediated DNA repair is stimulated by
IGF1, and cells deficient for IGF1R function show significantly less RAD51-mediated DNA
repair (42). All significant three-body interactions derived from combining features with set
operations are in the accompanying Supplemental Data file, along with corresponding P-
value’s, FDR’s, and statistical sensitivity and specificity.

Next, we combined genomic features, determined significant in the previous step, into
many-gene biomarkers that optimize correlation with drug response. An important
parameter of our new method provides the ability to create many-gene features that optimize
a desired predictive value. This type of approach might be useful in a setting where a clinical
decision must consider the aggressiveness of the cancer and the toxicity of the relevant
drugging protocols. For example, the side effects associated with some chemotherapeutics
might warrant a highly specific marker, so that inherent risk is almost certainly coupled with
benefit. On the other hand, more aggressive cancers might necessitate a highly sensitive test,
so that drugs most broadly applicable can be prioritized. And, in many scenarios, a balance
between statistical sensitivity and specificity might be desirable, to balance the post-test risk
with the general efficacy of the therapeutic regimen under consideration.

The last three rows of Table 1 show features optimized to correlate with erlotinib response,
maximizing either the statistical sensitivity, specificity, or sum of both. The many-gene
feature in the sixth row of Table 1 was optimized for maximal specificity (95.5%) while
maintaining reasonable statistical sensitivity (70.7%); therefore, this marker identifies the
majority of potential responders in the CCLE, and almost never falsely calls non-responders.
Similarly, the marker in row seven of Table 1 identifies erlotinib response with a statistical
sensitivity of 95.1% and a specificity of 74.1%. And, the final marker in Table 1 achieves a
nearly 90% statistical sensitivity and specificity for erlotinib response.

Similar to our method of deriving drug-response-optimized mutation features, when creating
many-gene markers of drug response, MOCA reports features observed most frequently in
top-predicting combined features (i.e., consensus features). This protocol is useful for
highlighting features that most consistently combine to optimize correlation with drug
response. For instance, features including the intersection of one or more of nine KRT
family genes (KRT5, 6A–6C, and 13–17) were consistently top markers of erlotinib
response; KRT genes are known to co-express with EGFR, and other ERBB-family genes,
in many human cancers (43). CBLC, KLF2, and KLF5 are all regulators of EGFR, and
MOCA found the expression of these genes to be highly correlated consensus features of
erlotinib response during optimization; CBLC is also a consensus feature for lapatinib
response. ERBB-family members were among the most enriched consensus features for both
erlotinib and lapatinib. Interestingly, a TP53 drug-optimized-mutation feature was the most
enriched consensus feature for identifying lapatinib sensitivity in union with ERBB2
overexpression. KRAS mutation was the third most enriched consensus feature of erlotinib
resistance. MDM4 overexpression was the seventh ranked consensus feature for synergizing
with MDM2 overexpression to sensitize cells to nutlin-3. PDGFRB, EGFR, and c-MET
overexpression or amplification were all top-ranked consensus features of panobinostat
resistance. This might be an important finding because many cancers are up regulated in one
or more of these three oncogenes. Haematopoeitic and lymphoid tissue was among the most
enriched consensus features of panobinostat sensitivity; this is the only case where a tissue
type was a consensus feature during derivation of many-feature markers of drug response. It
is noteworthy that many-gene features are more correlated with drug response than tissue
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type, because molecular markers facilitate a more specific diagnosis than is possible with
tissue type alone.

Finally, we assessed the potential utility of many-gene biomarkers for blind prediction. For
this validation calculation, CCLE data was divided into 333 samples (~80%) for training and
83 samples (~20%) for testing. First, training data was used to identify putative single- and
many-gene predictors of drug response. Next, the predictive value (statistical sensitivity and
specificity) of these single- and many-gene predictors was calculated on the holdout testing
data. To make the algorithm more amenable to automation, these proof-of-concept
calculations were restricted to expression data, and we considered three drugs (erlotinib,
lapatinib, and nutlin-3).

The top 25 most predictive, expression-based, single-gene markers of erlotinib response had
a mean statistical sensitivity of 0.77 and a standard deviation 0.07. Specificity for this same
set of 25 single-gene markers was 0.83 ± 0.06. The top 25 most predictive, expression-
based, many-gene markers of erlotinib response had a statistical sensitivity 1.0 ± 0.0 and a
specificity of 0.85 ± 0.02. Furthermore, each of the top 25 many-gene markers had a better
predictive value (calculated as the sum of statistical sensitivity and specificity) than any of
the top 25 single-gene markers.

Similar results were obtained for lapatinib and nutlin-3. For instance, the top 25 single-gene
markers of lapatinib response had a statistical sensitivity of 0.67 ± 0.08 and a specificity of
0.83 ± 0.06. Top many-gene predictors of lapatinib response had a sensitivity and specificity
of 0.82 ± 0.05 and 0.81 ± 0.05, respectively. Single-gene markers of nutlin-3 response had
poor predictive values, with a sensitivity of 0.35 ± 0.09 and a sensitivity of 0.80 ± 0.03.
Conversely, many-gene predictors of nutlin-3 response had high predictive value, with a
sensitivity 0.80 ± 0.0 and specificity of 0.93 ± 0.01, respectively. And, for both lapatinib and
nutlin-3, each of the top 25 many-gene markers had a better predictive value than any of the
top 25 single-gene markers.

Proof-of-concept validation calculations yielded many-gene predictors of drug response with
high predictive value, similar to those obtained not using a holdout test dataset. Also,
predictive value was consistently higher for many-gene predictors, compared to single-gene
predictors. Taken together, these results suggest that MOCA, and many-gene predictors,
might be useful for improving blind prediction drug response in cancer cell lines.

Conclusion
The ability to identify many known and compelling correlates of drug response, including
single and many-gene biomarkers, highlights the utility of MOCA, the CCLE, and the
inhibitors considered. MOCA introduces a novel approach to combining many genomic
features into biomarkers of phenotype. The abstraction of considering Boolean set
operations as proxies of molecular redundancy, synergy, and resistance appears to have
some validity. Furthermore, MOCA’s optimization protocols focus the search enough to
reduce combinatorics and quickly converge upon meaningful, many-feature markers of
response.

It is important to note that the majority of findings highlighted here are known markers or
targets of drug response in human cancers. This result implies that cancer cell lines can be
useful model systems of human cancers. Additionally, the 24 drugs currently profiled in the
CCLE appear to be potent inhibitors of their intended targets. And, as demonstrated here,
unbiased computational analysis of such pharmacogenomics datasets might be useful for
identifying relevant targets for drug repositioning.
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Here, we derived many-gene markers of drug response using a stochastic optimization
process. As such, the algorithm is subject to getting trapped in local minima. Furthermore,
the astronomic combinatorial space associated the many-body search performed here
virtually guarantees the existence of many-gene biomarkers with similar, or better predictive
value than those recovered in our study. Indeed, it is computationally intractable to
guarantee the recovery of the most optimal solution owing to computational burden and
multiple testing problem imparted by the large combinatorial space. The contribution of this
work is the ability to identify many-feature predictors of drug response that are an
improvement relative to single-feature predictors; but, these represent “good” solutions, not
necessarily the “best” solution.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Major Findings

When applied to 416 pharmacogenomically characterized cancer cell lines, MOCA
identifies many known and potential markers of drug response. For instance, correlation
with ERBB inhibitor response drastically increased when considering EGFR (ERBB1),
ERBB2, ERBB3, ERBB4, and KRAS alterations in a single feature. Similarly, a feature
combining IGF1, IGF1R, and RAD51 drastically increased correlation with IGF1R
inhibitor response, relative to any of these three genetic markers considered in isolation.
This approach is also powerful for determining subsets of site-specific mutations, for a
particular gene, that increase correlation with drug response. For example, MOCA
captures the differential EGFR inhibitor response conferred by common EGFR
mutations. Similarly, we find specific HDAC1 mutations cooperate with HDAC5
overexpression to potentiate cells to the HDAC inhibitor panobinostat. Additionally,
considering all pairwise gene-drug interactions, MOCA recovers known and compelling
correlations, including: RTK inhibitor resistance via c-MET, EGFR, ERBB2, and
PDGFRB kinase switching; mutual exclusivity of TP53 mutation and response to the
MDM2 inhibitor nutlin-3; greater nutilin-3 potentiation via MDM4, rather than MDM2,
overexpression; MEK and RAF inhibitor response in BRAF mutated cell lines; and,
MEK inhibitor potentiating NRAS mutations.

Masica and Karchin Page 13

Cancer Res. Author manuscript; available in PMC 2014 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Boolean set operations applied to pharmacogenomics features
Cartoon illustrating the utility of the union (A), intersection (B), and difference (C)
operations for comparing the drug-sensitivity feature d, with gene-alteration features f1–f6,
across samples S1–S10. Numerical values on the right-hand side are two-tailed Fisher’s exact
P-values computed for the correlation of that feature (fx) and sensitivity to drug d. Samples
(Sx) sensitive to drug d are checkered and samples (Sx) altered in genomic feature fx are
solid.
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Figure 2. Relationship of kinase inhibitor sensitivity to the expression of selected kinases show
signatures of kinase switching
All relationships depicted are with respect to compound sensitivity. For instance, sensitivity
to the FGFR inhibitor TKI258 is mutually exclusive with c-MET overexpression and co-
occurring with c-MET underexpression.
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Figure 3. Representative ERBB interactions
Frequency of specific EGFR (A) and ERBB4 (B) mutations from the 100 most correlated
drug-response-optimized mutation features shown for all corresponding significant drug
interactions (see Creation of drug-response-optimized mutation features in the SI text).
Lapatinib-bound EFGR (magenta and beige) and lapatinib-bound ERBB4 (teal and gray)
superimposed crystal structures (C) and same orientation for superimposed erlotinib-bound
EGFR and ERBB4 (D) showing possible ERBB4 binding pocket for erlotinib. Distribution
of selected predictive features of erlotinib sensitivity (E). The Combined feature is feature
five from Table 1, Exp superscript is expression (RMA processed), OptMut corresponds to
erlotinib-optimized mutation feature, GeneMut is gene-specific mutation feature, and
Erlotinib+ means erlotinib sensitivity. Black dashes delineate mutated or drug sensitive
samples. Lymph is lymphoid and heamatopoietic tissue.
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Figure 4. Interactions of Nutlin-3 with MDM2 and MDM4
Panel A shows superimposed crystal structures of p53-bound MDM2 (MDM2, teal; p53,
beige) and MDM2 binding a nutlin-3 analog (stick representation; MDM2 removed for
clarity), and p53-bound MDM4 (MDM4, magenta; p53, gray). Distribution of selected
predictive features of nutlin-3 response (B). The superscript Exp+ delineates overexpression
(RMA processed) in all panels and Nutlin-3+ delineates samples sensitive nutlin-3. Intersect
is the intersection of MDM4Exp+, MDM2Exp+, and Nutlin-3+, and Union is the union of
those three features. Lymph is lymphoid and heamatopoietic tissue.
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Table 1
Selected biomarkers of erlotinib response

Fisher’s exact P-Values, statistical sensitivity (Sens), and specificity (Spec) for selected Features, highlighting
the increased correlation with drug response obtained from applying Boolean set operations
(“∪” is the union, “∩” is the intersection, and “-“ is the difference). Superscript Exp is for expression, OptMut
corresponds to erlotinib-optimized mutation feature, GeneMut is gene-specific mutation feature, and CNA
copy-number alteration.

Feature P-Value Sens Spec

EGFRExp+ 3.0×10−7 63.4% 76.8%

EGFRExp+ ∪ ERBB4OptMut 2.1×10−9 70.1% 76.7%

EGFRExp+ ∪ ERBB4OptMut ∪ ERBB2Exp+ 1.4×10−11 85.4% 69.0%

(EGFRExp+ ∪ ERBB4OptMut ∪ ERBB2Exp+) – ERBB3Exp− 6.2×10−11 85.4% 75.1%

((EGFRExp+ ∪ ERBB4OptMut ∪ ERBB2Exp+) – ERBB3Exp−) - KRASGeneMut 4.7×10−11 85.4% 82.1%

((((EGFRExp+ ∪ COL14A1OptMut ∪ ERBB4OptMut ∪ TFEBOptMut) (KCNK1Exp+ ∩ KRT6BExp+)) - CRHBPCNA+)
- F2RL2CNA+) - KRASGeneMut

6.3×10−11 70.7% 95.5%

((EGFRExp+ ∪ DSTOptMut ∪ MAD2L2Exp− ∪ TOB2Exp+) ∩ (CASD1Exp− ∩ FAM83HExp+ ∩ MAL2Exp+)) -
ANKRD36BCNA−

4.5×10−11 95.1% 74.1%

(EGFRExp+ ∪ NCKIPSDOptMut ∩ (CBLCExp+ ∩ FAM83HExp+ ∩ HPSEExp+ ∩ KCNK1Exp+)) -
ANKRD36BCNA−) - KRASGeneMut

1.1×10−11 87.8% 87.4%
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Table 2
Selected biomarkers of nutlin-3 response

Fisher’s exact P-Values, statistical sensitivity (Sens), and specificity (Spec) for the correlation of nutlin-3
response and MDM2 or MDM4 alteration (“∪” is the union, “∩” is the intersection). Superscript Exp is for
expression.

Feature P-Value Sens Spec

MDM2Exp+ 6.5×105 50.0% 89.4%

MDM4Exp+ 1.8×107 66.7% 88.4%

MDM2Exp+∪ MDM4Exp+ 4.7×10−6 72.2% 80.2%

MDM2Exp+∩ MDM4Exp− 4.2×10−8 44.4% 97.7%
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