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Abstract
An estimated 170 million people worldwide are chronically infected with the Hepatitis C Virus
(HCV), which is characterized histologically by a persistent immune and inflammatory response
that fails to clear HCV from hepatocytes. This response is recruited to the liver in part by the
chemokine CXCL10, the serum and intrahepatic levels of which have been inversely linked to the
outcome of interferon (IFN)-based therapies for hepatitis C. Bystander tissue damage from this
ineffective response is thought to lead to increased hepatocyte turnover and the development of
fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). However, CXCL10 is traditionally
viewed as an orchestrator of the angiostatic and anti-tumor immune response. In this review, we
will explore this duality and the pathways by which CXCL10 is produced by hepatocytes during
HCV infection, its effects on resident and infiltrating immune cells, and how deregulation of these
cell populations within the liver may lead to chronic liver inflammation. We will also discuss
potential host-directed therapies to slow or reverse HCV-induced inflammation that leads to
fibrosis, cirrhosis, and HCC.

BACKGROUND
Chronic hepatitis C virus (HCV) infection affects an estimated 170 million people globally,
and is the leading cause of liver transplantation in many countries(1,2). Activation of innate
immune pathways in hepatocytes following infection leads to infiltration of pro-
inflammatory, anti-viral immune effector cells into the liver(3). Many of these cells are
recruited to the liver by the chemokine CXCL10, which binds to and activates the CXCR3
receptor found most commonly on pro-inflammatory CD8+ cytotoxic T (TC) cells, CD4+
type I helper T (TH1) cells, and natural killer (NK) cells(4,5). However, this response is
incapable of eliminating the virus in approximately 85% of patients with acute infection and
instead contributes to a chronic immune cell presence in the liver(6). Indeed, CXCR3+
CD8+ Tc cells have been identified among intrahepatic immune cells in chronic hepatitis C
patients(4,5). Damage to bystander tissue from this persistent yet ineffective inflammatory
response has been linked to the development of fibrosis, cirrhosis, and hepatocellular
carcinoma (HCC)(7). CXCL10 plasma levels are also negatively correlated with the
outcome of interferon (IFN)-based therapy for HCV infection(8). However, as an angiostatic
chemkoine that recruits CD8+ Tc and NK cells, CXCL10 could orchestrate an anti-tumor
response(9). Herein we will explore this apparent paradox by defining the innate immune
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signaling pathways that lead to CXCL10 induction in hepatocytes, examining how
deregulation of the recruited immune response during HCV infection may lead to
inflammatory liver disease, and discussing possible avenues for controlling inflammation
and preventing the development of HCC.

Innate Immune Sensing of HCV in Hepatocytes
Activation of cellular innate immune pathways depends upon recognition of foreign DNA,
RNA, or protein motifs known as pathogen associated molecular patterns (PAMPs). Specific
PAMPs are recognized by innate pattern recognition receptors (PRRs) from one of three
families: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), or Nod-like-receptors
(NLRs). The interplay of these receptors and their downstream signaling pathways is what
determines the resultant innate immune response. For example, the positive sense HCV
RNA genome is separately recognized by two different PRRs within the hepatocyte: retinoic
acid inducible gene 1 (RIG-I) and Toll-like receptor 3 (TLR3; Figure 1, Insert)(10,11)

RIG-I is a cytoplasmic sensor of double-stranded, 5′ tri-phosphate RNAs containing poly-U
or poly-A motifs(12). Following the binding of this PAMP, RIG-I undergoes a
conformational change and binds to the mitochondrial antiviral-signaling protein (MAVS)
signaling adaptor(13). In contrast, TLR3 recognizes longer double-stranded RNAs generated
during viral replication that have been re-localized to the endosome(11). Activated TLR3
binds the signaling adaptor TIR-domain-containing adapter-inducing IFN-β (TRIF) through
its cytoplasmic receptor domain(13).

Induction of CXCL10 in Hepatocytes
MAVS and TRIF signaling activates various transcription factors including nuclear factor
(NF)-κB, activator protein (AP)-1, C/EBP-β, and IFN regulatory factors (IRFs), which
translocate into the nucleus to induce gene transcription. (13,14). Putative binding sites for
these transcription factors have been annotated in the CXCL10 promoter(15). Indeed, HCV
can induce NF-κB binding to this site in TLR3-expressing hepatoma cells(11). NF-κB also
drives CXCL10 transcription during rhinovirus infection, while AP-1 and C/EBP-β activate
transcription of the structurally similar chemokine CXCL8 (i.e. IL-8) (15–17). IRF1, IRF2,
IRF3, and IRF7 also reportedly bind the CXCL10 promoter during influenza A
infection(18).

Activation of IRF3 and IRF7 can also lead to the induction of anti-viral type I IFNs (IFN-α
and IFN-β) and type III IFNs (IL-28A, IL-28B, IL-29) in hepatocytes(14,19). These secreted
cytokines can act in a paracrine manner to amplify chemokine and cytokine responses in
adjacent liver cells through activation of Janus kinases (JAKs) and various signal transducer
and activator of transcription (STAT) proteins(19,20). Activation of JAK-STAT signaling
induces IFN-stimulated genes (ISGs) through the binding of STAT dimers to IFN-stimulated
response elements (ISREs) or gamma-IFN activation site elements in their
promoters(19,20). Type II IFN, a related cytokine produced by infiltrating NK cells, CD8+
Tc cells, and CD4+ TH1 cells, can also induced STAT1-signaling through these
elements(20,21). Since the CXCL10 promoter contains both putative IFN-stimulatory
regulatory elements (ISREs) and putative STAT-binding sites, it can potentially respond to
all three types of IFN(15).

Despite these observations in other systems, we observed that neutralization of type I and
type III IFNs had no effect on CXCL10 production during HCV infection in hepatoma cells
expressing functional TLR3 and RIG-I (Brownell et. al.; submitted manuscript). These data
suggest that CXCL10 induction in hepatocytes during the initial steps of HCV infection
occurs predominantly through direct activation of transcription factors following PRR
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signaling rather than through secondary paracrine signaling of IFNs. Of course, IFNs
secreted from immune cells recruited to the HCV-infected liver as well as from non-
parenchymal cells likely contribute to CXCL10 induction in vivo. This secondary induction
would supplement the initial CXCL10 output by hepatocytes.

Induction of CXCL10 in hepatocytes may also involve non-traditional PRR signaling
pathways. Ho et al. reported IFN-independent activation of STAT1 and STAT3 proteins
during infection with Dengue Virus, another member of the Flaviviridae(22). STAT1 can
also be activated via p38 MAP kinase following TLR7 stimulation in plasmacytoid dendritic
cells(23). Since STAT1 can bind to ISREs, it is possible that this alternative pathway
contributes to CXCL10 induction in hepatocytes.

CXCL10 Recruits Pro-Inflammatory Effector Cells for the Anti-HCV Response
Once induced, CXCL10 recruits a pro-inflammatory, anti-viral immune response to sites of
infection by binding to the CXCR3 receptor on CD4+ TH1 and CD8+ Tc cells (Figure 1)
(4,5). CXCR3 was recently reported to be universally expressed and exists in two isoforms:
CXCR3A and CXCR3B(24). CXCR3A is the activating isoform highly expressed by
leukocytes and is associated with proliferation and chemotactic migration of these cells
(24,25). CXCR3 is also expressed by NK cells as well as by minority cell populations within
the liver including resident macrophages (i.e. Kupffer cells) and hepatic stellate cells (HSCs)
(4,26–28). Thus, CXCL10 induction from hepatocytes could also localize non-parenchymal
cells within the liver to specific sites of infection.

Once recruited to the inflamed liver, activated CD8+ Tc and NK cells kill virus-infected
cells via Fas/TRAIL-mediated apoptosis, the release of granzymes and perforin, and
secretion of type II IFN (26,29). Apoptotic bodies released from dying hepatocytes are then
phagocytosed by Kupffer cells, which further promote Fas-mediated hepatocyte apoptosis
and release reactive oxygen and nitrogen species (ROS/NOS)(30). Kupffer cells also
activate HSCs by releasing TGF-β(30). This causes HSCs to differentiate from quiescent,
Vitamin A-storage bodies into proliferative myofibroblasts that secrete type I collagen as
part of the general wound healing response to liver injury (31).

Kupffer cells, HSCs, and liver sinusoidal endothelial cells (LSECs) also perpetuate the
existing inflammatory state by secreting additional cytokines and chemokines as part of a
positive feedback loop. As in hepatocytes, this secretion can be triggered by pro-
inflammatory cytokines produced by infiltrating immune cells (TNFα, IFNs, etc) or by
innate PRRs. Recognition of HCV non-structural proteins by TLR4 in Kupffer cells during
chronic infection can increase secretion of TNFα(32). TNFα and IL-1β activated HSCs
show increased secretion of CXCL8 when exposed to ligands for TLR2, which recognizes
HCV Core and NS3 proteins(33,34). Supernatants from LSECs treated with TLR3 and
TLR4-specific PAMPs were also able to suppress HCV replication in HCV replicon-bearing
cells(35). Thus, the primary sensing of HCV RNA by hepatocytes initiates an anti-viral, pro-
inflammatory response that involves recruitment of multiple immune cell types to the liver
that further amplify the response.

Deregulation of Recruited Cells Leads to Fibrosis, Cirrhosis, and HCC
Despite the robust inflammatory response initiated and recruited by CXCL10, chronic
hepatitis C develops in up to 85% of subjects with acute infection(6). Viral evolution plays a
considerable role in establishing this persistence, as immune escape variants of the HCV
NS3 epitope recognized by CD4+ TH1 cells fail to stimulate proliferation while
simultaneously causing these cells to shift to a TH2 response profile(36). This causes
induction of anti-inflammatory cytokines (i.e. IL-10) and reduction of CD8+ Tc and NK
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cell-stimulating cytokines (i.e. type II IFN and IL-2)(37). Direct inactivation of infiltrating
effector cells can also lead to ineffective viral clearance. HCV-specific CD8+ Tc cells from
patients with chronic hepatitis C display an exhausted phenotype, with decreases in both
type II IFN production and epitope-specific degranulation(38). Virus-mediated dendritic cell
dysfunction may contribute to the development of anergy through ineffectual co-stimulation
or antigen presentation, as could the presence of an antagonistic variant of CXCL10 which
may inhibit migration of these CXCR3+ cells from plasma into tissue(39,40). Higher
frequencies of both intrahepatic and peripheral CD4+ CD25+ FoxP3+ immunosuppressive
regulatory T (Treg) cells have also been reported in HCV-infected patients, further indicating
that suppression of effector immune responses maintains viral persistence in chronic
hepatitis C(39,41)

HCV proteins also interfere with anti-viral and IFN responses in hepatocytes during chronic
infection(42,43). Despite this interference, elevated levels of inflammatory cytokines and
chemokines are still found in the liver parenchyma of patients with chronic hepatitis C (see
above). Kupffer cells also remain activated and continue to release ROS/NOS and TGF-β,
perpetuating HSC activation and type I collagen deposition. Eventually, chronic activation
causes HSCs to secrete tissue inhibitor of metalloproteinases (TIMPs), which inhibit
collagen-degrading matrix metalloproteinases (MMPs) and leads to an excessive
accumulation of fibrotic scar tissue known as fibrosis(31). Progressive disruption of the liver
architecture and continued hepatocyte turnover can then lead to cirrhosis, a condition where
the liver parenchyma is divided into isolated nodules of regenerative tissue with severely
reduced functionality(30). Accumulation of genetic aberrations from repeated rounds of cell
death and renewal within these nodules then leads to neoplasm and HCC(7).

The pro-inflammatory and cytotoxic immune responses recruited by CXCL10 can normally
eliminate pre-cancerous and cancerous cells through recognition of tumor-specific
antigens(7). However, as these responses are already impaired during chronic hepatitis C, it
is likely that the ability to identify and eliminate neoplastic cells is also defective. CXCL10
may still inhibit development of HCC through its reported angiostatic activity, but recent
literature suggests that CXCL10 may accelerate cancer growth in non-immune cell
types(44,45). Neoplastic cells may also exploit chemokine gradients as “roads” during
metastasis. Treatment with CXCL10 increases motility of prostate cancer-derived but not
normal prostate epithelial cells via reduced CXCR3B expression, which normally inhibits
cell growth and migration in non-motile cell types (24,46). CXCR3B expression was also
reduced in two breast cancer cell lines, while induction of CXCR3A and repression of
CXCR3B have been reported in clear cell ovarian cancers(47,48). It remains to be
determined whether down-regulation of growth inhibitory receptor CXCR3B and/or up-
regulation of the growth promoting receptor CXCR3A occurs during hepatocyte
transformation to HCC and metastasis.

CLINICAL-TRANSLATIONAL ADVANCES
Current therapies for chronic hepatitis C seek to limit the development of persistent
inflammation by reducing systemic viral load using a combination treatment of pegylated-
IFN-α and the non-specific anti-viral Ribavirin (peg-IFNα/RBV). Unfortunately, this
regimen fails to eliminate the infection in roughly 50% of patients(6). While recently
developed HCV-specific protease inhibitors improve the likelihood of success for some
patients, IFN-containing regimens are still poorly tolerated, require 24–48 weeks of
administration, and do not address the underlying inflammatory sequelae that cause liver
disease(49,50). For patients that have already progressed to decompensated cirrhosis, liver
transplantation represents the only available treatment option(51). However, re-infection of
the new liver occurs in nearly all cases of active infection, and anti-HCV therapy is both less
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efficacious and associated with increased toxicity after transplantation(51). Thus, new
treatments that prevent or reverse the onset of these inflammatory sequelae must be pursued.
As a master regulator of the infiltrating pro-inflammatory response, the CXCL10/CXCR3
signaling pathway makes an attractive therapeutic target.

Potential Anti-CXCL10 Therapies
Agents that selectively neutralize CXCL10 would theoretically increase patient
responsiveness to traditional IFN-based HCV therapy while simultaneously dampening
inflammatory immune cell activation. For example, specific inhibitors of the CXCR3A
isotype could prevent aberrant activation of CD8+ Tc cells and NK cells that lead to
excessive hepatocyte death. This in turn would limit Kupffer cell and HSC activation and
delay or prevent development of fibrosis. Such drugs would likely mimic Maraviroc, an
antagonist of the chemokine receptor CCR5 that is used clinically to block HIV entry(52).
However, it is possible that reducing a patient’s sensitivity to CXCL10 by blocking its
receptor may also interfere with the immune system’s ability to respond to other
pathogens(53).

Broadly Acting Anti-Inflammatory Therapies
A safer alternative may be to identify new applications for existing anti-inflammatory drugs.
One advantage to this approach is the ability to counteract the excessive immune response
recruited by CXCL10 through multiple mechanisms. For example, since oxidative stress
causes direct cellular damage in addition to activating HSCs, herbal antioxidant compounds
have been suggested as both anti-fibrotic and anti-inflammatory therapy for liver diseases of
multiple etiologies (30). Vitamin E has successfully reduced inflammation and halted
fibrosis progression among those with non-alcoholic steatohepatitis (NASH) in clinical
trials(54). The routinely consumed herbal medications Sho-saiko-to and Silymarin also
appear to have direct anti-fibrotic activity on HSCs as well as general hepatoprotective
properties, although their mechanisms of action remain undefined(55,56). Traditional anti-
fibrotic drugs have also had demonstrable effects on oxidative stress within the liver: Long-
term treatment with Losartan reduces NADPH oxidase activity in HCV patients (57).

Successful anti-inflammatory therapies may also target pathways other than those involved
in generating oxidative stress. Broadly acting corticosteroids remain a standard therapy for
autoimmune hepatitis(58). Sorafenib, a chemotherapeutic agent already approved to treat
HCC, also inhibits the Raf/ERK pro-inflammatory and pro-fibrotic signaling pathways(59).
Finally, TNFα inhibitors have been used reduce serum levels of liver enzymes, IL-6, and
TGF-β in animal models, although limited success has been seen in human clinical trials for
alcohol-related liver disease or advanced cirrhosis(30).

Targeting multiple pathways simultaneously may also increase the risk of adverse events
occurring during treatment. Severe side effects have been reported among patients taking
experimental broadly anti-apoptotic drugs such as caspase-3 inhibitors(30). The duration of
anti-inflammatory therapy will also likely depend upon the extent of fibrosis or cirrhosis
present within the liver, increasing the likelihood of adverse events occurring in patients
with severe disease. Additionally, administering anti-inflammatory drugs to patients
simultaneously undergoing IFN treatment for hepatitis C may interfere with the anti-viral
efficacy of IFN.

Ultimately, a better understanding of immune and inflammatory signaling within the liver is
required before the full extent of the efficacy and side effects for these proposed treatments
can be known. Since HCV-related cirrhosis and HCC are predicted to rise substantially in
the next decade(60), it is imperative that research into this area accelerate. Routine clinical
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application of hepatoprotective therapies in the near future may help to prevent or reverse
the effects of end-stage liver disease in millions of chronically infected HCV patients
worldwide. Furthermore, these types of host-directed therapies may be beneficial to other,
non-viral forms of liver diseases that include an inflammatory component.
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Figure 1. Deregulation of the Inflammatory Response Recruited by CXCL10 Following HCV
Infection
Sensing of viral RNA by the innate immune receptors RIG-I and TLR3 following hepatitis
C virus (HCV, ) infection of the hepatocyte leads to signal transduction through MAVS
and TRIF, respectively, activation of transcription factors (NF-κB, IRFs, AP-1, C/EBP-β),
and transcription of CXCL10 (Δ) (“CXCL10 Induction”). Secreted CXCL10 forms a
chemotactic gradient that recruits immune cells (Natural Killer [NK], CD4+ TH1, and CD8+
Tc cells) and non-parenchymal liver cells (Kupffer cells and Hepatic Stellate Cells [HSCs])
to the site of infection (“Recruitment, Inflammation, and Cell Death”). Upon arriving, these
cells produce pro-inflammatory, pro-apoptotic mediators (❖) such as type I interferon
(IFN), type III IFN, TNFα, IL-1β, and reactive oxygen species (ROS). This response fails to
clear HCV in 80–85% of patients and instead generates persistent inflammation and
hepatocyte turnover. It also leads to liver fibrosis through chronic HSC activation, the
overproduction of type I collagen, and the inhibition of collagen-degrading matrix
metalloproteinases (MMPs) by tissue inhibitor of metalloproteinases (TIMPs) (“Cell
Turnover and Fibrosis”). Over several decades, progressive fibrosis can lead to cirrhosis and
hepatocellular carcinoma.
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