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Abstract Aiming at the isolation of novel enzymes from
previously uncultured thermophilic microorganisms, a
metagenome library was constructed from DNA isolated
from a pilot-plant biogas reactor operating at 55 °C. The
library was screened for starch-degrading enzymes, and one
active clone was found. An open reading frame of 1,461 bp
encoding an o-amylase from an uncultured organism was
identified. The amyl34 gene was cloned in Escherichia
coli, resulting in high-level expression of the recombinant
amylase. The novel enzyme Amy13A showed the highest
sequence identity (75 %) to «-amylases from Petrotoga
mobilis and Halothermothrix orenii. Amyl13A is highly
thermoactive, exhibiting optimal activity at 80 °C, and it is
also highly salt-tolerant, being active in 25 % (w/v) NaCl.
Amyl13A is one of the few enzymes that tolerate high
concentrations of salt and elevated temperatures, making it
a potential candidate for starch processing under extreme
conditions.

Keywords «-Amylase - Glycoside hydrolase family 13 -
Petrotoga - Thermophile - Halophile - Calcium-dependent -
Metagenome

Introduction

«-Amylases (endo-1,4-x-D-glucan glucanohydrolase,
EC3.2.1.1) are endo-acting enzymes that hydrolyze starch,
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glycogen, and other related polysaccharides. They do so by
randomly cleaving the internal «-1,4-glycosidic linkages
between adjacent glucose units in the linear amylose chain
and generate glucose, maltose, and maltotriose units (Sunna
et al. 1997). In the carbohydrate active enzyme (CAZy)
database, x-amylases are classified into different glycoside
hydrolase families (GHF) based on their amino acid se-
quence (Henrissat and Davies 1997). The vast majority of
«-amylases belong to GHF 13 and they are known to share a
common supersecondary structure, the (3/x)g-barrel. Few
«-amylases belong to GHF 57, a family much smaller than
GHF 13, while to date, only one characterized oc-amylase
belongs to GHF 119 (Watanabe et al. 2000).

«-Amylase is an important industrial enzyme that
amounts to around a quarter of the enzyme market (Kiran
and Chandra 2008). It is currently being used (among
others) in the sugar, animal nutrition, leather, paper and
pulp, textile, detergents, baking, brewing, and distilling
industries; production of cakes and starch syrups; prepara-
tion of digestive aids; and pharmaceutical industries (Kiran
and Chandra 2008; Syed et al. 2009). Since this group of
enzymes has a very wide spectrum of industrial applica-
tions, there is an increase in the demand for novel «-
amylases that have activity and stability characteristics suit-
able for the harsh conditions required by the industrial
processes. Starch-degrading activity has been identified in
either thermophiles, mainly in Bacillus spp., or in halo-
philes, such as Halomonas spp. (Asgher et al. 2007; Coronado
et al. 2000a; Coronado et al. 2000b; Palva 1982; Pen et al.
1992; Saito 1973). However, very little research has been
devoted to x-amylases from thermophilic halophiles (Li et
al. 2002; Mijts and Patel 2002; Tan et al. 2003).

To obtain novel thermoactive and salt-tolerant enzymes, a
metagenomic library, which was derived from a pilot-plant
biogas reactor operating at 55 °C, was constructed and was
screened for starch-degrading enzymes. A gene was

@ Springer



2972

Appl Microbiol Biotechnol (2013) 97:2971-2978

isolated, encoding an o-amylase from an unknown organ-
ism, with the highest identity to a putative x-amylase from
Petrotoga mobilis. In this paper, we report on nucleotide
sequence, cloning, purification, and characterization of a
novel thermoactive, salt-tolerant, and Ca2+—dependent GHF
13 x-amylase.

Materials and methods
Bacterial strains and plasmids

Escherichia coli strains MRF', XLOLR (Novagen), and
plasmid pPBK-CMYV (Stratagene) were used for the construc-
tion of the screening metagenome library. E. coli strains
Nova Blue Singles (Invitrogen), M15 competent cells (Qia-
gen), vectors pJET (Fermentas), and PQE-30 (Qiagen) were
used for cloning and expression.

Screening of o-amylase

The A-Express Predigested Vector and ZAP Express Predi-
gested Gigapack cloning kits (BamH1/CIAP-treated) were
used for the construction of a A-phage metagenome library of
a sample taken from a pilot-plant biogas reactor, as described
by the manufacturer (Stratagene). The library was screened on
solid LB medium supplemented with kanamycin (50 pg/ml),
isopropyl-f3-D-thiogalactopyranoside (IPTG) (1 mM) and
overlayed with AZCL-amylose (0.05 %) and agarose (1 %).
Incubation was carried out at 70 °C overnight and activity was
observed by the formation of a dark blue halo.

Sequence analysis

Plasmids from selected positive clones were isolated using
the NucleoSpin plasmid isolation kit (Macherey-Nagel).
The DNA sequence of inserts was analyzed by Eurofins
MWG Operon (Berlin) with the primer-walking technique.

Gene cloning

To express the x-amylase in a heterologous system in E.
coli, the gene was amplified with the Phusion polymerase
(Finnzymes) and two oppositely oriented PCR primers were
designed as such: amylase-Fwd-BamH1 5'-GGATC
CAAAGATAATTTTCCATCCG-3' and Amylase-Rev-Sall
5-GTCGACTTACTTCTTAATTACAGGTAC-3'.

The PCR was performed with a thermocycler programmed
for 98 °C for 30 s, 30 cycles of 98 °C for 10°s, 50 °C for 30 s
and 72 °C for 20 s and a final elongation of 72 °C for 10 min.
The amplification resulted in a 1,461-bp fragment. The frag-
ment was, thereafter, ligated to pJET and the recombinant
vector was used to transform competent E. coli NovaBlue
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Singles cells according to the manufacturers' protocol (Fer-
mentas, Novagen). Screening for positive clones was per-
formed on solid LB medium containing 50 pg/ml
carbenicillin, 15 pg/ml tetracycline, and 80 uM IPTG,
and overlayed with AZCL-amylose (0.05 %) and agarose
(1 %). After identifying a positive clone, the plasmid with
the correct insert was extracted and subjected to a double
restriction digestion with the enzymes BamH1 and Sall.
The vector pQE-30 was also double-digested with BamH1
and Sall. The purified and double-digested o-amylase
sequence was then ligated to the pQE-30 vector and
subsequently used to transform M15.

Heterologous expression and purification of the recombinant
-amylase

E. coli M15 cells carrying the recombinant pQE-30 vector
were cultured overnight at 37 °C in LB broth containing
ampicillin and kanamycin. The overnight culture was inoc-
ulated into 1 1 of fresh LB medium and incubated further at
37 °C. Induction was done with 1 mM IPTG when Agpp=
0.5-0.6 was reached. Afterwards, transformants were grown
with constant shaking overnight at 37 °C. Protein extraction
was performed from 5 g of E. coli M15 wet weight sus-
pended in 25-ml lysis buffer NaH,PO4 (50 mM, pH 7.0),
300 mM NaCl, and 10 mM imidazole. Complete cell dis-
ruption was accomplished by French press (three times at
2,500 psi), and a subsequent centrifugation (13,000xg) for
30 min at 4 °C for the complete removal of cell debris.

A 1.5-ml Ni-NTA superflow column (Qiagen) was used
for purification of Amy13A. The column was equilibrated
with lysis buffer (50 mM NaH,PO,, 300 mM NaCl, 10 mM
imidazole pH 7.0). The resulting crude extract was then
loaded onto the column. This was followed by a first wash
step with the wash buffer (50 mM NaH,PO,, 300 mM NaCl,
25 mM imidazole, pH 7.0) and two additional wash steps.
Four steps of elution were done with the elution buffer
(50 mM NaH,PO,, 300 mM NacCl, 250 mM imidazole, pH
7.0). Subsequently, fractions of the Ni-NTA column elution
pool exhibiting x-amylase activity were loaded onto a
HiLoad 16/60 Superdex 200-pg gel filtration column (GE
Healthcare). The column was equilibrated with 50 mM
NaH,PO4, 150 mM NaCl, pH 7.2 and the elution was
performed using the same buffer. Samples from the elution
showing activity against starch were pooled together and
subjected to desalting through buffer change (50 mM Tris—
HCI, pH 7.0). The purity of the recombinant x-amylase was
analyzed on a 12 % SDS-PAGE gel (Laemmli 1970).

Amylase activity determination

Protein concentration was measured by using serum albu-
min as the standard according to the Bradford method
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(1976). In vitro activity of the recombinant x-amylase was
assayed with soluble starch as a substrate, and the amount of
sugar released was determined by dinitrosalicylic acid (DNS)
assay (Miller 1959). For each assay, 490 pl of sample buffer
consisting of 0.5 % (w/v) of starch in Tris—HCI (50 mM, pH
7.0) was incubated at the desired temperature. Following this
initial incubation, 10 pl of an appropriate quantity of enzyme
was added. After 5-min incubation, the sample was placed on
ice to stop the reaction and 500 pl of DNS reagent was added.
Afterwards, it was incubated in a water bath at 95 °C for an
additional 5 min, resulting in the development of a red-brown
color. One unit of enzyme activity was defined as the amount
of enzyme needed to release 1 pmol maltose equivalent
reducing groups per minute.

Influence of temperature and pH

Studies on the influence of temperature and pH were con-
ducted with the purified enzyme. An effect of temperature
on the activity of the x-amylase was assayed at a constant
pH 7.0 at temperatures ranging between 40 and 100 °C for
5 min using starch as substrate. Thermostability assays were
performed by incubating aliquots of enzyme at 70-90 °C at
various times and then assayed with starch as described
above at 80 °C for 5 min.

The effect of pH on the activity was determined by assay-
ing with starch at a pH range of 3.0-12.0 in universal buffer.

Assays were performed as described above at 80 °C for 5 min.

Substrate specificity

Alternative substrates were used to determine the substrate
specificity of the enzyme. All assays were conducted for
5 min at 80 °C. The tested substrates were soluble starch, -
cyclodextrin, (-cyclodextrin, y-cyclodextrin, corn starch,
rice starch, potato starch, amylose, amylopectin from corn,
amylopectin from potato, and pullulan at a concentration of
0.5 % (w/v) in Tris—HCI (50 mM, pH 7.0).

Effect of NaCl and CaCl,

The NaCl optimum for activity was determined using the
standard assay described above but with NaCl at final con-
centrations between 0 and 25 % (w/v). The CaCl, optimum
for activity was determined using the standard assay described
above but with CaCl, at final concentrations between 0 and
25 mM.

The effect of NaCl and CaCl, on enzyme thermostability
was determined by preincubating enzyme solutions in buffer
at 80 °C and removing samples after 0 min, 1 h, and 2 h.
Preincubation samples were set up at 0 % (w/v) NaCl and
0 mM CaCl,; 5 % NaCl and 0 mM CaCl,; 0 % NaCl and
1 mM CaCl,; and 5 % NaCl and 1 mM CacCl,. Samples are

then assayed with 0.5 % (w/v) soluble starch at 80 °C for
5 min. The sample, without NaCl and CaCl,, which was
removed after 0 min, was considered as 100 %.

Effect of metal ions

The effect of the following metal ions: FeCls, ZnCl,, NiCl,,
AlICl;, CoCls, CuCl,, MgCl,, and MnCl, and the effect of
EDTA (with and without 10 mM CaCl,) on Amy13A activ-
ity were investigated in final concentrations of 10 mM as
described previously (Jabbour et al. 2012). The enzyme
solution was assayed at optimal conditions and the residual
enzyme activity was measured. The activity without metal
ions was considered as 100 %.

Sequence similarities and structure modeling

Computer-assisted DNA and protein sequence analyses were
performed using ClustalW version 2.0 (Larkin et al. 2007).
Protein sequence similarity searches were performed using the
BLAST algorithm at the National Center for Biotechnology
Information (NCBI) server (Altschul et al. 1990). Reference
amino acid sequences utilized in phylogenetic analysis were
retrieved from NCBI database and aligned with the selected
genes using ClustalW (Larkin et al. 2007). Based on amino
acid sequence homologies, a protein model was built using
Swiss Model (Arnold 2006). The secondary structure of the
protein was predicted using the PSIPRED secondary structure
prediction method (Jones 1999). The molecular weight and
the isoelectric point p/ were calculated with ExPASy Proteo-
mics server (Gasteiger et al. 2005).

Nucleotide sequence accession number

The sequence for the novel x-amylase gene amyl3A4, iso-
lated from the metagenome of a pilot-plant biogas reactor,
has been deposited into EMBL nucleotide sequence data-
base under the accession number HE583603.

Results

Identification of a novel oc-amylase from a metagenome
library

Two thousand phagemid clones obtained from a A-ZAP
(Stratagene) gene library were screened for o-amylase ac-
tivity on LB plates, overlayed with AZCL-amylose. A
clone, harboring plasmid pBK-CMV-amyl34, showing a
blue halo was isolated and the plasmid extracted, containing
an insert of about 5 kb. DNA sequencing and BlastX anal-
ysis revealed the presence of one ORF of 1,461 bp that
encodes a GHF13 o-amylase, made up of 486 amino acids.
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The protein shows a high degree of sequence similarity to
cytoplasmic «-amylases from P. mobilis SI95 (Accession
number YP_001568181.1; 75 % identity) and from Halo-
thermothrix orenii H 168 (YP_002509568.1; 67 %), and to
the catalytic region of the x-amylases from Halanaerobium
praevalens DSM 2228 (ADO76356.1; 57 %), Halanaer-
obium hydrogeniformans (YP_003995998.1; 54 %) and
from Eubacterium limosum KIST612 (ADO39270.1;
42 %). Multiple sequence alignments of the oc-amylase
isolated from the biogas reactor metagenome with those
aforementioned five amylases allowed the construction of
a phylogenetic tree showing the position of the newly iso-
lated «-amylase Amy13A (Fig. la). Accordingly, the en-
zyme seems to be derived from an organism closely related
to Petrotoga sp. The multiple sequence alignment allowed
also the determination of the catalytic triad, and E207 is
predicated to be the active site of Amyl13A (Fig. 1b).

The calculated molecular weight of the protein Amy13A
is 56.31 kDa and the isoelectric point p/ is predicted to be
4.85. The predicted structure of the novel enzyme was
determined based on the crystal structure of the polyextre-
mophilic x-amylase AmyB from H. orenii (Tan et al. 2008).
The structure is predicted to be an eight-stranded o/3 barrel,
typical of GHF 13 proteins (Fig. 2).

Recombinant enzyme production and purification

The complete amyl34 ORF was ligated to the expression
vector pQE-30 and used to transform the E. coli expression

Fig. 1 Multiple sequence a
alignment. a An unrooted
phylogenetic tree showing the

a-amylase from

—

strain M15. Recombinant «-amylase was expressed after
induction with 1 mM IPTG overnight at 37 °C. After
cell lysis by sonication and centrifugation, «-amylase
was detected in the soluble protein fraction. Separation
of proteins by 12 % SDS-PAGE revealed a Coomassie
stained band with a size of around 55 kDa. Recombinant
protein Amy13A required a two-step purification. It was
loaded onto a Ni-NTA column and then loaded onto a
gel filtration column. Amyl13A was purified 10.1-fold at
a yield of 15 %. The purified enzyme had a specific
activity of 1,000 U/mg (Table 1).

Enzymatic properties of the novel x-amylase

The pH and temperature range at which the recombinant -
amylase was active were determined using soluble starch as
substrate. Amy13A is active at a broad temperature range
(40-100 °C) and the highest activity was found to be at 80 °
C. Around 80 % and 40 % of the maximal activity were
observed at 90 and 100 °C, respectively (Fig. 3a). Maximum
activity was observed at pH 7.0. The enzyme exhibited
activity at a broad range of pH (4.0-10.0). More than
60 % of the maximum activity was obtained at pH 6.0 and
8.0, and around 20 % at pH 5.0, 9.0, and 10.0 (Fig. 3b).
Enzyme thermostability was tested at 70, 80, and 90 °C.
It was found to be relatively thermostable at 70 °C with a
half-life of more than 3 h. At higher temperatures, the
enzyme was less stable. The enzyme retained less than
10 % of its activity after 2-h incubation at 80 and 90 °C.
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213
245
350
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302

predicted to be the active site of H. orenii DDLKGFLDTVGNPDLRVFDFPLRSFFVDMLNG- - - AYMADLRNAGLVNSPGYENRAVTFV 407
Amy13A. Underlined residues E. limosum EDLKRYMETTGR - TMCLFDVPLHYHFFDASNSGDGYDMRQLLSNTLTAHD - - PTRSVTFV 263
e H. praevalens ERLIDYLKTVDQAKLHVFDFPLRESFVQLMQGS - - LDLRWLGDHGLVNQADFKEKAVTFV 257
represent the catalytic triad, H. hydrogeniformas  EVLIDYLETVGQDRLHVFDFPLRKNFIDLMHGK- - LDMRWLGEKGLVNKDGYGHRAITFV 257
asterisks represent residues in a T TS L :x *, R
column that are identical in all
sequences in the alignment, Metagenome NNHDTNRD- - - -GKDPGI YKRKYQAYAYTLTREHGI PVVYWKDYY - - - - - - IYNMKNELD 320
. P. mobilis ENHDTNRDK- - - DNKPGI YRRKYQAYAYILTREYGTPVVFWKDYY - - - - - - IYGMKEGLD 353
semicolons represent conserved H. orenii DNHDTDRDEG- - SYTVSIYSRKYQAYAYTLTRAEGVPTVYWKDYY - - - - - - IWEMKEGLD 459
substitutions, dots represent E. limosum DNHDTQPGQOSLESWVQPWFKP - - LAYAFTLLRADGYPCVFYGDYYGT PAONTEPMQALLD 321
semiconserved substitutions H. praevalens ENHDTERDGKNEYGTETT TKRKLQAYAYILMRKEGI PSVFWKDYY - - - - - - IHGLKAQLD 311
H. hydrogeniformas  DNHDTDRDGDNEYGTEPIMDRKFQAYCYILMRREGVPTIYWKDYH- - - - -- NHGLKEKLD 311
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Fig. 2 Predicted structure of Amyl3A. The structural model was
constructed by Swiss Model using automated computer algorithms,
based on the crystal structure of the polyextremophilic «-amylase
AmyB from Halothermothrix orenii (Tan et al. 2008). The structure
is predicted to be an 8-stranded o/f3 barrel, typical of GHF 13 proteins

Substrate specificity

The enzyme was hydrolytically active on a number of substrates.
Apart from soluble starch (specific activity 1,000 U/mg), the
enzyme also cleaved comn starch (850 U/mg), potato starch (790
U/mg), rice starch (340 U/mg), amylose (480 U/mg), and amy-
lopectin from com (330 U/mg), while amylopectin from potato
(70 U/mg) was a poor substrate. Cyclodextrin («, {3, and y)

substrates and pullulan were not cleaved by the enzyme (Table 2).

Effect of NaCl and CaCl,

The enzymatic activity of «-amylase was tested in the
presence of NaCl (0-25 %w/v). The enzyme was found to

Table 1 Purification of Amy13A

Sample Total units (U)  Yield (%) Specific Purification
activity ~ fold
(U /mg)

Crude extract 13,020 100 99 1

Ni-NTA 6,231 47.85 702 7.09

Gel filtration 2,000 15 1,000 10.1

Complete cell disruption was accomplished by French press (three
times at 2,500 psi) and a subsequent centrifugation (13,000xg) for
30 min at 4 °C for the complete removal of cell debris. The solution
was then loaded onto a Ni-NTA column. Two wash steps and four
elution steps followed. Elution samples showing activity were then
loaded onto a HiLoad 16/60 Superdex 200-pg gel filtration column.
The eluted x-amylase was subjected to a buffer change into Tris-HCI
buffer (50 mM, pH 7.0). One unit of x-amylase activity was defined as
the amount of enzyme needed to release 1 pmol maltose equivalent
reducing groups per minute
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Fig. 3 Effect of temperature and pH on the activity of the novel -
amylase. a For the determination of temperature optimum, recombi-
nant enzyme was incubated for 5 min in Tris—HCI buffer (50 mM, pH
7.0) at different temperatures (40—100 °C). Soluble starch was used as
substrate and the enzymatic reaction was carried out as described in
enzyme assays in “Materials and methods”. b For the determination of
pH optimum, recombinant enzyme was incubated for 5 min at 80 °C in
universal buffer (pH 3.0-12.0) with soluble starch as substrate

be salt-tolerant. NaCl was not required for activity; however,
optimal activity of the enzyme was observed in the presence
of 5 % (w/v) of NaCl (130 % relative to the sample without
NaCl). Amy13A was also enhanced by the addition of 10 %
(115 % relative activity) and 15 % (101 % relative activity).
The enzyme remained highly active with 20 % (75 % relative
activity) and 25 % NaCl (54 % relative activity) (Fig. 4a).
CaCl, was not required for the activity of the novel o-
amylase against soluble starch. Nonetheless, activity was

Table 2 Substrate

specificity of Amyl13A Substrate Specific
activity
(U/mg)
Soluble starch 1,000
Corn starch 850
Potato starch 790
Rice starch 340
Amylose 480
For the determination of =~ Amylopectin from corn 330
substr'ate specificity, re- Amylopectin from potato 70
F:ombmant enzyme was Pullulan ND.
incubated for 5 min in )
Tris—HCI buffer a-Cyclodextrin N.D.
(50 mM, pH 7.0) at 80 ° B-Cyclodextrin N.D.
C with different sub- y-Cyclodextrin N.D.

strates (0.5 %w/v)
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a Effect of NaCl Table 3 Effect of NaCl and CaCl, on the thermostability of Amy13A
140
£ 120 A Pre-incubation conditions Residual activity (%) after pre-incubation
- 1004 at 80 °C
2 80
° lh 2h
2 \
o 60 ~o
2 40 0 % NaCl, 0 mM CaCl, 16.5 5.3
©
Ex 20 5 % NaCl, 0 mM CaCl, 14.6 7.3
0 0 % NaCl, | mM CaCl, 66.3 51.1
0 5 10 5 20 25 59 NaCl, 1 mM CaCl, 648 49.9
NaCl (%)
The enzyme was pre-incubated at 80 °C for 1 h and 2 h with and
b Effect of CaCl, without the addition of 5 % (w/v) NaCl and/or 1 mM CaCl,. To
140 determine residual activity, soluble starch was used as substrate and
T 120 the enzymatic reaction was carried out at optimal conditions as de-
= scribed in enzyme assays in “Materials and methods”. The sample,
-§' 100 \\A without NaCl and CaCl,, which was removed after 0 min, was con-
5 80 - g * * sidered as 100 %
«
d>> 60
T 40 the activity was restored (relative activity around 30 %).
c 20 MgCl, and MnCl, inhibited enzyme activity considerably,
0 with residual activity of around 50 and 30 %, respectively,
0 5 10 15 20 25 while with the addition of FeCl;, ZnCl,, NiCl,, AICl;,
CaCl, (mM)

Fig. 4 a Effect of NaCl on the activity of Amy13A. The effect of NaCl
on the activity of the enzyme was determined using the standard assay
with 0.5 % soluble starch in Tris—HCI (50 mM, pH 7.0) at 80 °C for
5 min but with NaCl at final concentrations of 0-25 % (w/v). b Effect
of CaCl, on the activity of the novel x-amylase. The effect of CaCl, on
the activity of the enzyme was determined using the standard assay
with 0.5 % soluble starch in Tris—HCI1 (50 mM, pH 7.0) at 80 °C for
5 min but with CaCl, at final concentrations of 0-25 mM

enhanced with 1 mM (135 % relative to the sample without
CaCl,), 2 mM (118 %), 3 mM (110 %), and 4 mM of CaCl,
(106 %). At higher concentrations of CaCl, (5-25 mM), the
activity of the enzyme was slightly inhibited. At 25 mM of
CaCl,, the enzyme retained around 80 % of its activity
(relative to the sample without CaCl,) (Fig. 4b).

In the absence of NaCl and CaCl,, activity was rapidly
lost by preincubating Amy13A at 80 °C for 1 and 2 h, with
residual activity of 16 % and 5 %, respectively (relative to
the sample without NaCl and CaCl,, which was removed
after 0 min). Addition of 1 mM CaCl, improved the ther-
mostability of the enzyme after an incubation at 80 °C of 1 h
and 2 h (residual activity 66 % and 51 %, respectively),
while 5 % NaCl didn't have any noticeable effect (Table 3).

Influence of metal ions

The sample that was preincubated without the addition of
metal ions or EDTA was considered as 100 % relative
activity. None of the tested ions was able to enhance the
activity of Amy13A. EDTA (10 mM) significantly inhibited
enzyme activity (residual activity 11 %). Addition of CaCl,
to the preincubation mix relieved the inhibition and part of
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CoClj3, and CuCl,, no residual activity could be measured.

Discussion

The amylase, which has the highest identity to a putative
x-amylase from P. mobilis, was isolated from a bioreactor
which operates at 55 °C and at neutral pH, with a salt
content of around 2 g/I. It is very likely that the enzyme
is derived from Petrotoga genera, since optimal growth
conditions from Petrotoga sp. range between 55 and
60 °C and pH 6.6 to 7.5 (L'Haridon et al. 2002; Lien et
al. 1998; Miranda-Tello et al. 2007; Miranda-Tello et al.
2004). Regarding substrate specificity, like AmyB from H.
orenii, the enzyme hydrolyzes a variety of «-1,4-linked
glucans, such as starch, amylose, and amylopectin but is
not active on pullulan and («, 3, and y) cyclodextrin (Tan
et al. 2008).

Amylase activity was enhanced by the addition of CaCl,
(1-4 mM), whereas other tested ions had an inhibitory
effect. The majority of x-amylases are inhibited by metal
ions, and Zn2+, specifically, is a known inhibitor of thermo-
stable amylases (Hassan et al. 2011; Lin et al. 1998; Mamo
and Gessesse 1999; Park et al. 2010; Satheesh Kumar et al.
2010). Enhancement by calcium ions has been observed
with other «-amylases, such as AmyA from Thermotoga
maritima, AmyB from Thermotoga neapolitana, and AmyA
and AmyB from H. orenii (Liebl et al. 1997; Mijts and Patel
2002; Park et al. 2010; Tan et al. 2008). CaCl, was also
found to stabilize Amy13A in the absence of substrate after
an incubation of 1 and 2 h at 80 °C. CaCl, binding is
thought to increase the overall structural integrity and
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thermal stability of «x-amylases by promoting the salting out
of the hydrophobic residues in the protein causing the adop-
tion of a compact structure (Satheesh Kumar et al. 2010;
Violet and Meunier 1989). Additionally, a strong inhibitory
effect on Amy13A was observed with EDTA, but the activ-
ity could, at least partly, be restored by the addition of
CaCl,. This phenomenon was also seen with AmyC from
T. maritima MSB8 (Ballschmiter et al. 2006). In view of
that, it is assumed that either the conformational stability or
the catalytic reaction of Amyl3A requires calcium, indicat-
ing that this enzyme is Ca*"-dependent. Many o-amylases,
especially from GHF13, are known to depend on Ca®"
(Ballschmiter et al. 2006; Liebl et al. 1997).

Very few thermoactive oc-amylases were also halotolerant
(Mijts and Patel 2002; Tan et al. 2003; Tan et al. 2008).
Amy13A was found to be a salt-tolerant enzyme as it was
most active in the presence of 5 % (w/v) NaCl (1,300 U/
mg). The novel x-amylase retained high levels of activity
both in the absence and in the presence of up to 25 % (w/v)
of NaCl (1,000 U/mg and 540 U/mg, respectively). The
same was observed with AmyB from H. orenii which also
required 5 % NaCl for maximal activity and was active at 0
and 25 % NaCl (Tan et al. 2008). However, most enzymes
from extreme halophilic microorganisms are unstable or
inactive in the absence of NaCl. For example, the amylase
from Natronococcus sp. strain Ah36 is completely unstable
and inactive at submolar salt concentrations (Kobayashi et
al. 1992). It is postulated that AmyB forms a reversible
oligomeric form which maintains the structural integrity of
the protein when it is exposed to high levels of salinities
and/or temperatures and it reverses to the monomeric form
when the harsh conditions have passed (Tan et al. 2003; Tan
et al. 2008). Since Amy13A is predicted to share the same
3-D structure as AmyB, it is possible that Amy13A func-
tions in a similar way in the presence of high salinities and/
or temperatures.

Both AmyB from H. orenii and the novel Amy13A are
extremely interesting enzymes, since they are highly halo-
and thermoactive. However, Amy13A seems to be a more
attractive enzyme for many reasons. First of all, it has a
higher specific activity (1,000 U/mg vs. 485 U/mg). Second
of all, Amy13A has a higher optimal temperature and it is
more thermostable than its counterpart AmyB. In addition to
that, Amy13A retains higher activities at elevated salt con-
centrations. Finally, AmyB is strictly Ca**-dependent unlike
Amy13A which has high activity levels even in the absence
of CaCl, (Tan et al. 2008).

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribution,
and reproduction in any medium, provided the original author(s) and
the source are credited.
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