Skip to main content
. 2013 Jan 21;14:26. doi: 10.1186/1471-2105-14-26

Table 1.

Overview of performance of several methods and measures for prediction of motif enrichment on artificial and real datasets

Method or measure
Type
Artificial data
Real data
Reference
    Recall Precision F-measure Recall Precision F-measure  
LocaMo Finder (Gaussian)
local
0.755
0.609
0.674
0.371
0.757
0.498
this study
LocaMo Finder (uniform)
local
0.727
0.519
0.606
0.343
0.723
0.465
this study
RSAT (Binomial distribution) ($)
global
0.714
0.285
0.408
0.429
0.440
0.434
RSAT [40]
ORI (**)
global
0.677
0.386
0.492
0.343
0.563
0.426
this study
Hypergeometric distribution (*)
global
0.745
0.272
0.399
0.400
0.450
0.424
AlignACE [41]
Fisher’s exact test (*)
global
0.747
0.276
0.403
0.400
0.443
0.420
oPOSSUM [42]
ORI (*)
global
0.768
0.258
0.387
0.429
0.407
0.417
this study
RSAT (Binomial distribution) ($$)
global
0.591
0.498
0.541
0.271
0.607
0.375
RSAT [40]
Hypergeometric distribution (***)
global
0.605
0.522
0.560
0.243
0.706
0.361
AlignACE [41]
Fisher’s exact test (***)
global
0.605
0.530
0.565
0.243
0.667
0.356
oPOSSUM [42]
Casimiro et al.
local
0.727
0.053
0.099
0.629
0.132
0.218
[9]
Berendzen et al.
local
0.859
0.044
0.083
0.786
0.093
0.167
[1]
Vardhanabhuti et al.
local
0.409
0.079
0.133
0.314
0.090
0.139
[3]
FIRE (Information content)
global
0.586
0.342
0.432
0.100
0.200
0.133
FIRE [43]
TFM-Explorer
local
0.432
0.145
0.217
0.186
0.076
0.108
[6]
FREE
local
0.155
0.182
0.167
0.029
0.013
0.018
[5]
A-GLAM local 0.032 0.259 0.057 0.000 0.000 NA [4,27]

For each method or measure the type of measure (“local”: local enrichment of positioning; “global”: global enrichment), the recall, precision, and F-measure is given for the artificial and real datasets, as well as a reference. Methods are sorted by decreasing F-measure obtained on the real datasets. (*) P value threshold 0.01; (**) P value threshold 0.001; (***) P value threshold 1e-4; ($) sig threshold 0; ($$) sig threshold 2.