
1380 Biophysical Journal Volume 104 March 2013 1380–1390
The Energy Costs of Insulators in Biochemical Networks
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ABSTRACT Complex networks of biochemical reactions, such as intracellular protein signaling pathways and genetic
networks, are often conceptualized in terms of modules—semiindependent collections of components that perform a well-
defined function and which may be incorporated in multiple pathways. However, due to sequestration of molecular messengers
during interactions and other effects, collectively referred to as retroactivity, real biochemical systems do not exhibit perfect
modularity. Biochemical signaling pathways can be insulated from impedance and competition effects, which inhibit modularity,
through enzymatic futile cycles that consume energy, typically in the form of ATP. We hypothesize that better insulation neces-
sarily requires higher energy consumption. We test this hypothesis through a combined theoretical and computational analysis
of a simplified physical model of covalent cycles, using two innovative measures of insulation, as well as a possible new way to
characterize optimal insulation through the balancing of these two measures in a Pareto sense. Our results indicate that indeed
better insulation requires more energy. While insulation may facilitate evolution by enabling a modular plug-and-play intercon-
nection architecture, allowing for the creation of new behaviors by adding targets to existing pathways, our work suggests that
this potential benefit must be balanced against the metabolic costs of insulation necessarily incurred in not affecting the behavior
of existing processes.
INTRODUCTION
A ubiquitous motif in signaling pathways responsible for
a cell’s response to environmental stimuli is the ATP-
consuming phosphorylation-dephosphorylation (PD) enzy-
matic cycle, in which a substrate is converted into product
in an activation reaction triggered or facilitated by an
enzyme, and subsequently the product is transformed back
(or deactivated) into the original substrate, helped on by
the action of a second enzyme. For example, a large variety
of eukaryotic cell signal transduction processes (1–4) rely
upon Mitogen-activated protein kinase cascades for some
of the most fundamental processes of life (cell proliferation
and growth, responses to hormones, apoptosis), and these
are built upon cascades of PD cycles. More generally, this
type of reaction, often called a futile, substrate, or enzymatic
cycle (5), shows up in many other prokaryotic and eukary-
otic systems, including, for example, bacterial two-compo-
nent systems and phosphorelays (6,7), GTPase cycles (8),
actin treadmilling (9), glucose mobilization (10), metabolic
control (11), cell division and apoptosis (12), and cell-cycle
checkpoint control (13). Many reasons have been proposed
for the existence of these futile cycles. In some cases,
their function is dictated by the underlying physical
chemistry; this may be the case in transmembrane signal
transduction, or in metabolic processes that drive energeti-
cally unfavorable transformations. In other contexts, and
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particularly in signaling pathways, there has been specula-
tion that futile cycles play a role ranging from signal
amplification to analog-to-digital conversion that triggers
decision-making such as cell division (1). An alternative
view is that futile cycles can act as insulators that minimize
retroactivity impedance effects arising from interconnec-
tions. In that role, enzymatic cycles might help enable
a plug-and-play interconnection architecture that facilitates
evolution (14–16).

An important theme in contemporary molecular biology
literature is the attempt to understand cell behavior in terms
of cascades and feedback interconnections of more elemen-
tary modules, which may be reused in different pathways
(17–19). Modular thinking plays a fundamental role in the
prediction of the behavior of a system from the behavior
of its components, guaranteeing that the properties of indi-
vidual components do not change upon interconnection.
Intracellular signal transduction networks are often thought
of as modular interconnections, passing along information
while also amplifying or performing other signal-processing
tasks. It is assumed that their operation does not depend
upon the presence or absence of downstream targets to
which they convey information. However, just as electrical,
hydraulic, and other physical systems often do not display
true modularity, one may expect that biochemical systems,
and specifically, intracellular protein signaling pathways
and genetic networks, do not always connect in an ideal
modular fashion.

Motivated by this observation, the article (14) dealt with
a systematic study of the effect of interconnections on the
input/output dynamic characteristics of signaling cascades.
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Following Saez-Rodriguez et al. (20), the term ‘‘retroac-
tivity’’ was introduced for generic reference to such effects,
which constitute an analog of nonzero output impedance in
electrical and mechanical systems, and retroactivity in
several simple models was quantified. It was shown how
downstream targets of a signaling system (loads) can
produce changes in signaling, thus propagating backward
(and sideways) information about targets. Further theoret-
ical work along these lines was reported in Ossareh et al.
(15), Kim and Sauro (16), Del Vecchio and Sontag (21),
and Sontag (22). Experimental verifications were reported
in Ventura et al. (23) and in Jiang et al. (24), using a covalent
modification cycle based on a reconstituted uridylyltransfer-
ase/uridylyl-removing enzyme PII cycle, which is a model
system derived from the nitrogen assimilation control
network of Escherichia coli.

The key reason for retroactivity is that signal transmission
in biological systems involves chemical reactions between
signaling molecules. These reactions take a finite time to
occur, and during the process, while reactants are bound
together, they generally cannot take part in the other dynam-
ical processes that they would typically be involved in
when unbound. One consequence of this sequestering effect
is that the influences are also indirectly transmitted laterally,
in that for a single input-multiple output system, the output
to a given downstream system is influenced by other
outputs.

To attenuate the effect of retroactivity, Del Vecchio et al.
(14) proposed a negative feedback mechanism inspired
by the design of operational amplifiers in electronics,
employing a mechanism implemented through a covalent
modification cycle based on phosphorylation-dephosphory-
lation reactions. For appropriate parameter ranges, this
mechanism enjoys a remarkable insulation property,
having an inherent capacity to shield upstream components
from the influence of downstream systems and hence to
increase the modularity of the system in which it is
placed. One may speculate whether this is indeed one
reason that such mechanisms are so ubiquitous in cell
signaling pathways. Leaving aside speculation, however,
one major potential disadvantage of insulating systems
based on operational amplifier ideas is that they impose
a metabolic load, ultimately because amplification requires
energy expenditure.

Thus, a natural question to ask from a purely physical
standpoint: Does better insulation require more energy
consumption? This is the article’s subject.We provide a qual-
ified positive answer: for a specific (but generic) model of
covalent cycles, natural notions of insulation and energy
consumption, and a Pareto-like view of multiobjective opti-
mization, we find, using a numerical parameter sweep in
our models, that better insulation indeed requires more
energy.

In addition to this positive answer in itself, two major
contributions of this work are:
1. Introduction of the innovative measures of retroactivity
combined with insulation, in terms of two competing
goals: minimization of the difference between the output
of the insulator and the ideal behavior, and attenuation of
the competition effect (the change in output when a new
downstream target is added).

2. Introduction of a possible new way to characterize opti-
mality through balancing of these goals in a Pareto sense.

These contributions should be of interest even in other
studies of insulation that do not involve energy use.

The relationship between energy use and optimal biolog-
ical function is an active theme of contemporary research
that has been explored in several different contexts. Recent
studies have examined the need for energy dissipation when
improving adaptation speed and accuracy, in the context of
perfect adaptation (25), and when performing computation,
such as sensing the concentration of a chemical ligand in the
environment (26). The tradeoff between the energy expendi-
ture necessary for chemotaxis and the payoff of finding
nutrients has also been considered (27), yielding insights
into the costs and benefits of chemotactic motility in
different environments. Such studies are important in char-
acterizing the practical constraints guiding evolutionary
adaptation.

Our work contributes to this research by relating the
metabolic costs of enzymatic futile cycles with their
capacity to act as insulators, facilitating modular intercon-
nections in biochemical networks. While energy use in PD
cycles has been related to noise filtering properties (28)
and switch stability (29), to our knowledge our work is
the first to explore the connection between energy use and
insulation. Recent work demonstrates that enzymatic futile
cycles can be key components in providing amplification
of input signals, while linearizing input-output response
curves (30,31). We show that these properties come at
a cost: better performance of the PD cycle as an insulator
requires more energy use.
MATHEMATICAL MODEL OF THE BASIC SYSTEM

We are interested in biological pathways that transmit
a single, time-dependent input signal to one or more down-
stream targets. A prototypical example is a transcription
factor Z, which regulates the production of one or more
proteins by binding directly to their promoters, forming
a protein-promoter complex. Assuming a single promoter
target for simplicity, this system is represented by the set
of reactions

B!kðtÞ Z/
d

B;

Z þ p#
kon

koff
C;

(1)

where p stands for the promoter and C denotes the protein-

promoter complex. For our analysis, the particular
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interpretation of Z, p, and C will not be important. One
thinks of Z as describing an upstream system that regulates
the downstream target C. Although mathematically the
distinction between upstream and downstream is somewhat
artificial, the roles of transcription factors as controllers of
gene expression, or of enzymes on substrate conversions,
and not the opposite, are biologically natural and accepted.

We adopt the convention that the (generally time-
dependent) concentration of each species is denoted by
the respective italics symbol; for example, X ¼ X(t) is the
concentration of X at time t. We assume that the transcrip-
tion factor Z is produced or otherwise activated at a time-
dependent rate k(t), and decays at a rate proportional to
a constant d, and that the total concentration of the promoter
ptot is fixed. This leads to a set of ordinary differential equa-
tions (ODEs) describing the dynamics of the system,

dZ

dt
¼ kðtÞ � dZ � konZðptot � CÞ þ koffC;

dC

dt
¼ konðptot � CÞZ � koffC:

(2)

The generalization of these equations to the case of multiple
output targets is straightforward. Protein synthesis and
degradation take place on timescales that are orders of
magnitude larger than the typical timescales of small mole-
cules binding to proteins, or of transcription factors binding
to DNA (32). Thus, we will take the rates k(t) and d to be
much smaller than other interaction rates such as kon and
koff. In Eq. 1, Z represents the input, and C the output.
The ideal system and the distortion measure

Sequestration of the input Z by its target p affects the
dynamics of the system as a whole, distorting the output
to C as well as to other potential downstream targets. In
an ideal version of Eq. 2, where sequestration effects could
be ignored, the dynamics would instead be given by

dZ

dt
¼ kðtÞ � dZ;

dC

dt
¼ konðptot � CÞZ � koffC:

(3)

The term �konZðptot � CÞ þ koffC that was removed from
the first equation represents a ‘‘retroactivity’’ term, ex-
pressed in the language of Del Vecchio et al. (14). This is
the term that quantifies how the dynamics of the upstream
species Z is affected by its downstream target C. In the ideal
system presented in Eq. 3, the transmission of the signal
from input to output is undisturbed by retroactivity effects.
We thus use the relative difference between the output signal
in a system with realistic dynamics and the ideal output, as
given by the solution of Eq. 3, as a measure of the output
signal distortion, and define the distortion D to be
Biophysical Journal 104(6) 1380–1390
D ¼ 1

sCideal

hjCidealðtÞ � CrealðtÞji; (4)

where hj$ji denotes a long time average. Here we normalize
by dividing by the standard deviation of the ideal signal,

sCideal
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðCidealðtÞ � hCidealðtÞiÞ2
�q
: (5)

Thus, Eq. 4 measures the difference between the output in

the real and ideal systems, in units of the typical size of
the time-dependent fluctuations in the ideal output signal.
Fan-out: multiple targets

Another consequence of sequestration effects is the interde-
pendence of the output signals to different downstream
targets connected in parallel (33). Each molecule of Z
may only bind to a single promoter at a time, thus intro-
ducing a competition between the promoters to bind with
the limited amount of Z in the system. This is a question
of practical interest, as transcription factors typically control
a large number of target genes. For example, the tumor
suppressor protein p53 has well over a hundred targets
(34). A similar issue appears in biochemistry, where promis-
cuous enzymes may affect even hundreds of substrates. For
example, alcohol dehydrogenases target ~100 different
substrates to break down toxic alcohols and to generate
useful aldehyde, ketone, or alcohol groups during biosyn-
thesis of various metabolites (35).

We quantify the size of the competition effect by the
change in an output signal to a given target in response to
an infinitesimal change in the abundance of another parallel
target. For definiteness, consider Eq. 1 with an additional
promoter p0, which bonds to Z to form a complex C0 with
the same on/off rates as p,

Z þ p0#
kon

koff
C0;

and the corresponding equation added to Eq. 2,
dC0

dt
¼ kon

�
p0tot � C0�Z � koffC

0:

We then define the competition effect of the system Eq. 2 as
C ¼ 1

sC

*�����
�
vCðtÞ
vp0tot

	����
p0tot ¼ 0

�����
+
: (6)

Again, we normalize by the standard deviation of the output

signal C(t),

sC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ðCðtÞ � hCðtÞiÞ2�q

; (7)

computed with p0tot ¼ 0, so that Eq. 6 measures the change

in the output signal when an additional target is introduced
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relative to the size of the fluctuations of the output in the
unperturbed system.
MATHEMATICAL MODEL OF AN INSULATOR

As shown in Fig. 1, typical performance of the simple direct
coupling system defined by Eq. 2 is poor, assuming, as in
Del Vecchio et al. (14), that we test the system with a simple
sinusoidally varying production rate

kðtÞ ¼ kð1þ sin utÞ; (8)

whose frequency u is similar in magnitude to k and d.
Oscillation of the output signal in response to the time-
varying input is strongly damped relative to the ideal.
The output is also sensitive to other targets connected in
parallel: as the total load increases, the output signal is
noticeably damped in both the transient and steady state.
Here the flux of Z into and out of the system is too slow
to drive large changes in the output C as the rate of produc-
tion k(t) varies.

As suggested in Del Vecchio et al. (14), the retroactivity
effects in this system can be ameliorated by using an
intermediate signal processing system, specifically one
based on a phosphorylation-dephosphorylation (PD) futile
cycle, between the input and output. Such systems appear
often in signaling pathways that mediate gene expression
responses to the environment (32). In this system, the
input signal Z plays the role of a kinase, facilitating the
phosphorylation of a protein X. The phosphorylated
version of the protein X* then binds to the target p to trans-
mit the signal. Dephosphorylation of X* is driven by a
phosphatase Y. Assuming a two-step model of the phos-
phorylation-dephosphorylation reactions, the full set of
reactions is
A

B

C

output signal in a system with a single target (solid) is compared with the output

amplitude of variation of the output in the DC system. Plots of the output signals i

plot was made using the parameters k(t) ¼ 0.01(1 þ sin(0.005t)); d ¼ 0.01; a1 ¼
800, Ytot ¼ 800 for the insulator. Parameters specifying the interaction with the n
[!kðtÞ Z/
d

[;

Z þ X#
b1

b2

C1!k1 X� þ Z;

Y þ X�#
a1

a2
C2!k2 X þ Y;

X� þ p#
kon

koff
C:

(9)

The total protein concentrations Xtot and Ytot are fixed.

The forward and reverse rates of the phosphorylation-

dephosphorylation reaction depend implicitly on the
concentrations of phosphate donors and acceptors, such as
ATP and ADP. Metabolic processes ensure that these
concentrations are held far away from equilibrium, biasing
the reaction rates and driving the phosphorylation-dephos-
phorylation cycle out of equilibrium. As routinely done in
enzymatic biochemistry analysis, we have made the simpli-
fying assumption of setting the small rates of the reverse
processes X* þ Z / C1 and X þ Y / C2 to zero. The
ODEs governing the dynamics of the system are then

dZ

dt
¼ kðtÞ � dZ � b1ZðXtot � C1 � C2 � C� X�Þ

þðb2 þ k1ÞC1;

dC1

dt
¼ b1ZðXtot � C1 � C2 � C� X�Þ � ðb2 þ k1ÞC1;

dC2

dt
¼ a1X

�ðYtot � C2Þ � ða2 þ k2ÞC2;

dX�

dt
¼ k1C1 � a1X

�ðYtot � C2Þ þ a2C2

�konX
�ðptot � CÞ þ koffC;

dC

dt
¼ konX

�ðptot � CÞ � koffC:

(10)
FIGURE 1 Retroactivity effects lead to signal

distortion, and attenuation of output signals when

additional targets are added. Comparison of retro-

activity effects on a signaling system with a direct

coupling (DC) architecture (left) and one with an

insulator, represented by a phosphorylation-

dephosphorylation cycle (right). (A) Cartoon sche-

matic of the signaling system. In the DC system

(Eq. 1), the input binds directly to the target.

With an insulator (Eq. 9), the input drives phos-

phorylation of an intermediate signaling molecule,

whose phosphorylated form binds to the target. (B)

Illustration of distortion. The ideal output signal

(dashed, and see Eq. 3 in text) with retroactivity

effects neglected, is plotted against the output for

each system with nonlinear dynamics (solid), given

by Eq. 2 for the DC system and Eq. 10 for the insu-

lator. (C) Illustration of competition effect. The

signal when multiple targets are present (dashed). Note the greatly reduced

n each system are shown in the steady state, over a single period of k(t). This

b1 ¼ 0.01; a2 ¼ b2 ¼ k1 ¼ k2 ¼ 10; kon ¼ koff ¼ 10; ptot ¼ 100; and Xtot ¼
ew promoter p

0
in the perturbed system are k

0
on ¼ k

0
off ¼ 10, and p

0
tot ¼ 60.
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In an Appendix, we provide mathematical results regarding
the stability of this system of ODEs in response to the peri-
odic rate k(t), justifying our focus on long-time steady-state
behavior.

As shown in Fig. 1, for suitable choices of parameters the
output signal in the system including the PD cycle is able to
match the ideal output much more closely than in the direct
coupling system. The output signal is also much less sensi-
tive to changes in other targets connected in parallel than in
the system where the input couples directly to the promoter.
One can think of this system with the insulator as equivalent
to the direct coupling system, but with effective production
and degradation rates

keffðtÞ ¼ k1C1 þ a2C2;

deff ¼ a1ðYtot � C2Þ;
(11)

which may be much larger than the original k(t) and d, thus
allowing the system with the insulator to adapt much more
rapidly to varying input.

The fact that the PD cycle is driven out of equilibrium,
therefore consuming energy, is critical for its signal process-
ing effectiveness. Our focus will be on how the performance
of the PD cycle as an insulator depends upon its rate of
energy consumption.

Our hypothesis is that better insulation requires more
energy consumption. To formulate a more precise question,
we need to find a proxy for energy consumption in our
simple model.
Energy use and insulation

The free energy consumed in the PD cycle can be expressed
in terms of the change in the free energy of the system DG
resulting from the phosphorylation and subsequent dephos-
phorylation of a single molecule of X. One can also measure
the amount of ATP which is converted to ADP, which is
proportional to the current through the phosphorylation
reaction C1/ X*þ Z. In the steady state, because the phos-
phorylation and dephosphorylation reactions are assumed to
be irreversible and the total concentration Xtot is fixed, the
time averages of these two measures are directly propor-
tional. The average free energy consumed per unit time in
the steady state is then proportional to the average current

J ¼ hk1C1i: (12)

Different choices of the parameters appearing in the phos-

phorylation and dephosphorylation reactions, such as k1,
k2, and Xtot, will lead to different rates of energy use and
also different levels of performance in terms of the compe-
tition effect and distortion.

We focus our attention on the concentrations Xtot and Ytot
as tunable parameters. While the reaction rates such as k1
and k2 depend upon the details of the molecular structure
Biophysical Journal 104(6) 1380–1390
and are harder to directly manipulate, concentrations of
stable molecules like X and Y can be experimentally
adjusted, and hence the behavior of the PD cycle as a func-
tion of Xtot and Ytot is of great practical interest. When
building synthetic circuits in living cells, for example, Xtot

and Ytot can be tuned by placing the genes that express these
proteins under the control of constitutive promoters of
adjustable strengths, or through the action of inducers (36).
Comparing different parameters in the insulator:
Pareto optimality

In measuring the overall quality of our signaling system, the
relative importance of faithful signal transmission, as
measured by small distortion, and a small competition
effect, will vary. This means that quality is intrinsically
a multiobjective optimization problem, with competing
objectives. Rather than applying arbitrary weights to each
quantity, we will instead approach the problem of finding
ideal parameters for the PD cycle from the point of view
of Pareto optimality, a standard approach to optimization
problems with multiple competing objectives that was orig-
inally introduced in economics (37). In this view, one seeks
to determine the set of parameters of the system for which
any improvement in one of the objectives necessitates
a sacrifice in one of the others. Here, the competing objec-
tives are the minimization of D and C.
A Pareto optimal choice of the parameters is one for

which there is no other choice of parameters that gives
a smaller value of both D and C. Pareto optimal choices,
also called Pareto efficient points, give generically optimum
points with respect to arbitrary positive linear combinations
aD þ bC, thus eliminating the need to make an artificial
choice of weights.
An informal analysis

A full mathematical analysis of the system of nonlinear
ODEs in Eq. 10 is difficult. In biologically plausible param-
eter ranges, however, certain simplifications allow one to
develop intuition about its behavior. We discuss now this
approximate analysis, to set the stage for, and to help inter-
pret the results of, our numerical computations with the full
nonlinear model.

We make the following Ansatz: the variables Z(t) and
X*(t) evolve more slowly than C1(t), C2(t), and C(t). Bio-
chemically, this is justified because phosphorylation and
dephosphorylation reactions tend to occur on the timescale
of seconds (38,39), as do transcription factor promoter
binding and unbinding events (32), while protein production
and decay takes place on the timescale of minutes (32). In
addition, we analyze the behavior of the system under the
assumption that the total concentrations of enzyme and
phosphatase, Xtot and Ytot, are large. In terms of the constants
appearing in Eq. 10, we assume
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K1 ¼ b2 þ k1
b1

[Xtot [1;

K2 ¼ a2 þ k2
a1

[ Ytot [1;

fkðtÞ; dg � kon z koff :

(13)

Thus, on the timescale of Z(t) and X*(t), we can make the
quasi-steady-state (Michaelis-Menten) assumption that
C1(t), C2(t), and C(t) are at equilibrium. Setting the right-
hand sides of dC1=dt, dC2=dt, and dC=dt to zero, and
substituting in the remaining two equations of Eq. 10, we
obtain the following system:

dZ

dt
zkðtÞ � dZ;

dX�

dt
zk1C1 � k2C2:

The lack of additional terms in the equation for Z(t) is
a consequence of the assumption that K1 >> Xtot, which
amounts to a low binding affinity of Z to its target X (relative
to the concentration of the latter); this follows from a total
quasi-steady-state approximation as in Ciliberto et al. (40)
and Borghans et al. (41). Observe that such an approximation
is not generally possible for the original system Eq. 1, and
indeed this is the key reason for the retroactivity effect (14).

With the above assumptions, in the system with the insu-
lator, Z(t) evolves approximately as in the ideal system
Eq. 3. In this quasi-steady-state approximation

C1z

�
1

K1

	
ðXtot � C1 � C2 � CÞZz

�
1

K1

	
XtotZ

and
C2z

�
1

K2

	
ðYtot � C2ÞX�z

�
1

K2

	
YtotX

�;

and thus we have
dX�

dt
z

�
k1
K1

	
XtotZ �

�
k2
K2

	
YtotX

�:

Finally, let us consider the effect of the following condition:

FIGURE 2 Performance of the insulator measured by the competition

effect C and distortion D of the output in the system with an insulator

(Eq. 10), tested over a range of Xtot and Ytot varied independently from

10 to 10,000 in logarithmic steps. For simplicity, C and D are rescaled

such that the smallest (best) values are equal to one. Points are shaded ac-

cording to the logarithm of the rate of energy consumption of the PD cycle.
�
k1
K1

	
Xtotz

�
k2
K2

	
Ytot[1: (14)

If this condition is satisfied, then
(Solid dots) Pareto efficient parameter points. Rates of energy consumption

increase as one approaches the Pareto front; obtaining small values of

the competition effect is particularly costly. (Open dot) For comparison,

C andD positions for the direct coupling system are marked. See Numerical

Results on Pareto Optimality for details. This plot was made using the

parameters k(t) ¼ 0.01(1 þ sin(0.005t)), d ¼ 0.01, a1 ¼ b1 ¼ 0.01, a2 ¼
b2 ¼ k1 ¼ k2 ¼ 10, kon ¼ koff ¼ 10, and ptot ¼ 100.
dX�

dt
zKðZ � X�Þ;

with K >> 1, which means that X*(t) z Z(t), and thus the
equation for dC=dt in Eq. 10 reduces to that for the ideal
system in Eq. 3. In summary, if Eq. 14 holds, we argue
that the system with the insulator will reproduce the
behavior of the ideal system, instead of the real system in
Eq. 2. Moreover, the energy consumption rate in Eq. 12 is
proportional to k1C1 z (k1/K1)XtotZ, and hence will be large
if Eq. 14 holds, which intuitively leads us to expect high
energy costs for insulation.

These informal arguments (or more formal ones based on
singular perturbation theory (14)) justify the sufficiency, but
not the necessity, of Eq. 14. Our numerical results will show
that this condition is indeed satisfied for a wide range of
parameters that lead to good insulation.
NUMERICAL RESULTS ON PARETO OPTIMALITY

We have explored the performance of the insulating PD
cycle over an extensive range of parameters to test our
hypothesis that better insulation requires more energy
consumption. In Fig. 2 we show a plot of C and D for
systems with a range of Xtot and Ytot, obtained by numerical
integration of the differential equations expressed in Eq. 10
(see also Fig. 3 for a three-dimensional view). Pareto
optimal choices of parameters on the tested parameter space
are indicated by solid points.

Superior performance of the insulator is clearly associ-
ated with higher rates of energy consumption, as shown in
the figure. Typically the rate of energy consumption
increases as one approaches the set of Pareto optimal points,
referred to as the Pareto front. Indeed, choices of parameters
Biophysical Journal 104(6) 1380–1390



FIGURE 3 Three-dimensional plot of competition effect C and distortion

D, along with the rate of energy consumption J, in the system including an

insulator (Eq. 10). Note the fold in the plot; it is possible for two different

values of the parameters to yield the same measures of insulation C and D,

but with different rates of energy consumption.

FIGURE 4 Scatter plot of the Pareto optimal sets of parameters Xtot and

Ytot corresponding to those in Figs. 2 and 3. Pareto optimal points are typi-

cally those which strike a balance between the total concentrations of X and

Y, as suggested by the analysis of Mathematical Model of an Insulator. We

predict that Pareto optima will lie along the line (k1/K1)Xtot ¼ (k2/K2)Ytot
(shown in background, prediction from Eq. 14), in good agreement with

the simulation results. Each point is shaded according to the rate of energy

consumption for that choice of parameters. Increases in either Xtot or Ytot
result in increased energy expenditure. Due to the limited range of param-

eters that could be tested, some Pareto optima lie along the boundaries of

the parameter space (see the elbow in the scatter points, top of the plot).
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on or near the Pareto front have some of the highest rates of
energy expenditure. Conversely, the parameter choices that
have the poorest performance also consume the least energy.
As shown above, this phenomenon can be understood by
noting that the energy consumption rate from Eq. 12 will
be large when the conditions for optimal insulation from
Eq. 14 are met.

Note that it is possible for two different choices of the
parameters Xtot and Ytot to yield the same measures of insu-
lation C and D, but with different rates of energy consump-
tion. This results in a fold in the sheet in Fig. 2, most
clearly observed near D ¼ 10 and C ¼ 4. We see then that
while better insulation generally requires larger amounts
of energy consumption, it is not necessarily true that
systems with high rates of energy consumption always
make better insulators. See also the three-dimensional plot
of C, D, and J shown in Fig. 3 for a clearer picture.

In addition to the general trend of increasing energy
consumption as competition effect or distortion decrease,
we find that a strong local energy optimality property is satis-
fied. We observe numerically that any small change in the
parameters Xtot and Ytot, which leads to a decrease in both
the competition effect and distortion, must be accompanied
by an increase in the rate of energy consumption, excluding
jumps from one side of the fold to the other. This local
property complements the global observation that Pareto
optimal points are associated with the regions of parameter
space with the highest rates of energy consumption.

While we find Pareto optimal choices of the concentra-
tions Xtot and Ytot span several orders of magnitude, the ratio
of Xtot to Ytot is close to unity for nearly all Pareto optima
(see Fig. 4). A small number of Pareto optimal points are
Biophysical Journal 104(6) 1380–1390
found with very different total concentrations of X and Y,
but these points appear to be due to boundary effects from
the sampling of a finite region of the parameter space.
Indeed, we have argued that the insulator should perform
best when Eq. 14 is satisfied. For the choice of parameters
considered here, this gives Xtot/Ytot ¼ (k2K1)/(k1K2) ¼ 1.
Tests with randomized parameters confirm that Eq. 14 gives
a good estimate of the relationship between Xtot and Ytot for
Pareto optimal points (see Fig. 5 for an example).

We also observe that there is a lower bound on the
concentration of Xtot and Ytot for optimal insulation. Though
we tested ranges of concentrations from 10 to 10,000, the
first optimal points only appear when the concentrations
are ~500, several times larger than the concentration of
the target (ptot ¼ 100) and much larger than the concentra-
tion of the signal protein (Zmax z 2 in our simulations).
Interestingly, the insulator consumes less energy for these
first Pareto optimal parameter choices than at higher
concentrations, and achieves the best measures of distortion
with relatively low competition effect as well. This suggests
that smaller concentrations may be generically favored,
particularly when energy constraints are important.

We conclude that the specification of Pareto optimality
places few constraints on the absolute concentrations Xtot

and Ytot in the model, save for a finite lower bound, but
the performance of the insulator depends strongly on the
ratio of the two concentrations. This observation connects
with the work of Gutenkunst et al. (42), who noted sloppy



FIGURE 5 Scatter plot of the Pareto optimal sets of parameters Xtot and

Ytot for an insulator using the randomly shifted parameters. Based on Eq. 14,

we predict that Pareto optima will lie along the line (k1/K1)Xtot¼ (k2/K2)Ytot
(shown in background). Parameters used are k(t)¼ 0.0137(1þ sin(0.005t));

d¼ 0.0188; a1¼ 0.0107; b1¼ 0.0102; a2¼ 5.31; b2¼ 16.42; k1¼ k2¼ 10;

kon ¼ 5.19; koff ¼ 12.49; and ptot ¼ 100. Each point is shaded according to

the rate of energy consumption for that choice of parameters (scale analo-

gous to that of Figs. 2–4).
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parameter sensitivity for many variables in systems biology
models, excepting some stiff combinations of variables that
determine a model’s behavior.

For comparison, we indicate the values of D and C of the
simpler direct coupling architecture, with no insulator, by an
open dot in Fig. 2. While many choices of parameters for the
insulating PD cycle, including most Pareto optimal points,
lead to improvements in the distortion relative to that of
the direct coupling system, the most dramatic improvement
is in fact in the competition effect. Roughly 85% of the
parameter values tested for the insulator have a lower value
of the competition effect than that found for the direct
coupling system. This suggests that insulating PD cycles
may be functionally favored over simple direct binding
interactions, particularly when there is strong pressure for
stable output to multiple downstream systems.

Finally, we note that the analysis performed here has not
factored in the potential metabolic costs of production for X
and Y. Such costs would depend on the structure of these
components, as well as their rates of production and degra-
dation, which we have not addressed and which may be
difficult to estimate in great generality. However, as the
rate of energy consumption increases with increasing Xtot

and Ytot (see Fig. 4), we would expect to find similar quali-
tative results regarding rates of energy consumption even
when factoring in production costs.
DISCUSSION

A very common motif in cell signaling is that in which
a substrate is ultimately converted into a product, in an acti-
vation reaction triggered or facilitated by an enzyme, and,
conversely, the product is transformed back (or deactivated)
into the original substrate, helped on by the action of
a second enzyme. This type of reaction, often called a futile,
substrate, or enzymatic cycle, appears in many signaling
pathways: GTPase cycles (8); bacterial two-component
systems and phosphorelays (6,7); actin treadmilling (9);
glucose mobilization (10); metabolic control (11); cell divi-
sion and apoptosis (12); and cell-cycle checkpoint control
(13). See Samoilov et al. (5) for many more references
and a discussion. While phosphorelay systems do not
consume energy, most of these futile cycles consume
energy, in the form of ATP or GTP use.

In this work we explored the connection between the
ability of energy consuming enzymatic futile cycles to insu-
late biochemical signaling pathways from impedance and
competition effects, and their rate of energy consumption.
Our hypothesis was that better insulation requires more
energy consumption. We tested this hypothesis through
the computational analysis of a simplified physical model
of covalent cycles, using two innovative measures of insula-
tion, referred to as competition effect and distortion, as well
as a possible new way to characterize optimal insulation
through the balancing of these two measures in a Pareto
sense. Our results indicate that indeed better insulation
requires more energy.

Testing a wide range of parameters, we identified Pareto
optimal choices that represent the best possible ways to
compromise two competing objectives: the minimization
of distortion and of the competition effect. The Pareto
optimal points share two interesting features: First, they
consume large amounts of energy, consistent with our
hypothesis that better insulation requires greater energy
consumption. Second, the total substrate and phosphatase
concentrations Xtot and Ytot typically satisfy Eq. 14.
Assuming that rates for phosphorylation and dephosphory-
lation are similar, this implies Xtot ~ Ytot. There is also
a minimum concentration required to achieve a Pareto
optimal solution; arbitrarily low concentrations do not yield
optimal solutions. Interestingly, insulators with Pareto
optimal choices of parameters close to the minimum
concentration also expend the least amount of energy,
compared to other parameter choices on the Pareto front,
and have the least distortion while still achieving low
competition effect. This suggests that these points near the
minimum concentration might be generically favored,
particularly when energy constraints are important.

Many reasons have been proposed for the existence of
futile cycles in nature, such as signal amplification,
increased sensitivity, or analog-to-digital conversion for
help in decision-making. An alternative, or at least comple-
mentary, possible explanation (14) lies in the capabilities of
such cycles to provide insulation, thus enabling a plug-and-
play interconnection architecture that might facilitate evolu-
tion. Our results suggest that better insulation requires
Biophysical Journal 104(6) 1380–1390
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a higher energy cost, so that a delicate balance may exist
between, on the one hand, the ease of adaptation through
creation of new behaviors by adding targets to existing path-
ways, and on the other hand, the metabolic costs necessarily
incurred in not affecting the behavior of existing processes.

Our results were formulated for a model in which the
input signal is a transcription factor Z that regulates the
production of one or more proteins by promoter binding,
as described by Eq. 1. We have analyzed (details not given
here) another model, and derived a similar qualitative
conclusion: namely, that higher energy is required to
attain better insulation and is also required for chemical
reactions that describe signaling systems in which Z denotes
the active form of a kinase; and that p is a protein target
which can be reversibly phosphorylated to give a modified
form C.
APPENDIX

In this article we have studied numerical solutions of the set of ODEs given

in Eq. 10. For the values of parameters we tested, solutions of Eq. 10 are

well behaved, and after long times approach a periodic steady-state solu-

tion, where the period T is the same as that of the sinusoidal time-varying

production rate k(t) given in Eq. 8. We present analytical results that verify

that solutions of Eq. 10 are well behaved for more general choices of param-

eters. In particular, we prove that:

1. For an approximate one-step enzymatic model, a unique and globally

attracting solution exists in response to any periodic input.

2. There is always a periodic solution of Eq. 10 in response to any periodic

input k(t).

3. Given some very general physical assumptions for the parameters, solu-

tions of Eq. 10 are linearly stable around an equilibrium point when the

input is constant. When the input is time-varying with small amplitude

oscillations, a periodic solution exists that is close to each asymptoti-

cally stable equilibrium point.

The first proof is shown below, and proofs for the second and third results

are given in the Supporting Material.
Globally attracting periodic solutions for
a one-step model

We now provide a theoretical analysis showing that there is a unique and

globally attracting response to any periodic input, under the assumption

that the phosphorylation and dephosphorylation reactions are well approx-

imated by the one-step enzymatic model (43):

[!kðtÞ Z/
d

[;

Z þ X!k1 X� þ Z;

Y þ X�!k2 X þ Y;

X� þ p#
kon

koff
C:

(15)

(A similar simplified system was used in Del Vecchio et al. (14) to study

the sensitivity of retroactivity to parameters.) Such a model can be obtained

in the limit that k1,k2 / N in Eq. 10, as considered previously, where

now the rates k1 and k2 in Eq. 15 are equivalent to b1 and a1, respectively,

in Eq. 10.
Biophysical Journal 104(6) 1380–1390
The conservation of X and p give the conservation equations X þ X* þ
C¼ Xtot and pþ C¼ ptot. We thus obtain the following set of nonlinear dif-

ferential equations, where k(t) is a positive and time-varying input function:

dZ

dt
¼ kðtÞ � dZ;

dX�

dt
¼ k1ZðXtot � X� � CÞ � k2YX

� þ koffC

�konX
�ðptot � CÞ;

dC

dt
¼ �koffCþ konX

�ðptot � CÞ:

Observe that the amount of phosphatase Y is constant. Because X ¼ Xtot –

X*�CR 0 and p¼ ptot – CR 0, physically meaningful solutions are those
that lie in the set S of vectors (Z(t), X*(t), and C(t)), which satisfy the

constraints

ZðtÞR0;X�ðtÞR0; 0%CðtÞ%ptot;X
�ðtÞ þ CðtÞ%Xtot:

Observe that any solution that starts in the set S at time t ¼ 0 stays in S
for all t > 0, because dZ/dt R 0 when Z ¼ 0; dX*/dt R 0 when X* ¼ 0;

dC/dt R 0 when C ¼ 0; d(X* þ C)/dt % 0 when X* þ C ¼ Xtot;

and dC/dt % 0 when C ¼ ptot. We will now prove that, for any given

but arbitrary input k(t) R 0, there is a unique periodic solutionbxðtÞ ¼ ðbZðtÞ; bX�ðtÞ; and bCðtÞÞ in S of the above system, and this solution

is also a global attractor, in the sense that, for every initial condition

x0 ¼ ðZð0Þ;X�ð0Þ;Cð0ÞÞ˛S, the solution x(t) with x(0) ¼ x0 satisfies that

jxðtÞ � bxðtÞj/0 as t / N.

It is convenient to make the change of variables W(t) ¼ X*(t) þ C(t) so

that the equations become

dZ

dt
¼ kðtÞ � dZ;

dW

dt
¼ k1ZðXtot �WÞ � k2YðW � CÞ;

dC

dt
¼ �koffCþ konðW � CÞðptot � CÞ:

To prove the existence of a globally attracting periodic orbit, we can equiv-

alently study the system in these new variables, where S is now the set

defined by

ZðtÞR0; 0%CðtÞ%ptot;

CðtÞ%WðtÞ%Xtot:

To show the existence and global attractivity of a periodic solution, we

appeal to the theory of contractive systems (44–46). The key result that

we use is as follows. Consider a system of ODEs,

dx

dt
¼ f ðt; xðtÞÞ; (16)

defined for t ˛ [0, N] and x ˛ C, where S is a closed and convex subset

of Rn; f(t,x) is differentiable on x; and f(t,x), as well as the Jacobian of f
with respect to x, denoted as J ¼ Jðt; xÞ ¼ vf=vxðt; xÞ, are continuous in

(t,x). Furthermore, suppose that f is periodic with period T,

f ðt þ T; xÞ ¼ f ðt; xÞ for all t R 0, x ˛ S. In our system, n ¼ 3, (x,t) is the

vector consisting of (Z(t), W(t), and C(t)), and the periodicity arises from

k(t þ T) ¼ k(t) for all t R 0. We recall that, given a vector norm on

Euclidean space (j$j), with its induced matrix norm jjAjj, the associated

matrix measure or logarithmic norm m is defined (47,48) as the directional
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derivative of this matrix norm in the direction of A and evaluated at the

identity matrix:

mðAÞ :¼ lim
ha0

1

h
ðkI þ hAk � 1Þ:

The key result in our context is as follows. Suppose that, for some matrix

measure m,
sup
x˛S;tR0

mðJðx; tÞÞ<0:

Then, there is a unique periodic solution bxðtÞ : ð0;NÞ/C of Eq. 16 of

period T and, moreover, for every solution x(t), it holds that
jxðtÞ � bxðtÞj/0 as t / N. A self-contained exposition, with simple

proofs, of this and several other basic results on contraction theory, is given

in Sontag (49). As matrix measure, we will use the measure mP,N induced

by the vector norm jPxjN, where P is a suitable nonsingular matrix and

jxjN ¼ max1%i%Njxij. For this norm, Michel et al. (50) has that

mP;NðAÞ ¼ mNðPAP�1Þ, and, in general, mNðBÞ ¼ maxiðbii þ
P

isj jbijjÞ.
Computing with our example, we have, denoting J :¼ PJP�1,

mP;NðJÞ ¼ mN

�
J
� ¼ max

i

 
Jii þ

X
jsi

��Jij��
!
:

With the weighting matrix P ¼ diag(a,1,b), for our system we have
J ¼

0BBB@
�d 0 0

k1ðXtot �WÞ
a

�k1Z � k2Y
k2Y

b

0 konbðptot � CÞ �koff � konðW � CÞ � konðptot � CÞ

1CCCA
(which is independent of t), and

mP;NðJÞ ¼ maxfA1;A2;A3g;

where
A1 ¼ �d< 0;

A2 ¼ k1ðXtot �WÞ
a� k1Z � k2Yð1� 1=bÞ%

k1Xtot

a� k2Yð1� 1=bÞ;

A3 ¼ konðb� 1Þðptot � CÞ � koff

� konðW � CÞ%konðb� 1Þptot � koff :

It will be enough to show that there is a choice of a and b such that supx˛S
A < 0 for i ¼ 2, 3. Picking any number
i

1<b<1þ koff
2konptot

;

we guarantee that A3 % �koff/2 < 0, and also 1 – 1/b > 0. Finally, picking

any number,
aR
2k1Xtot

k2Yð1� 1=bÞ;

we guarantee that A2 % �k2Y(1�1/b)/2 < 0.
SUPPORTING MATERIAL

Additional narrative, equations, and references (51–53) are available at

http://www.biophysj.org/biophysj/supplemental/S0006-3495(13)00197-5.
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