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Abstract
Min-cut clustering, based on minimizing one of two heuristic cost-functions proposed by Shi and
Malik nearly a decade ago, has spawned tremendous research, both analytic and algorithmic, in
the graph partitioning and image segmentation communities over the last decade. It is however
unclear if these heuristics can be derived from a more general principle facilitating generalization
to new problem settings. Motivated by an existing graph partitioning framework, we derive
relationships between optimizing relevance information, as defined in the Information Bottleneck
method, and the regularized cut in a K-partitioned graph. For fast-mixing graphs, we show that the
cost functions introduced by Shi and Malik can be well approximated as the rate of loss of
predictive information about the location of random walkers on the graph. For graphs drawn from
a generative model designed to describe community structure, the optimal information-theoretic
partition and the optimal min-cut partition are shown to be the same with high probability.
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1 Introduction
MIN-CUT based graph partitioning has been used successfully to find clusters in networks, with
applications in image segmentation as well as clustering biological and sociological
networks. The central idea is to develop fast and efficient algorithms that optimally cut the
edges between graph nodes, resulting in a separation of graph nodes into clusters.
Particularly, since Shi and Malik successfully showed [1] that the average cut and the
normalized cut (defined below) were useful heuristics to be optimized, there has been
tremendous research in constructing the best normalized-cut-based cost function in the
image segmentation community.

Additionally, several insightful works have focused on providing an interpretation and a
justification for min-cut based clustering, within the framework of graph diffusion. Meila et
al. [2] showed rigorous connections between normalized min-cut based clustering and the
lumpability of the Markov chains underlying the corresponding discrete-diffusion operator.
More recently, Lafon et al. [3] and Nadler et al. [4] showed the close relationship between
the problem of spectral clustering and that of learning locality-preserving embeddings of
data, using diffusion maps.

The Information Bottleneck (IB) method [5], [6] is a clustering technique, based on rate-
distortion theory [7], that has been successfully applied in a wide variety of contexts
including clustering word documents and gene-expression profiles [8]. The IB method is
also capable of learning clusters in graphs and has been used successfully for synthetic and
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natural networks [9]. In the hard clustering case, given the diffusive probability distribution
over a graph, IB optimally assigns probability distributions, associated with nodes, into
distinct groups. These assignment rules define a separation of the graph nodes into clusters.

We here illustrate how minimizing the two cut-based heuristics introduced by Shi and Malik
can be well-approximated by the rate of loss of relevance information, defined in the IB
method applied to clustering graphs. To establish these relations, we must first define the
graphs to be partitioned; we assume hard-clustering and the cluster cardinality to be K. We
show, numerically, that maximizing mutual information and minimizing regularized cut
amount to the same partition with high probability, for more modular 32-node graphs, where
modularity is defined by the probability of inter-cluster edge connections in the Stochastic
Block Model for graphs (See NUMERICAL EXPERIMENTS). We also show that the optimization goal
of maximizing relevance information is equivalent to minimizing the regularized cut for 16-
node graphs.1

2 The Min-Cut Problem
Following [10], for an undirected, unweighted graph  with n nodes and m edges,
represented2 by its adjacency matrix A := {Axy = 1 ⇔ x ~ y}, we define for two not
necessarily disjoint sets of nodes V+, V− ⊆ V, the association

(2.1)

We define a bisection of V into V± if V+ ∪ V− = V and V+ ∩ V− = ∅. For a bisection of V
into V+ and V−, the `cut' is defined as c(V+, V−) = W (V+, V−). We also quantify the size of
a set V+ ⊆ V in terms of the number of nodes in the set V+ or the number of edges with at
least one node in the set V+:

(2.2)

where dx is the degree of node x.

Shi and Malik [1] defined a pair of regularized cuts, for a bisection of V into V+ and V−; the
average cut was defined as

(2.3)

and the normalized cut was defined as

(2.4)

This definition can be generalized, for a K-partition of V into V1, V2, …, VK [10], to

1We chose 16-node graphs so the network and its partitions could be parsed visually with ease.
2We use the shorthand x ~ y to mean x is adjacent to y.
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(2.5)

(2.6)

where  .

For the graph , we can define the graph Laplacian Δ = D − A where D is a diagonal matrix
of vertex degrees. For a bisection of V, we also define the partition indicator vector h [11]

(2.7)

Specifying two `prior' probability distributions over the set of nodes V : (i) p(x) ∝ 1 and (ii)
p(x) ∝ dx, we then define the average of h to be

(2.8)

The cut, as defined by Fiedler [11], and the regularized cuts, as defined by Shi and Malik
[1], can then be written in terms of h as (See Appendix A)

(2.9)

More generally, for a K-partition, we define the partition indicator matrix Q as

(2.10)

where z ∈ {V1, V2, …, VK and define P as a diagonal matrix of thew `prior' probability
distribution over the nodes. The regularized cut can then be generalized as

(2.11)

where for ; and for .

Inferring the optimal h (or Q) however, has been shown to be an NP-hard combinatorial
optimization problem [12].
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3 Information Bottleneck
Rate-distortion theory, which provides the foundations for lossy data compression,
formulates clustering in terms of a compression problem; it determines the code with
minimum average length such that information can be transmitted without exceeding some
specified distortion. Here, the model-complexity, or rate, is measured by the mutual
information between the data and their representative codewords (average number of bits
used to store a data point). Simpler models correspond to smaller rates but typically suffer
from relatively high distortion. The distortion measure, which can be identified with loss
functions, usually depends on the problem; in the simplest of cases, it is the variance of the
difference between an example and its cluster representative.

The Information Bottleneck (IB) method [6] proposes the use of mutual information as a
natural distortion measure. In this method, the data are compressed into clusters while
maximizing the amount of information that the `cluster representation' preserves about some
specified relevance variable.3 For example, in clustering word documents, one could use the
`topic' of a document as the relevance variable.

For a graph , let X be a random variable over graph nodes, Y be the relevance variable and
Z be the random variable over clusters. Graph partitioning using the IB method [9] learns a
probabilistic cluster assignment function p(z|x) which gives the probability that a given node
x belongs to cluster z. The optimal p(z|x) minimizes the mutual information between X and
Z, while minimizing the loss of predictive information between Z and Y . This complexity-
fidelity trade-off can be expressed in terms of a functional to be minimized

(3.1)

where the temperature T parameterizes the relative importance of precision over complexity.
As T → 0, we reach the `hard clustering' limit where each node is assigned with unit
probability to one cluster (i.e. p(z|x) ∈ {0, 1}).

Graph clustering, as formulated in terms of the IB method, requires a joint distribution p(y,
x) to be defined on the graph; we use the distribution given by continuous-time graph
diffusion4 as it naturally captures topological information about the network [9]. The
relevance variable Y then ranges over the nodes of the graph and is defined as the node at
which a random walker ends at time t if the random walker starts at node x at time 0. For
continuous-time diffusion, the conditional distribution p(y|x) is given as

(3.2)

where Δ is the positive semi-definite graph Laplacian and P is a diagonal matrix of the prior
distribution over the graph nodes, as described earlier. Note that the diagonal matrix P can
be any prior distribution over the graph nodes. The characteristic diffusion time scale τ of
the system is given by the inverse of the smallest non-zero eigenvalue of the diffusion
operator exponent ΔP−1 and characterizes the slowest decaying mode in the system. A more
common convention for matrix operations in graph theory is to use left eigenvectors.
However, since our analysis is within a probabilistic framework, we use right eigenvectors
throughout this paper to conform to conventions used in probability theory (particularly with
regard to conditional and marginal distributions).

3See [8] for a detailed discussion on the relevance variable.
4See [13] for a detailed discussion on graph diffusion and mixing.
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To calculate the joint distribution p(y, x) from the conditional Gt, we must specify an initial

or prior distribution5; we use the two different priors p(x), used in Eq. (2.8) to calculate 
and 〈h〉 : (i) p(x) ∝ 1 and (ii) p(x) ∝ dx. Throughout this paper, time dependence needs to be
considered only when the conditional distribution p(y|x) is replaced by the diffusion Green's
function G; thus, time dependence will be explicitly denoted only once G is invoked.

4 Rate of Information Loss in Graph Diffusion
We analyze here the rate of loss of predictive information between the relevance variable Y
and the cluster variable Z, during diffusion on a graph , after the graph nodes have been
hard-partitioned into K clusters.

4.1 Well-mixed limit of graph diffusion
For a given partition Q of the graph, defined in Eq. (2.10), we approximate the mutual
information I [Y ;Z] when diffusion on the graph reaches its well-mixed limit. We introduce
the linear dependence η(y, z) such that

(4.1)

This implies 〈η〉y = 〈η〉z = 0 and 〈〈η〉z〉y = 〈η〉 where 〈〉 denote expectation over the joint
distribution and 〈〉y and 〈〉z denote expection over the corresponding marginals.

In the well-mixed limit, we have |η| ⪡ 1. The predictive information (expressed in nats) can
then be approximated as:

(4.2)

(4.3)

Here, we define ι as a first-order approximation to I [Y ;Z] in the well-mixed limit of graph
diffusion. This quadratic approximation for I [Y ;Z] is known as the χ2-approximation.

Note that the joint and marginal distributions can also be related by the exponential
dependence θ(y, z) defined by

Under this definition, the domain of the dependence is unbounded (i.e. ) and the mutual
information is easily expressed as I [Y ;Z] = 〈θ〉. We also have

5Strictly speaking, any diagonal matrix P that we specify determines the steady-state distribution. Since we are modeling the
distribution of random walkers at statistical equilibrium, we always use this distribution as our initial or prior distribution.
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However, in the well-mixed limit |θ| ⪡ 1, to first non-trivial order, θ ≈ η and the expression
for I [Y ;Z] in terms of θ has the same form as Eq. (4.2).

We also have

(4.4)

Thus, η(y, z) is bounded from below by −1 (by definition) and from above as shown in Eq.
(4.4). However, θ(y, z) is unbounded and negatively divergent for short times. Since η is
much better behaved than θ for short times, and for the sake of simplicity, we choose to use
the linear dependence instead of the exponential dependence.

4.1.1 Well-mixed K-partitioned graph—As in the IB method, the Markov condition Z
– X – Y allows us to make several simplifications for the conditional distributions and
associated information theoretic measures. For a K-partition Q of the graph, we have

(4.5)

(4.6)

(4.7)

Graph diffusion being a Markov process, we have . Using this and Bayes

rule , we have
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(4.8)

In the hard clustering case, ΣxQzxPx = p(z) = [QPQT]zz and we have

(4.9)

4.1.2 Well-mixed 2-partitioned graph—We can re-write ι as

(4.10)

For a bisection h of the graph, z ∈ {+1, −1} and we have

(4.11)

(4.12)

(4.13)

(4.14)

We then have
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(4.15)

The mutual information I [Y ;Z] can then be approximated as

(4.16)

Using Bayes rule p(x|y)p(y) = p(y|x)p(x), we have

(4.17)

(4.18)

Again, graph diffusion being a Markov process,

(4.19)

Time dependence is explicitly denoted here to highlight the fact that diffusion on the graph
is till time 2t. Substituting 〈h|y〉 in Eq. (4.16), we get

(4.20)

(4.21)

4.2 Fast-mixing graphs
When diffusion on a graph reaches its well-mixed limit in short times, we have G2t ≈ I –
2tΔP−1. Thus, for a K-partition of a graph

(4.22)

For bisections, the short-time approximation of 〈hxhx′〉2t can be written as
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(4.23)

Note that this approximation to 〈hxhx′〉2t makes no assumption about the choice of prior
distribution P on the nodes of the graph. Furthermore, if the discrete-time diffusion operator
is used instead, 〈hxhx′〉2t does not approximate to hTΔh in such a simple manner (See
Appendix B).

For fast-mixing graphs, the long-time and short-time approximations for I [Y ;Z] and
〈hxhx′〉2t, respectively, hold simultaneously.

(4.24)

We have shown analytically that, for fast mixing graphs, the heuristics introduced by Shi
and Malik are proportional to the rate of loss of relevance information. The error incurred in
the approximations I [Y ;Z] ≈ ι and 〈hxhx′〉2t ≈ 1 – 2thT Δh can be defined as

(4.25)

(4.26)

5 Numerical Experiments
The validity of the two approximations can be seen in a typical plot of ε1(t) and ε0(t) as a
function of normalized diffusion time , for the two different choices of prior
distributions over the nodes. ε1, as seen in Fig. 1, is often found to be non-monotonic and
sometimes exhibits oscillations. This suggests defining ε∞, a modified monotonic `ε1':

(5.1)

ε∞(t) is the maximum of ε1 over all time greater than or equal to t. We do not need to
define a monotonic form for ε0 since this error is always found to be monotonically
increasing in time.

By fast-mixing graphs, we mean graphs which become well-mixed in short times, i.e. graphs
for which both the long-time and short-time approximations hold simultaneously within a
certain range of time , as illustrated Fig. 1, where we define

(5.2)
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(5.3)

(5.4)

(5.5)

ε(t) is the larger of the modified long- and short-time errors, ε∞ and ε0, at time t. ε* is the
minimum of ε(t) over all time. For some graphs, the plot of ε(t) at its minimum might
exhibit a plateau instead of a single point, as in Fig. 1 (for prior proportional to degree). t*−
and t*+ denote the left– and right– limits of this plateau. Note that the use of ε∞ instead of
ε1 overestimates the value of ε*; the ε* calculated is an upper bound.

Graphs were drawn randomly from a Stochastic Block Model (SBM) distribution [14], with
block cardinality 2, to analyze the distribution of ε*,  and . As is commonly done in
community detection [15], for a graph of n nodes, the average degree per node is fixed at n/4
for graphs drawn from the SBM distribution: two nodes are connected with probability p+ if
they belong to the same block, but with probability p− < p+, if they belong to different
blocks. The two probabilities are, thus, constrained by the relation

(5.6)

leaving only one free parameter p− that tunes the `modularity' of graphs in the distribution.
Starting with a graph drawn from a distribution specified by a p− value and specifying an
initial cluster assignment as given by the SBM distribution, we make local moves — adding
or deleting an edge in the graph and/or reassigning a node's cluster label — and search
exhaustively over this move-set for local minima of ε*. Fig. 2 compares the values of ε* and

 for graphs obtained in this systematic search, starting with a graph drawn from a
distribution with p− = 0.02 and n = {16, 32, 64}. We note that the scatter plots for graphs of
different sizes collapse on one another when ε* is plotted against normalized time,
confirming the Fiedler value 1/τ to be an appropriate characteristic diffusion time-scale as
used in [9]. A plot of ε* against actual diffusion time shows that the scatter plots of graphs
of different sizes no longer collapse (see Supplemental Material).

Having shown analytically that, for fast mixing graphs, the regularized mincut is
approximately the rate of loss of relevance information, it would be instructive to compare
the actual partitions that optimize these goals. Graphs of size n = 32 were drawn from the
SBM distribution with p− = {0.1, 0.12, 0.14, 0.16}. Starting with an equal-sized partition
specified by the model itself, we performed iterative coordinate descent to search
(independently) for the partition that minimized the regularized cut (hcut) and one that
minimized the relevance information (hinf(t)); i.e. we reassigned each node's cluster label
and searched for the reassignment that gave the new lowest value for the cost function being
optimized. Plots comparing the partitions hinf(t) and hcut, learnt by optimizing the two goals
(averaged over 500 graphs drawn from each distribution), are shown in Fig. 3.

6 Concluding Remarks
We have shown that the normalized cut and average cut, introduced by Shi and Malik as
useful heuristics to be minimized when partitioning graphs, are well approximated by the
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rate of loss of predictive information for fast-mixing graphs. Deriving these cut-based cost
functions from rate-distortion theory gives them a more principled setting, makes them
interpretable, and facilitates generalization to appropriate cut-based cost functions in new
problem settings. We have also shown (see Fig. 2) that the inverse Fiedler value is an
appropriate normalization for diffusion time, justifying its use in [9] to capture long-time
behaviors on the network.

Absent from this manuscript is a discussion of how not to overpartition a graph, i.e. a
criterion for selecting K. It is hoped that by showing how these heuristics can be derived
from a more general problem setting, lessons learnt by investigating stablilty, cross-
validation or other approaches may benefit those using min-cut based approaches as well.
Furthermore, a derivation of some rigorous bounds on the magnitude of the approximation
errors, under some conditions, and analysis of algorithms used in rate-distortion theory and
min-cut minimization are highly promising avenues for research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix A Normalized and Average Cut
Using the definition of Δ, for any general vector f over the graph nodes, we have for
symmetric A

(A.1)

When f = h, with hx ∈ {−1, 1}, we have

(A.2)

The factor  disappears because summation over all nodes counts each adjacent pair of
nodes twice.

Using the definitions of  and  , we have
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(A.3)

(A.4)

Appendix B Discrete Time Diffusion
For discrete-time diffusion, the conditional distribution p(y|x) is given as

(B.1)

where D is the diagonal matrix of node degrees, A is the adjacency matrix and s is the
number of time steps. For any s, substituting A = D − Δ and expanding the binomial gives

(B.2)

Thus, for p(x) ∝ dx, the expression for 〈hxhx′〉2s becomes

(B.3)

From the above equation, we see that even when s = 1, unlike in the continuous-time
diffusion case, 〈hxhx′〉2s does not approximate as simply to the cut and ι does not
approximate to the normalized or average cut.
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Fig. 1.
ε1 and ε0 vs normalized diffusion time for two choices of priors over the graph nodes. ε1
(red) typically tends to have a non-monotonic behavior which motivates defining a
monotonic ε∝ (green). ★ – ε*, ▪ – , ◆ – . Black – px ∝ dx, Magenta – px ∝ 1.
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Fig. 2.
ε* vs  for graphs of different sizes and different prior distributions over the graph nodes. In
the above plot,  and  are represented by · and ο, respectively.
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Fig. 3.
p(hinf(t) ≠ hcut) vs normalized diffusion time, averaged over 500 graphs drawn from a
distribution parameterized by a given p— value, is plotted for different graph distributions
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