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For any neuroimaging study in an institute, brain images are normally acquired from healthy controls and patients using a single
track of protocol. Traditionally, the factor analysis procedure analyzes image data for healthy controls and patients either together or
separately.The former unifies the factor pattern across subjects and the latter deals withmeasurement errors individually.This paper
proposes a group factor analysis model for neuroimaging applications by assigning separate factor patterns to control and patient
groups. The clinical diagnosis information is used for categorizing subjects into groups in the analysis procedure. The proposed
method allows different groups of subjects to share a common covariance matrix of measurement errors. The empirical results
show that the proposed method provides more reasonable factor scores and patterns and is more suitable for medical research
based on image data as compared with the conventional factor analysis model.

1. Introduction

Modern medical imaging techniques are capable of mea-
suring human brain in vivo [1]. For instance, magnetic
resonance (MR) imaging measures nuclei of atoms, and
positron emission tomography detects the positron-emitting
radionuclides to construct three-dimensional images. The
imaging procedures are designed and settled before medical
or cognitive experiments. Once the protocol is established,
the laboratory and the hospital begin to recruit a variety
of subjects of interest into experimental sessions. Errors
resulting from individual scans are actually generated from
common sources, such as the scanner, protocol, and software.
Initial classification of subjects into groups can be realized
by using clinical diagnosis, which may be uncertain to
some extent, provided by physicians along with subjects’
anamnesis.

Conventional factor analysis [2] models reduce high-
dimensional data into a few latent variables and assume that
data x were generated by a set of unobserved independent
unit-variance Gaussian source f plus uncorrelated zero-mean
Gaussian random noise u, x = 𝐿f + u, where 𝐿 is the
factor loading matrix. The sample covariance of x can be

expressed as 𝐿𝐿𝑇+Ψ, whereΨ is a diagonal covariancematrix
of random noises. The goal of factor analysis is to find 𝐿
and Ψ that maximally fit the sample covariance [3–5]. The
EM algorithm was proposed to estimate the matrices [6].
Factor analysis is commonly applied to the dataset as a whole
or to different groups of data separately, which may result
in factor patterns hard to interpret and limit the potential
use of the method in a wider range of medical applications.
In this study, we propose a mixture factor analysis model
(MFAM) to assign a common covariance matrix of noises
or measurement errors to different groups of subjects but to
allow individual groups having their own latent structures. In
the empirical application, we analyzed an Alzheimer’s disease
(AD) dataset by first extracting the volumetric information
fromMRanatomical images for both healthy controls and the
patients suffering either AD or mild cognitive impairment,
followed by applying the proposed MFAM to the volumetric
data.

2. Material and Method

2.1. The Model. Let 𝑀 be the number of subject groups. To
find multiple sets of factor loadings, {𝐿

𝑗
; 𝑗 = 1, . . . ,𝑀}, with
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Figure 1: The plots of means and standard deviations for the three groups in different subcortical structures.
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Figure 2: The scree plot for the ordered eigenvalues.

the f scores distributed as Gaussian within each group, the
data vector can be decomposed into a linear combination of
factor loadings for each group [7, 8], that is, 𝐿

𝑗
∈ 𝑅

𝐷×𝐾,

𝑥 = ∑

𝑗

𝜋
𝑗
(𝜇
𝑗
+ 𝐿
𝑗
× f | 𝑤

𝑗
) + u, (1)

where x is𝐷-dimensional and each factor scores f | 𝑤
𝑗
has𝐾

variables, that is, f ∈ 𝑅𝐾. The parameter 𝜋 is associated with
the proportion of subjects in the 𝑗th group, 𝜋

𝑗
= 𝑝(𝑤

𝑗
). The

indicator variable 𝑤 is one, 𝑤
𝑗
= 1, when the data belongs to

𝑗th group, otherwise 𝑤 is set to zero, 𝑤
𝑗
= 0. The formula

(1) using 𝜋 introduces the main difference from previous
mixture models of factor analysis. The data vector x need not
be centered and the mean of the 𝑗th group data is 𝜇

𝑗
. The

covariance matrix of residuals u is a diagonal matrix Ψ =

diag[Ψ
1
, Ψ
2
, . . . , Ψ

𝐷
]. The data distribution can be expressed

as

𝑃 (x) =
𝑀

∑

𝑗=1

∫𝑃 (x | f , 𝑤
𝑗
) 𝑃 (f | 𝑤

𝑗
) 𝑝 (𝑤

𝑗
) 𝑑f . (2)

In this work, capitalized𝑃 denotes the probability function of
a vector or a matrix and lowercase 𝑝 denotes the probability
function of a scalar. The factor scores are assumed to be
distributed as Gaussian

𝑃 (f | 𝑤
𝑗
) = 𝑁 (0, 𝐼) , ∀𝑗. (3)

The notation 𝐼 is the identity matrix of order 𝐷. The
distribution of data x in each group is given by

𝑃 (x | f , 𝑤
𝑗
) = 𝑁(𝜇

𝑗
+ 𝐿
𝑗
f
𝑗
, Ψ) . (4)

Based on the MFAM (2), the likelihood function 𝑄 is as
follows:

𝑄 = 𝐸
[

[

𝑁

∏

𝑖=1

𝑀

∏

𝑗=1

{(2𝜋)

−𝐷/2
|Ψ|

−1/2 exp [−(x
𝑖
−𝜇
𝑗
−𝐿
𝑗
f
𝑖
)

𝑇

Ψ

−1

×(x
𝑖
−𝜇
𝑗
−𝐿
𝑗
f
𝑖
)]}

𝑤𝑗
]

]

,

(5)

2 64 8 10

lo
g 

lik
el

ih
oo

d

Proposed method
−4500

−5000

−5500

−6000

Number of factors

(a)

0

lo
g 

lik
el

ih
oo

d

−2

−4
2 64 8 10

Number of factors

Conventional method

(b)

Figure 3: The two curves record the approximate value of log
likelihood for two methods.

where𝐸 denotes the expectation.The𝑁 is the number of data
vectors (subjects) with subscript 𝑖 for the 𝑖th subject.We need
to compute the expectation of the variables,

𝐸 (𝑤
𝑗
f
𝑖
| x
𝑖
) = 𝐸 (𝑤

𝑗
| x
𝑖
) 𝐸 (f
𝑖
| 𝑤
𝑗
, x
𝑖
) . (6)

To estimate𝑄 in (5), the posterior probability of the 𝑗th group
is calculated as

𝑃 (𝑤
𝑗
| x) =

𝑃 (x | 𝑤
𝑗
) 𝑃 (𝑤

𝑗
)

𝑃 (x)

=

𝜋
𝑗
𝑁(x − 𝜇

𝑗
, 𝐿
𝑗
𝐿

𝑇

𝑗
+ Ψ)

∑
𝑢
𝜋
𝑢
𝑁(x − 𝜇

𝑢
, 𝐿
𝑢
𝐿

𝑇

𝑢
+ Ψ)

,

(7)

where the probability of x given 𝑤
𝑗
is

𝑃 (x | 𝑤
𝑗
) = 𝑁(x − 𝜇

𝑗
, 𝐿
𝑗
𝐿

𝑇

𝑗
+ Ψ) . (8)
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Figure 4: The factor loading matrices for the three groups.

The parameters 𝜋 in (7) is the prior probability derived from
the clinical diagnosis. Therefore, the expectation of 𝑤

𝑗
given

x
𝑖
in (6) is proportional to the numerator in (7),

ℎ
𝑖𝑗
= 𝐸 [𝑤

𝑗
| x
𝑖
] ∝ 𝜋

𝑗
𝑁(x
𝑖
− 𝜇
𝑗
, 𝐿
𝑗
𝐿

𝑇

𝑗
+ Ψ) . (9)

To calculate (6), we consider that the posterior probability of
f given x is

𝑃 (f | x) = 𝑃 (x | f) 𝑃 (f)
𝑃 (x)

∝ exp (− [f𝑇 (𝐿𝑇Ψ−1𝐿 + 𝐼) f − 2f𝑇𝐿𝑇Ψ−1x]) .
(10)

After some arithmetic calculation, 𝑃(f | x) can be expressed
as

𝑃 (f | x) ∼ 𝑁 (𝑅−1𝐿𝑇Ψ−1x, 𝑅) , (11)

where 𝑅 = (𝐿𝑇Ψ−1𝐿 + 𝐼). Hence, the expectation of f given x
is

𝐸 [f | x] = 𝑅−1𝐿𝑇Ψ−1x. (12)

From above, 𝐸 (f
𝑖
| 𝑤
𝑗
, x
𝑖
) in (6) is calculated as

𝐸 (f
𝑖
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𝑗
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𝑖
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𝑗
𝐿

𝑇

𝑗
Ψ
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𝑗
) , (13)

where 𝑅
𝑗
= (𝐿

𝑇

𝑗
Ψ

−1
𝐿
𝑗
+ 𝐼), according to (12).

There is no constraint on those factor loadings 𝐿
𝑗
. The

estimation of 𝐿
𝑗
is simply the maximum of 𝑄. A convenient

way to express 𝑄 in (5) is achieved by setting ̃f
𝑖
= [f𝑇
𝑖
1]

𝑇

and ̃𝐿
𝑗
= [𝐿
𝑗
𝜇
𝑗
]. The expected log likelihood function can

be expressed as

𝐸 [log𝑄]

=𝐸
[
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Tomaximize𝑄with respect to ̃𝐿
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, we equate the derivative of
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⇒
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where
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𝑗
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𝑖
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𝑗
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Figure 5: The result of maximum likelihood method and rotated by varimax with Kaiser normalization. The results of healthy controls are
not unique and unstable.

All the variables are estimated by the EM algorithm. In the
E-step, the algorithm computes the expectation of the factor
scores in (6) and the second moment of the scores,

𝐸 [𝑤
𝑗
ff𝑇 | x] = 𝐸 [𝑤

𝑗
| x] 𝐸 [ff𝑇 | 𝑤
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𝑖
]

𝑇

.

(18)

The covariance matrix of residual, Ψ, can be estimated by its
inverse matrix,

𝜕𝑄

𝜕Ψ
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=

−𝑁
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(19)

Substituting (15) for ̃𝐿
𝑗
and making constraints on the

diagonal of Ψ, we obtain

Ψ =

1

𝑁

diag(∑
𝑖,𝑗

ℎ
𝑖𝑗
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𝑖
−
̃
𝐿
𝑗
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𝑖
, 𝑤
𝑗
]) x𝑇
𝑖
) . (20)

The prior probability 𝑝(𝑤
𝑗
) should be proportional to the

clinical diagnosis such that the estimation of the factor
loadings and the factor scores can capture the latent factors of
different disease groups.The proposed model also carries the
same indeterminacy problem associated with factor patterns;
that is there exist numerous orthogonal transformations to
rotate the matrix of factor loadings without changing the
maximum of 𝑄 [9]. Considering𝐻 be any𝐾×𝐾 orthogonal
matrix,𝐻𝐻𝑇 = 𝐻𝑇𝐻 = 𝐼. Equation (1) can be written

x = ∑
𝑗

𝜋
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𝑗
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𝑗
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𝑗
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= ∑

𝑗

𝜋
𝑗
(𝜇
𝑗
+ 𝐿

∗

𝑗
× f∗ | 𝑤

𝑗
) + u,

(21)



6 Computational and Mathematical Methods in Medicine

ADNL
0.22
0.13
0.23
0.04
−0.04

0.25
0.10
0.16
0.23
0.14
0.20
0.11
0.25
0.11
0.22

vAD

−0.24

−0.36

−0.60

−0.60 −0.87

−0.50

−1.01

−0.45

−0.00

−1.03

−0.47

−0.67

−0.93

−0.50

−0.84

−0.54

−1.08

−0.58

−0.95

−0.67

0.01

0.20

−0.44

−0.63

−0.42

−0.55

−0.28

−0.68

−0.60

−0.27

1

0

−1

Left thalamus proper
Left caudate

Left putamen
Left pallidum

Brain stem/ventricle
Left hippocampus

Left amygdala
Left accumbens area

Right thalamus proper
Right caudate

Right putamen
Right pallidum

Right hippocampus
Right amygdala

Right accumbens area

Figure 6: The cluster means of the three groups.

where 𝐿∗
𝑗
= 𝐿
𝑗
𝐻 and f∗ | 𝑤

𝑗
= 𝐻

𝑇
× f | 𝑤

𝑗
. The

assumption, f∗ | 𝑤
𝑗
∼ 𝑁(0, 𝐼), is kept. The covariance of x

is 𝐿∗
𝑗
(𝐿

∗

𝑗
)

𝑇
+ Ψ = 𝐿

𝑗
𝐻𝐻

𝑇
𝐿

𝑇

𝑗
+ Ψ = 𝐿

𝑗
𝐿

𝑇

𝑗
+ Ψ, which remains

the same. Therefore, there are infinite equivalent solutions to
satisfy the maximum of (5). Imposing reasonable constraints
to identify a set of model parameters can make the factor
loadings scientifically interpretable. A widely used approach
for a simple factor structure is realized by setting some factor
loadings to hypothetical values such as zeros.

The permutation and changing the sign of columns in the
factor loading matrix with factor scores does not affect the
model at all and the algorithm will yield the same solution.
In order to realize consistent, interpretable, and comparable
results, we suggest to recursively test all combinations to
find the one of them that has the highest similarity among
𝑀 factor loading matrices so that we can find a coherent
interpretation for different groups of subjects. Each pair of
factor loading and factor scores can be multiplied by either
+1 or −1. The 𝑀 sets of loadings has (2𝐾)𝑀 combinations.
The possible permutation of the 𝑀 set of loadings is the
factorial of 𝐾. The complexity of the recurrence is therefore
2

𝐾𝑀
× (𝐾!)

𝑀. The problem can be formulated as a bipartite
matching and the Hungarian algorithm can find the match in
a lower complexity.

2.2. Data Description. The T1-weighted MR images of 416
subjects were downloaded from the Open Access Series of
Imaging Studies [10], which is publically available for analysis.
All the T1-weighted images were acquired on a 1.5-T Siemens
Vision scanner. Among all 416 subjects, there are 316 normal
subjects (average age: 45.09 ± 23.90), 70 subjects who have
been clinically diagnosed with very mild AD (average age:
76.21 ± 7.19), and 30 are with moderate AD (average age:
78.03 ± 6.91). The proportions of each type of subject are 𝜋 =
[75.96%, 16.83%, 7.21%]𝑇. Multiple intrasession acquisitions
provide extremely high signal-to-noise ratio, making the
data amenable to our analysis. The available images were
provided skull stripped, gain field corrected, and registered
to the atlas space of Talairach and Tournoux [11] with a 12-
parameter rigid affine transform.The resolution of the images

Table 1: The ANOVA results for the three groups in different
subcortical structures.

Structure 𝑝-value
Left thalamus proper 2.0183 × 10

−15

Left caudate 1.3736 × 10

−5

Left putamen 6.9145 × 10

−18

Left pallidum 0.0351

Brain stem and ventricle 0.1707

Left hippocampus 1.5656 × 10

−20

Left amygdala 9.1999 × 10

−4

Left accumbens area 1.0958 × 10

−8

Right thalamus proper 2.6864 × 10

−17

Right caudate 1.6556 × 10

−6

Right putamen 1.6447 × 10

−13

Right pallidum 8.8771 × 10

−5

Right hippocampus 3.5498 × 10

−22

Right amygdala 6.5971 × 10

−5

Right accumbens area 8.7323 × 10

−17

is 176 × 208 × 176. The number of voxels, which is more
than six million, is much larger than the number of subjects.
We extracted the clinically and psychologically interested
regions instead of processing whole voxels in the image.
The subcortical structures are extracted by the segmentation
method [12] which uses manually labeled image data as
priori information for a Bayesian framework that utilizes the
principles of the active shape and appearance models. The
size of a subcortical region was calculated by multiplying the
voxel size and the number of voxels in the region. Fifteen
subcortical regions were successfully extracted.

According to a demographic study by the National
Institute on Aging and Alzheimer’s Association based on the
data collected in the Chicago Health and Aging Project, the
prevalence of dementia among individuals aged 71 and older
was 13.9%, and AD (Alzheimers disease) was 9.7% [13]. The
study was based on a sample of 856 individuals. The 𝜋 was
estimated to be [76.4%, 13.9%, 9.7%]𝑇 which is close to the
statistics in our empirical data.The data vector of each subject
had fifteen dimensions, each corresponding to the volume
size of a subcortical structure divided by the estimated total
intracranial volume.The average size of all of the intracranial
volume is 1480.5 cm3.The intracranial volume is estimated by
the linear registration from amanuallymeasured intracranial
volume of a standard brain to the individual brain [14].
The analysis of variance (ANOVA) of the data for each
structure were calculated and shown in Table 1 and Figure 1.
The smaller 𝑝 value indicates high probability of inequality of
the structure size among the three groups.

We subtracted the mean from the data and used the
remainder for analysis. Using the covariance matrix of the
data to estimate the factor scores would cause that a few
structures dominate the factor loadings; therefore, we divided
each dimension by its standard deviation to compel each of
them to have unit variance. After the algorithm converged,
we used varimax rotation [15], which transforms the loadings
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Table 2: The normality test of factor score by Kolmogorov-Smirnov test.

p value Proposed method Traditional method
Factor 1 Factor 2 Factor 3 Factor 1 Factor 2 Factor 3

NL 0.20 0.12 0.53 0.51 0.19 0.82
vAD 0.00 0.55 0.29 0.54 0.44 0.30
AD 0.02 0.14 0.14 0.81 0.89 0.83
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Figure 7: Correlations of factor scores with the MMSE scores. The red color denotes healthy subjects; the green color denotes very mild
AD patients; the blue color denotes the moderate AD patients. The regression lines of the three groups by the (a) proposed method and (b)
conventional method are also plotted in the figures.

into the space thatmaximizes the variance, to rotate the factor
loadings. Given data, the expectation of its type was set to

[ℎ
𝑖1
, ℎ
𝑖2
, ℎ
𝑖3
] =

{

{

{

[1, 0, 0] if subject 𝑖 belongs to NL
[0, 1, 0] if subject 𝑖 belongs to vAD
[0, 0, 1] if subject 𝑖 belongs to AD.

(22)

3. Results

Figure 3 shows the trend of the likelihood climbs as adding
the number of factors in the analysis. In the scree plot
in Figure 2, three eigenvalues of the covariance matrix of
the whole dataset are greater than one and the cumulative
percentage of variance from the largest three eigenvalues
reaches 78%.Thus we set 𝐾 = 3 in this analysis.

The factor loadings for the three groups are shown in
Figure 4, in which the vertical axis marks the fifteen regions.
The vAD denotes the group of very mild AD. The log
likelihood in (5) after the algorithm converges is −5475.814.
The loading of structures has symmetric property and usually
the right and left structures have similar loadings. Using
the factor loadings to estimate 𝜋 and the expected group
information given x by (9), we obtain the adjusted and turned
proportions as [82.89%, 7.97%, 9.14%]𝑇. This may suggest
the underlying variation among different groups of subject
and need further investigation. Note that the reestimated
proportion ℎ

𝑖𝑗
is not binary anymore.

We show the results of conventional factor analysis in
Figure 5 as a comparison. The program run on the mild AD
patients in the dataset cannot achieve reproducible results;
therefore, the quantity of mild AD’s results in Figure 5 varies
from time to time. The analysis for the AD group cannot
converge, however the factor loadings are reproducible. The
distance of whole factor loading matrices among the three

groups for conventional factor analysis is 5.28 while the
proposed method is 4.54. The correlation of the three-factor
loading matrix estimated by conventional factor analysis
methods is [𝐶

12
, 𝐶
13
, 𝐶
23
] = [0.3879, 0.1698, 0.3633]. The

correlation by proposed method is [0.5388, 0.5564, 0.4986].
Table 2 lists the 𝑝 values for all factors by the Kolmogorov-
Smirnov test [16] on the factor scores against a Gaussian
distribution. The test examines the difference between input
distributions and a Gaussian distribution. The smaller the
𝑝 values, the more strongly the test rejects the Gaussian
assumption. The algorithm tries to search for loads with
normally distributed factor score, hence large 𝑝 indicates the
factor fit well to Gaussian distribution.

Themeans (centers) of the clusters are shown in Figure 6.
The means are near the origin and include negative value
because the data are standardized by the subtraction of the
overall mean of the data in the preprocess stage. The yellow
color in the first column indicates that healthy controls have
larger sizes in subcortical structures, and the second and
the third columns indicate that the patients have smaller
sizes in different subcortical regions in general. The AD
patient has very small thalamus, putamen, and hippocampus.
The hippocampus is related to memory and learning. The
putamen is a structure involved in the regulation of voluntary
movement. The abnormal pallidum in Figure 4 can cause
movement disorders. Figure 7 shows the associations of first
factor scores with the score of minimental state examination
(MMSE) by both methods.

4. Conclusions

Theproposedmethod finds closer andmore correlated factor
loadings than the conventional method because it considers
the same error matrix for different groups of data. The
result of conventional factor analysis having higher normality
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for AD patients than normal subjects is less convincing.
Conventional factor analysis that decomposes the observed
data together intermixes the latent factors. Taking the data
apart will misseparate the noise. This work proposed using
a mixture model of factor analysis method for neurodegen-
erative disease research by showing highly correlated factor
loading across different groups of subjects and together with
proper normality of the factor scores.
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[5] K. Jöreskog andD. N. Lawley, “Newmethods inmaximum like-
lihood factor analysis,”Mathematical and Statistical Psychology,
vol. 21, pp. 85–96, 1968.

[6] D. B. Rubin and D. T. Thayer, “EM algorithms for ML factor
analysis,” Psychometrika, vol. 47, no. 1, pp. 69–76, 1982.

[7] Z. Ghahramani and G. E. Hinton, “The EM algorithm for mix-
tures of factor analyzers,” Tech. Rep. CRG-TR-96-1, Department
of Computer Science, University of Toronto, 1996.

[8] C. Y. Liou and W. C. Cheng, “Manifold construction by local
neighborhood preservation,” LectureNotes in Computer Science,
vol. 4985, no. 2, pp. 683–692, 2008.

[9] R. I. Jennrich and P. F. Sampson, “Rotation for simple loadings,”
Psychometrika, vol. 31, no. 3, pp. 313–323, 1966.

[10] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C.
Morris, and R. L. Buckner, “Open Access Series of Imaging
Studies (OASIS): cross-sectional MRI data in young, middle
aged, nondemented, and demented older adults,” Journal of
Cognitive Neuroscience, vol. 19, no. 9, pp. 1498–1507, 2007.

[11] J. Talairach and P. Tournoux, Co-Planar Stereotaxic Atlas of
the Human Brain: 3-Dimensional Proportional System—An
Approach to Cerebral Imaging,ThiemeMedical Publishers, New
York, NY, USA, 1988.

[12] B. Patenaude, S.M. Smith, D. N. Kennedy, andM. Jenkinson, “A
Bayesian model of shape and appearance for subcortical brain
segmentation,” NeuroImage, vol. 56, no. 3, pp. 907–922, 2011.

[13] B. L. Plassman, K. M. Langa, G. G. Fisher et al., “Prevalence
of dementia in the United States: the aging, demographics, and
memory study,”Neuroepidemiology, vol. 29, no. 1-2, pp. 125–132,
2007.

[14] R. L. Buckner, D. Head, J. Parker et al., “A unified approach
for morphometric and functional data analysis in young,
old, and demented adults using automated atlas-based head

size normalization: reliability and validation against manual
measurement of total intracranial volume,”NeuroImage, vol. 23,
no. 2, pp. 724–738, 2004.

[15] H. F. Kaiser, “The varimax criterion for analytic rotation in
factor analysis,” Psychometrika, vol. 23, no. 3, pp. 187–200, 1958.

[16] F. J. Massey, “The kolmogorov-smirnov test for goodness of fit,”
Journal of the American Statistical Association, vol. 46, no. 253,
pp. 68–78, 1951.


