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Cancer Stem Cell and Stromal Microenvironment
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ABSTRACT

Background: Chemotherapeutic resistance and local recur-
rence or distant organ metastasis are the major causes of
cancer mortality. Conventional cancer treatments do not
consistently prevent cancer recurrence.

Methods: We illustrate the key roles that cancer stem cells and
the tumor microenvironment—particularly the lymph node
stromal microenvironment—play in tumor drug resistance,
metastasis, and recurrence in 2 representative cancers:
colorectal cancer and follicular lymphoma.

Conclusion: We believe that combination treatment with
chemotherapeutic agents in conjunction with targeted thera-
pies, such as stromal/cancer stem cell signaling—targeted
therapy, may effectively minimize cancer recurrence.

INTRODUCTION

The current treatments of most solid organ tumors
are surgically based with the addition of chemother-
apy and radiation depending on tumor stage and
histological grade.! The standard treatment for colon
cancer is resectional therapy with the addition of
postoperative chemotherapy for lymph node (LN)-
positive cancers and those with poor pathologic
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features such as lymphovascular invasion. Unfortu-
nately, despite appropriate surgery and standard
chemotherapeutic treatments, up to 50% of these
cancers will recur, making chemotherapeutic resis-
tance and local recurrence or distant organ metastasis
the major causes of cancer mortality.>® Conventional
treatments—surgery with chemotherapy and radia-
tion—fail to effectively prevent extranodal recurrence,
even in cases of successful eradication of all visible
tumors.*® When such recurrences occur, the cancer
cells often demonstrate a chemoresistant phenotype.
This chemoresistance can be associated with genetic
alterations within the cancer cells, but recent studies
propose that recurrence is associated with the
presence of cancer stem cells (CSCs, also called
tumor-initiating cells)®” and the interaction with the LN
microenvironment.®® Current cancer therapies inade-
quately treat this rare but highly significant population
of CSCs.2'® These therapies do not address the
tumor-nurturing role that the microenvironment, spe-
cifically the LN microenvironment, plays in cancer
recurrence. Thus, an alternative therapeutic approach
should be considered.

CANCER STEM CELLS

Recent evidence indicates the functional hetero-
geneity of cancer cells is a result of cell differentia-
tion,"" and a specific cell population of CSCs exists in
various cancers that may be identified by cell surface
markers such as CD133, CD44, aldehyde dehydro-
genase 1 (ALDH1) enzyme expression, or side
population (SP). However, specific CSC markers are
cancer dependent.'®'® CSCs are similar to normal
stem cells in that they have the ability to self-renew
while producing differentiated daughter cells.’ Con-
ventional chemotherapies and radiotherapies target
proliferating cells and require active cycling to induce
apoptosis. The quiescent nature of CSCs allows for
resistance to conventional chemoradiation treat-
ments.” "6 Thus, in addition to conventional cancer
treatments, targeting the CSC population may be
essential to prevent recurrence or metastasis.

Colorectal CSCs
In the United States, colorectal cancer is the third
most common malignancy and the second most
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common cause of cancer-related mortality, with an
estimated incidence of 143,000 cases and 51,000
deaths per year.®> Colorectal CSCs (Co-CSCs) ex-
press a variety of surface markers, including
CD133,'%17.18 ALDH1,® the epithelial specific antigen
(CD326), CD44, and CD166.2° CD133, a transmem-
brane glycoprotein molecule with a molecular weight
of 120 kDa on chromosome 4p15.32, is one of the
more promising cell surface markers. CD133" cancer
cells were shown to have the ability to self-renew,
retain tumorigenicity, and regenerate a tumor after
treatment.’”?° Li et al®' showed that in stage IIIB
colon cancer, recurrence correlated with the percent-
age of CD133" cells present in the original tumor.
While CD133" cells have been shown to meet some
of the characteristics of CSCs, their specificity as a
true Co-CSC marker has been questioned.?? CD133"
cells might represent a heterogeneous population of
cells, and CD133 might lack a functional role in tumor
initiation.?® Do CD133" cells need other interactions to
function as tumor-initiating cells? We recently used
colorectal cancer cell lines HT-29 and HCA-7 and
human colorectal cancer specimens to show that a
small proportion of Co-CSCs expressing both CD133
and C-X-C chemokine receptor type 4 (CXCR4)—a
membrane-bound receptor for stromal cell-derived
factor-1 or chemokine (C-X-C motif) ligand 12
(CXCL12)—demonstrated increased tumor-initiating
ability in immunodeficient mice in the presence of a
human LN stromal cell line—HK cells®*?*—and HK
cell-conditioned media. In addition, these double-
positive Co-CSCs were enriched in a chemotherapy-
resistant cell population.?® Thus, CD133 and CXCR4
in combination may be better markers for drug-
resistant Co-CSC.

Follicular Lymphoma CSCs

Follicular lymphoma is the second most common
form of non-Hodgkin lymphoma (NHL) in the Western
Hemisphere, representing nearly 25% of all NHL
cases.?” Follicular lymphoma arises from B cells, with
a clinical course that is frequently indolent and
responsive to chemotherapy. However, multiple re-
lapses following treatment are common. More than
half of the patients who experience a recurrence
become refractory to treatment and do not survive
more than 5 years.?®

A quiescent population of drug-resistant CSCs
has been identified in the SP fraction in various
malignancies, including Hodgkin lymphoma.??=® The
SP fraction expressed the drug-resistant gene ATP-
binding cassette sub-family G member 2 (ABCG2)
and demonstrated higher tumorigenic capacity than
the non-SP fraction.2%3*3% Recently, we used a CSC
enrichment technique to isolate the SP fraction from
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both the follicular lymphoma cell line and patient
specimens. Compared with parental cells, a signifi-
cantly higher percentage of cells in the SP cell fraction
formed colonies, initiated tumors, and were resistant
to chemotherapy and irradiation treatments, confirm-
ing that SP cells obtained from follicular lymphoma
were highly enriched with CSCs. Most important, we
found that follicular lymphoma stem cells (FL-SCs)
interact with follicular dendritic cells (FDCs)/HK cells
in a CXCL12/CXCR4-dependent manner to maintain
tumorigenicity.3°

Other Cancers

CSCs and their interaction with tumor stromal cells
were also discovered in other cancers, such as
bladder, brain, breast, ovarian, and prostate cancers
(Table).'? CSCs exist in various cancers with cell
surface markers dependent on cancer type. Some are
supported by interactions with the LN stroma for
survival, proliferation, tumorigenesis, drug resistance
possible metastasis, and recurrence.

CANCER STROMAL MICROENVIRONMENT

Studies show that not all cancer cells are
tumorigenic.*®> Some cancer cells require coinjection
with stromal cells to form tumors in immunodeficient
mice,?®“¢ indicating that CSCs are supported by
microenvironmental factors produced by the sur-
rounding stroma.*” For example, Gilbertson and
Gutmann*® found that in brain tumors, the interaction
between brain CSCs and signals from the local
microenvironment is significant for region-specific
tumorigenesis. In mouse renal carcinoma cell studies,
Smith et al*® found that agarose macrobeads selec-
tively support CSCs in a 3-dimensional culture that
mimics the in vivo tumor microenvironment. The
tumor microenvironment has been recognized as a
major factor influencing the growth of cancer and
impacting the outcome of therapy. While the niche
cells are not malignant per se, their role in supporting
cancer growth is vital for tumor survival. Thus, niche
cells have become an attractive target for chemother-
apeutic agents.*° Clearly, environment-mediated drug
resistance is induced by signaling events from the
tumor microenvironment and is likely to be reversible
because removal of the microenvironment restores
the tumor’s drug sensitivity.®'

LN Stromal Microenvironment: FDCs
Evidence shows that CSCs that develop in
lymphoid follicles as in follicular lymphoma or CSCs
that metastasize to the LN are stimulated by the LN
microenvironment. The major problems with follicular
lymphoma treatment are relapse and transformation.
The transformation of follicular lymphoma to therapy-
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resistant aggressive large B-cell lymphoma®? is
associated with the induction of stromal gene
signatures, including CXCL12.%® The potential mech-
anisms of relapse may involve the interaction of
tumorigenic follicular lymphoma cells with the stromal
cell counterpart present in the LN.>* One of the
putative stromal cell types that may interact with
follicular lymphoma cells is FDCs. FDCs are present
in the germinal center of lymphoid follicles, the site of
follicular lymphoma origin.>®> FDCs have been found
to initiate and maintain a protumorigenic microenvi-

ronment®® by producing appropriate cytokines®” and
chemokines that promote lymphoma cell prolifera-
tion.36'46’58

FDCs are the most abundant stromal cell type in
the LN microenvironment. While their tumor-promot-
ing effects are well known, their origin was recently
suggested to arise from ubiquitous perivascular
precursors expressing platelet-derived growth factor
receptor beta.®® LN metastasis is one of the strongest
negative prognostic factors for a number of cancers.
For example, the majority of patients with colorectal
cancer present with regional LN involvement (stage llI
disease), suggesting that the LN microenvironment
plays a significant role in promoting extranodal
recurrence and further metastasis.* For colorectal
cancer, FDCs are unique LN stromal cells that display
both autocrine and paracrine properties, analogous to
cancer-associated stromal fibroblasts that have been
shown to nurture colorectal cancer cells through the
production of various cytokines and growth factors.®°
Colorectal cancer cells interact with tumor-fostering
stromal cells and the extracellular matrix in a
protective fashion, decreasing chemotherapy-in-
duced apoptosis.®’

To evaluate the role of LN stromal cells in tumor
growth, we established in vivo tumor models using
CSCs and an FDC cell line—HK cells. Although
derived from tonsilar cells, the HK cell line functionally
resembles primary FDCs in expressing smooth
muscle antigen, von Willebrand factor, and vimentin,
but not CD31, and in supporting germinal center B
cells and lymphoma growth.*¢*” In our in vivo model,
the addition of HK cells increased tumor formation,
especially in lower dosages of CSCs, suggesting that
FDCs/HK cells play a key role in cancer cell survival,
tumor initiation, and in vivo growth in both follicular
lymphoma and colorectal cancer models.?6-3¢

CXCL12/CXCR4 Signaling

Various chemokines play important roles in
stromal cell/CSC niche interaction. CXCL12 is a
chemokine that regulates many essential biological
processes, including revascularization, cellular adhe-
sion, and tumorigenesis.®? CXCL12 is also one of
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many soluble microenvironmental factors produced
by FDCs in a paracrine fashion.®® It has a negative
effect in multiple cancers.®* For example, CXCL12
and CXCR4 are involved in tumor metastasis and
extranodal recurrence in colorectal cancer,®®%” and
the metastatic activity of CD133"CXCR4" CSCs is
increased in pancreatic cancer.®® Downregulation of
CXCR4 significantly decreased cell migration and
invasion only in pancreatic CSCs cocultured with
pancreatic stromal cells.®®

HK cells are known to produce CXCL12. We also
found that CXCR4 is active on SP cells in follicular
lymphoma and Co-CSCs. In transwell migration
assays, we found that FL-SCs specifically migrated
toward HK cells and CXCL12 in a dose-dependent
manner. Their migration was inhibited by the pres-
ence of AMD3100, a specific small molecule inhibitor
of CXCL12/CXCR4 signaling.

Similarly, the CXCL12/CXCR4 axis is also associ-
ated with in vitro colorectal cancer migration, lym-
phatic and distant dissemination, disease recurrence,
and decreased survival rate.®%”7° In our experi-
ments, drug-resistant colorectal cancer cells showed
increased expression of CD133 and CXCR4. Our
observation is in agreement with Dessein et al”'; they
recently demonstrated that CXCR4 induction acts as a
major mechanism underlying invasion in drug-resis-
tant HT-29 cells. This phenomenon is not limited to
colorectal cancers; CD133"CXCR4" migrating CSCs
play a crucial role in tumor initiation, growth, and
metastasis in human pancreatic, prostate, and breast
cancer.5872

Cell-Cell Contact

The tumor stromal microenvironment could also
promote cancer chemoresistance by direct cell-cell
contact. For example, Xu et al”® proposed that
transforming growth factor beta 1 (TGF-p1) produced
by bone marrow stromal cells promotes the survival
and chemoresistance of leukemia cells via direct cell-
to-cell interactions. They showed that the blockade of
TGF-B1 signaling by LY2109761 effectively inhibited
prosurvival signaling and could enhance the efficacy
of chemotherapy against myelomonocytic leukemic
cells in the bone marrow microenvironment. Rafii et
al”® demonstrated the capacity of Hospicells—an
original type of stromal cells—to confer chemoresis-
tance to ovarian and breast cancer cells by direct cell-
cell contact and the exchange of membrane patches
and multidrug-resistant proteins.”®

In follicular lymphoma, we found that SP cells
enriched in cell populations that are adherent to HK
cells express ABCG2, a multidrug resistance trans-
porter, and are in close contact with HK cells in the
initial stage of tumor formation in immunodeficient
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mice. The HK cell dependence of FL-SCs in tumor-
igenesis is in both a cell-cell contact fashion and in a
CXCL12/CXCR4-dependent manner because
AMDB3100 effectively inhibits HK cell-promoted in vivo
tumor growth of the FL-SCs.%¢

Cytokines and Other Factors

In addition to stromal cell factors, CSCs interact
with and are regulated by other cells in the tumor
microenvironment via inflammatory cytokine net-
works, such as interleukin (IL)-1, IL-6, and IL-8.7°
Recombinant human IL-1 alpha enhanced the che-
motherapy-induced growth inhibition in HCT116
colon cancer cells.”” In the particular case of the
plasma cell cancer multiple myeloma, the adhesion
between multiple myeloma cells and bone marrow
fibroblasts led to the increased secretion of IL-6.7®
This pleiotropic cytokine has demonstrated the
capacity to induce the resistance of multiple myeloma
cells to apoptotic stimuli and chemotherapeutic drugs
via the Janus kinase/signal transducers and activators
of transcription (STAT) pathway and the expression of
the antiapoptotic protein Bcl-xL.”® IL-6-mediated
STATS3 activation plays a specific role in maintaining
an inflammatory positive feedback loop in breast
CSCs.2%8" |n Co-CSCs, researchers found that STAT3
was constitutively activated and that these cells were
sensitive to STAT3 or IL-6 inhibition for tumorigene-
sis.®? In addition, blockage CXCR1, an IL-8 receptor,
targeted breast cancer CSCs using specific antibod-
ies or small molecule inhibitors.®®

Autocrine production of IL-4 in colon cancer cells
was reported to contribute to chemoresistance®* by
protecting tumorigenic CSCs from antitumor thera-
pies through upregulation of antiapoptotic genes.?°#°
In contrast, overexpression of IL-12, a potent immu-
nomodulatory cytokine, reduced the expression of IL-
4 and STAT6 in Co-CSCs, tumor-sphere formation,
and tumor initiation.8” Cytokines are also used as
agents for differentiation therapy. In renal cancer, it
has been proposed that IL-15 directs the epithelial
differentiation of CSCs to differentiated nontumori-
genic cells that are sensitive to chemotherapy.®®

In addition to cytokines, other factors may also be
involved in supporting CSCs. For example, in bladder
cancer, when cancer cells undergo the epithelial to
mesenchymal transition (EMT), their invasiveness,
drug resistance, angiogenesis, and metastatic ability
are increased, giving rise to a more aggressive tumor
type. Additionally, the tumor-supportive microenviron-
ment (tumor-associated stromal cells and the extra-
cellular matrix) plays a key role in tumorigenesis,
tumor progression, and metastasis formation.®®

To disseminate and metastasize, the cancer cells
activate the EMT pathway, thereby switching toward a
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Figure. Lymph node stromal cells support cancer stem cells via paracrine C-X-C chemokine
receptor type 4 (CXCR4) and chemokine (C-X-C motif) ligand 12 (CXCL12) signaling. The HK
cell line is a human follicular dendritic cell or lymph node stromal cell line. AMD3100 is a
specific small molecule inhibitor of CXCL12/CXCR4 signaling.

migrating CSC (MCSC) phenotype. This switch might
be induced by the tumor microenvironment that
secretes EMT-inducing growth factors and the inter-
action with the extracellular matrix. MCSCs can
subsequently enter the blood circulation, dissemi-
nate, extravasate, and eventually colonize in the
target organs to form (macro)-metastases. This
process could also explain metastases at distant sites
due to the different microenvironment not secreting
EMT-inducing signals.3°

SIGNIFICANCE

Chemotherapeutic resistance and local recur-
rence or distant metastasis are the major causes of
cancer mortality. The observed interaction between
CSCs and stromal cells provides critical insights into
the mechanism of cancer drug resistance and
recurrence. The CSC models suggest that niche cell
signaling plays an important role in CSC-mediated
tumorigenesis and evasion of chemotherapy. In both
follicular lymphoma and colorectal cancer stud-
ies,?®%® we demonstrated in vitro and in vivo that
drug-resistant CSCs interact with stromal FDCs via
CXCL12/CXCR4 signaling to maintain tumorigenicity,
suggesting that CXCL12 is one of the candidate
cytokines that FDCs might secrete to modulate the
tumorigenicity of these diseases (Figure). In our
models, CSCs in both follicular lymphoma and
colorectal cancer were enriched by chemotherapy in
the presence of stromal cells. This finding suggests

Volume 13, Number 1, Spring 2013

that targeting CSCs alone may not suffice to minimize
recurrence and that future treatments must address
LN microenvironmental support as well.

Our findings are in agreement with a recent report
that Co-CSC marker Wnt signaling activity is regulated
by the microenvironmental myofibroblast-secreted
factors,*” implicating the microenvironment as a
dominant factor in Co-CSCs. CXCL12 expression in
B-cell lymphoma was associated with poor progno-
sis.>® FDCs may promote CSC tumor growth in 2
ways: (1) by supporting CSC survival and activation
for tumor initiation by providing soluble factors such
as CXCL12 and (2) by enhancing the host response
to increase tumor angiogenesis.

Thus, the CSCs and the environment that protects
them could be therapeutic targets that eradicate
recurrence. Studies that identify and characterize
CSCs and their interactions with the tumor microen-
vironment are important steps in the development of
biologically based, curative treatments for cancer.
Understanding the essential signals for tumor che-
moresistance and survival produced by tumor stromal
cells may help develop prognostic biomarkers and
novel therapeutic strategies.®' For example, a predic-
tive gene signature was identified in bladder cancer
studies that could serve as an indicator of tumor
progression.®” In addition, CD47 plays a significant
role in inhibiting phagocytosis, making it a prime drug
target so that CD47 inhibition would enhance macro-
phage phagocytosis of tumor cells (Table).
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Prognostic Markers

Tumor invasion and regional LN metastasis are
important factors for determining cancer prognosis.
For example, the 5-year survival rate for stage |
colorectal cancer is 90%, but the rate decreases to
75% and 50% for stage Il and Ill patients, respective-
ly.* Prognostic markers are urgently needed for
cancers like colorectal cancer, especially for stage I
patients. Currently, 2 prognostic biomarkers of colo-
rectal cancer recurrence are used in the clinical
setting: the Oncotype DX colon cancer assay (Geno-
mic Health, Inc., Redwood City, CA) in the United
States and ColoPrint (Agendia, Amsterdam, The
Netherlands) in Europe.®?®® Their use has been
limited because they are only prognostic biomarkers
and not predictive biomarkers.

The development of biomarkers that are both
prognostic and predictive can greatly impact the
treatment of LN-positive colorectal cancer. Recently,
several studies have focused on such prognostic
markers. Saiki et al,®* using reverse transcription
polymerase chain reaction analysis, revealed that the
expression of stem cell-related genes, including
LIN28 and SOX2, correlated with LN metastasis.
Although the colorectal cancer tumor tissues exam-
ined had been collected by laser microdissection,
these results may indicate that the Co-CSC popula-
tion is increased at metastatic sites. When putative
CSC markers were tested in colorectal cancer tumor
buds, ABCG5 and EpCAM were significantly associ-
ated with a poorer prognosis.®®> However, most
published studies have been conducted with bulk
tumor samples without differentiating the response
between Co-CSCs and non-CSCs. Because Co-CSCs
are such a small population, precise analysis of
prognostic markers within Co-CSCs may yield more
accurate prognostic significance.

In follicular lymphoma, CXCL12 and CXCR4
expression may also serve as prognostic markers
for risk of disease transformation, because FL-SCs
express higher levels of CXCR4 and inhibition of
CXCL12/CXCR4 interaction abolished FLK-1 cell—a
follicular lymphoma cell line—tumor formation in
nonobese diabetic/severe combined immunodefi-
ciency mice. Recent reports showed that migrating
populations enrich CSCs in neuroblastoma SP cells,?®
and migrating CD133"CXCR4" CSCs are essential for
pancreatic adenocarcinoma metastasis.®®

The prognostic biomarkers may be used to
identify patients who are at greatest risk of recurrence
and in need of the most aggressive and novel
therapies. For example, Witkiewicz et al*® identified
the loss of stromal caveolin-1 as a surrogate
biomarker associated with an increase in cell cycle
progression, the secretion of growth factors, and
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angiogenic potential in the tumor microenviron-
ment.*'

Novel Therapeutic Targets

Current treatments for cancers are not curative for
the majority of patients and were designed and
deemed successful based on the response of the
bulk population of tumor cells.'* Effects on a rare CSC
population or on cells in the supportive microenviron-
ment are largely unknown but presumed to be
inadequate given the high rates of cancer recurrence.
A deeper understanding of the essential signals
produced by tumor stromal cells to promote CSC
survival could suggest new therapeutic targets. For
example, targeting the stem cell niche interaction may
be an attractive approach for targeting CSCs.

Antibody-mediated inhibition of CXCL12/CXCR4
signaling completely abrogated the CXCL12-mediat-
ed cell migration of lymphocytic leukemias and
lymphomas, as well as the migration of lymphoma
cells toward LN stromal cells.?¢°® Additionally,
AMDB3100 inhibited infiltration of lymphoma cells into
liver and lung tissues by inhibiting CXCL12/CXCR4
signaling, supporting the theory that AMD3100
disrupts the CSC niche and makes CSCs more
susceptible to chemotherapy.®® Therefore, our find-
ings?®®® that inhibition of CXCL12/CXCR4 signaling
reduced the migration of lymphoma cells and Co-
CSCs toward stromal cells and inhibited tumor
formation are consistent with previous reports and
highlight the idea that one mechanism of action of
AMD3100 in these diseases may be the elimination of
CSCs. AMD3100 has been used clinically in the
setting of mobilization of normal hematopoietic stem
cells prior to autologous stem cell transplantation.
The safety and efficacy of AMD3100 in combination
with chemotherapy in a variety of hematologic
malignancies, including lymphomas, are being inves-
tigated in clinical trials. We have hypothesized that
AMD3100 disrupts the CSC niche and makes CSCs
more susceptible to chemotherapy.®

Most solid-tumor in vivo studies generate subcu-
taneous human tumor xenografts using immunodefi-
cient mice.'® The mouse microenvironment is artificial
for human tumors. Thus, drug regimens that are
curative in mouse subcutaneous xenograft models
often do not have a significant effect on human
disease.'® To overcome this hurdle, we have estab-
lished humanized tumor microenvironment models for
follicular lymphoma and colorectal cancer.?6¢ |n
these models, coinoculation of human stromal cells
with cancer cells re-creates a humanized microenvi-
ronment similar to that of an LN. Our data show that
the humanized microenvironment is essential for
CSCs to form a tumor in immunodeficient mice,
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selectively supports CSCs’ survival from chemothera-
peutic drugs, and enhances drug-resistant CSC tumor
formation through CXCL12/CXCR4 signaling. The
CSC and stromal interaction in vivo model could serve
as a humanized microenvironment model to identify
and analyze key interactions and signaling molecules
in CSCs and evaluate response to targeted agents.

In addition to colorectal cancers and follicular
lymphoma, as summarized in the Table, stromal/CSC
interaction in various cancers requires the involve-
ment of many molecules and agents. Annabi et al*®
suggested that membrane type 1 matrix metallopro-
tease (MMP) and MMP-9—two MMPs that contribute
to the blood-brain barrier opening and to the
radioresistance phenotype in brain tumor cells—
may be promising new targets in the annihilation of
CSCs as an anticancer therapy. In the breast cancer
model, Tsuyada et al®® identified chemokine ligand 2,
STATS, and Notch1 as potential therapeutic targets in
deterring CSC-stimulating cancer-host crosstalk, pro-
viding a method for defeating CSC-mediated disease
progression and treatment resistance. This study
furthered our understanding of how the tumor
microenvironment influences CSCs as the cancer
and host niche coevolve.®® Kim et al*? suggested that
the combined targeting of the CXCL12/CXCR4 axis
and the implementation of dacarbazine treatment
could serve as a therapy to block chemoresistant
CD133" melanoma CSC metastasis toward a lym-
phatic metastatic niche. In addition, the potential use
of TGF-B1 as a therapy in the intervention of ovarian
cancer may be helpful because of its involvement in
cancer invasion and tumor progression through the
regulation of tissue transglutaminase.*® Thus, closer
scrutiny of CSCs and their supporting microenviron-
ment, especially LN microenvironmental factors, will
lead to a better understanding of mechanisms of
cancer recurrence and metastasis and, ultimately, to
novel targeted therapies.

Cancer growth and metastasis are dynamic
processes. Many stromal environmentally dependent
tumors become independent in recurrence. We have
also observed some FDC-dependent B-cell lympho-
ma cells adapt detour growth pathways and bypass
the FDC requirement for their growth and tumor
formation.'®’ Our humanized tumor microenviron-
ment models for follicular lymphoma and colorectal
cancer are focused on CSC/stromal interaction in
early stages of cancer progress. These models may
bring future potential therapeutic targets to light that
will prevent and reduce recurrence.

CONCLUSION

Not all cancer cells constituting a tumor are the
same; a small population of CSCs exists.'® Cancer
poses a problem not only with its cancer cells, but
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also in its involvement with a microenvironment that
specifically supports CSCs. Thus, the CSC population
is responsible for recurrence and metastasis with help
from its stromal environment.®*® Therefore, combi-
nation treatment with chemotherapy drugs in con-
junction with other therapies, such as stromal/CSC
signaling—targeted therapy may effectively minimize
cancer recurrence.'®
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