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ABSTRACT

Background: Tumor necrosis factor-o (TNF-o) is a potent
proinflammatory cytokine involved in a variety of disease
pathologies, including ischemia/reperfusion (I/R) injuries in
transplantation. The interaction of TNF-oo with its cognate
receptor TNF receptor | (TNFRI) results in the activation of
signal transduction pathways that regulate either cell survival
or cell death. Hepatocytes express TNFRI and respond to TNF-
o released by resident Kupffer cells as well as leukocytes that
migrate to the liver during I/R injury. Upon binding TNF-c, the
hepatocyte proliferates or undergoes apoptosis or necroptosis.
The decision by the cell to commit to one path or the other is
not understood. The damaged tissue exhibits cell death and
hemorrhaging from the influx of immune mediators. TNF-o
inhibitors ameliorate the injury in animal models, suggesting
that lowering (but not eliminating) TNF-o levels shifts the
balance of TNF-o toward its beneficial functions.

Methods: We review TNF-o signal transduction pathways and
the role of TNF-o in liver I/R injury.

Conclusions: Because TNF-o plays an important role in
hepatocyte proliferation, complete inhibition of TNF-o is not
desirable in treating liver I/R injury. The strategy for developing
pharmacological therapies may be the identification of specific
intermediates in the TNF-o/TNFR1 signal transduction pathway
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and directed targeting of proapoptotic and pronecroptotic
events.

INTRODUCTION

Orthotopic liver transplantation is the only treat-
ment option for end-stage liver disease. National 1-
year and 5-year patient survival rates have risen to
89% and 80%, respectively." While treatment plans
often focus on the recipient, 2 donor events directly
affect the recipient’s outcome. First, the condition of
the donor liver has an impact on the success of the
transplant. As of October 2012, 16,832 recipients
awaited livers, but only 3,917 deceased donor livers
were available and transplanted.? Thus, with recipi-
ents outnumbering donors 4 to 1, surgeons are
increasingly turning toward the use of live donors,
split livers, and marginal livers. Marginal livers include
livers from older donors, donors with significant fatty
livers, and donors with anticipated long cold ischemia
times. Second, the degree of I/R injury caused by cold
preservation of the excised liver and warm reperfusion
upon implantation has an equal and profound effect
on the outcome. While the donor liver condition and
I/R injury involve multiple physiological events, the
inflammatory response is a key mediator in both liver
damage and liver regeneration. This review examines
the mechanism of action by the cytokine TNF-a in
regulating both hepatocyte death and survival path-
ways. Pharmacological interventions to inhibit TNF-o
in vivo, therefore, must take into account the
beneficial functions of TNF-o.

The table lists the molecules discussed and
assists the reader with the numerous abbreviations
used in this review.

TNF-o: STRUCTURE AND FUNCTION

The immune system responds to liver injury
and/or stress by activating resident Kupffer cells and
recruiting an influx of leukocytes to release proin-
flammatory cytokines, chemokines, and other factors.
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Table. Definitions of Abbreviations Used in the Text

Abbreviation

Term

Alternative Name(s)/Terms(s)

ADAM17 a disintegrin and metalloprotease domain 17
ALT alanine aminotransferase
APAF-1 apoptotic protease activating factor-1
ATP adenosine triphosphate
BAK Bcl-2 homologous killer protein
BAX Bcl-2-associated X protein
BID BH3 interacting death domain
c-FLIP cellular FLICE-like inhibitory protein (FLICE is a Caspase-8 and FADD-like apoptosis regulator (CFLAR),
FADD-like IL-1pB-converting enzyme) caspase homolog (CASH), caspase-8-related protein
(Casper), caspase-like apoptosis regulatory protein
(CLARP), FADD-like antiapoptotic molecule (FLAME),
inhibitor of FLICE (I-FLICE), Mach-related inducer of
toxicity (MRIT), or Usurpin
c-FLIP. full-length or long form of c-FLIP
c-FLIPg Raji form of c-FLIP
c-FLIPg short form of c-FLIP
clAP1/2 cellular inhibitor of apoptosis-1 and -2
cyto ¢ cytochrome ¢
DAMP/PAMP damage-associated and pathogen-associated
molecular pattern molecules
DC dendritic cell
DD death domain
DR death receptor
ECM extracellular matrix
ERK1/2 extracellular signal-related kinase-1 and -2 p44/42; MAPK
FADD Fas-associated death domain
[FNy interferon-y
IxB inhibitor of «B
IKK IxB kinase Subunits: 1KKa, IKKB, KKy
IL-1B interleukin-1 beta
IL-2 interleukin-2
IL-6 interleukin-6
IL-13 interleukin-13
I/R ischemia/reperfusion
ITCH itchy homolog
JNK c-Jun N-terminal kinase MAPK
kDa kiloDalton
Lck lymphocyte-specific protein tyrosine kinase
MAPK mitogen-activated protein kinase
MAPKK mitogen-activated protein kinase kinase
MAPKKK mitogen-activated protein kinase kinase kinase
MIP-2 mouse macrophage inflammatory protein-2 CXCL2
MMP matrix metalloproteinase
mRNA messenger RNA
NEMO NF-kB essential modulator IKK-y
NF-xB nuclear factor kappa-light-chain-enhancer of Family members: RelA, RelB, c-Rel, p50 (NF-xB1), p52
activated B cells (NF-xB2)
NK natural killer cells
NKT natural killer T cells
Pl phosphoinositide
RANTES regulated upon activation, normal T cell expressed CCL5
and presumably secreted
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Table. Continued.
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Abbreviation Term Alternative Name(s)/Terms(s)

RIP1 receptor-interacting protein-1

RIP3 receptor-interacting protein-3

ROS reactive oxygen species

SshRNA small hairpin RNA

SMAC second mitochondrial-derived activator of direct IAP binding protein with low pl (DIABLO)

caspases

SODD silencer of death domain

STNF-or soluble TNF-o

TACE TNF-a-converting enzyme a disintegrin and metalloprotease domain 17 (ADAM17)

TAK1 transforming growth factor-p-activated kinase-1

tBID truncated BID

TCR T cell receptor

TIMP-3 tissue inhibitor of metalloproteinases-3

TLR toll-like receptor

TNF-o tumor necrosis factor-o TNF-A, TNF superfamily member 1A (TNFSF1A),
necrosin, macrophage cytotoxic factor (MCF),
differentiation inducing factor (DIF), and cachectin

TNFR1 TNF-o receptor 1 CD120a; p55/p60

TNFR2 TNF-o receptor 2 CD120b; p75/p80

TRADD TNFR1-associated death domain protein

TRAF2/5 TNF receptor-associated factor-2 and -5

XIAP X-linked inhibitor of apoptosis protein inhibitor of apoptosis protein-3 (IAP3)

Numerous immune proteins are involved; however,
TNF-o is implicated as the primary mediator of
inflammation during I/R injury in several tissues,
including the lung, heart, liver, eye, kidney, and brain.
TNF-o is a potent proinflammatory cytokine that
targets various cell types through receptor-mediated
signal transduction pathways. TNF-a is encoded by a
1,686-ribonucleotide mMRNA that is translated into a 26
kDa, nonglycosylated, membrane-bound, precursor
protein, mTNF-0.3® The mTNF-a. monomer is assem-
bled at the cell surface as a homotrimer known as
proTNF-o (Figure 1). Active, soluble TNF-a is gener-
ated by the enzyme activity of TACE/ADAM17
between Ala-76 and Val-77 of mTNF-o.”® TACE/A-
DAM17 cleavage of mTNF-a releases the 51 kDa
trimeric TNF-a. (or sTNF-a)), which contains three 17
kDa monomers. TACE/ADAM17 is a member of the
zinc-dependent MMP family that degrades ECM.*>""
MMPs have been implicated in the pathology of
several diseases, including arthritis and cancer.
Approximately 26 MMPs have been identified to
date.'?

Many activated immune cells express TNF-o,
including neutrophils, B lymphocytes, CD4+ T lym-
phocytes, NK cells, NKT cells, and cells of the
monocyte lineage. Resident macrophages—astroglia,
microglia, Langerhans cells, Kupffer cells, and alveo-
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Figure 1. TNF-o is modified postiranslationally. TNF-« is
expressed as a monomeric precursor protein of 233 amino
acids, 26 kDa. The membrane-bound form (proTNF-o;; mTNF-
o) is a trimer. Cleavage between Ala-76 and Val-77 of
proTNF-o. by TACE/ADAM17 releases the active, soluble 51
kDa form that contains three 17 kDa monomers. TIMP-3
inhibits TACE/ADAM17, preventing the release of STNF-o.
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lar macrophages—are primary producers of TNF-o.'®
Binding TNF-a to one of its receptors, either TNFR1 or
TNFR2, activates signal transduction pathways.'*'®
TNFR1 is expressed constitutively on the surface of all
cell types as a trimer of 55 kDa subunits, and TNFR2
is expressed in activated immune cells as a trimer of
75 kDa subunits. Although TNF-o binds either
receptor, TNF-o mediates its effects primarily through
its interactions with TNFR1."®

TNF-« ACTIVATES PROGRAMMED DEATH
PATHWAYS

TNFR1 is a membrane-bound protein that con-
tains a DD in its cytoplasmic tail that is associated with
the 60 kDa SODD protein. Soluble TNF-o. binds
TNFR1, resulting in the trimerization of TNFR1 and
the release of SODD (Figure 2).2°2' TRADD binds the
trimeric DD of TNFR1, which recruits RIP1, TRAF2/5,
and clAP1/2 to form Complex 1.22 Endocytosis of
Complex 1 leads to the degradation of clAP1/2 and
the formation of proapoptotic Complex 2a or the
dissociation of Complex 1 and the formation of
pronecroptotic Complex 2b. Thus, Complex 2a leads
to apoptosis (programmed cell death), and Complex
2b results in necroptosis (programmed necrosis) of
the hepatocyte. The transition between Complex 1
and Complex 2a/2b has yet to be elucidated.
Complex 2a consists of TRADD, RIP1, TRAF2/5,
FADD, and procaspase-8 and -10. As zymogens,
procaspases are inactive forms of the caspases
(cysteine-aspartic proteases or cysteine-dependent
aspartate-directed proteases) that consist of 2
groups: upstream initiator (apical) caspases and
downstream effector (executioner) caspases.?® Initia-
tor caspase-2/8/9/10 cleaves and activates the effec-
tor caspase-3/6/7. From Complex 2, procaspase-8
and -10 are converted to caspase-8 and -10, which
initiate apoptosis through caspase-3, -6, and -7 and
the mitochondria death pathway. Caspase-8 and -10
cleave BID into the 15 kDa tBID.2*?° tBID activates
BAX and BAK to reassemble into heterodimeric pore
units in the mitochondrial membrane, resulting in the
release of cytochrome ¢ and SMAC.?6%° Cytochrome
c activates caspase-9 either directly or through APAF-
1 in an ATP-dependent manner, resulting in the
binding of APAF-1 to caspase-9, a complex known
as the apoptosome.®°3® Whether APAF-1 is required
for cytochrome c-dependent activation of caspase-9
is unclear. SMAC binds and blocks XIAP from binding
to caspases.s“'35 Caspase-9 activates executioner
caspase-3 and -7, leading to apoptosis.®®*®’

Studies in the past 3 years have shown that
necrosis can occur in a genetically encoded, regulat-
ed manner similar to apoptosis, known as necroptosis
or programmed necrosis.*® Unlike apoptosis, necrop-
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tosis does not require caspases but, rather, the
kinases RIP1 and RIP3. The formation of Complex
2b, or the necrosome, during TNF-a signaling has
only recently been described.®® RIP1 is found in
Complexes 2a and 2b, and an antiapoptotic domain
within RIP1 may control whether RIP1 participates in
apoptosis or necroptosis.*® The association of RIP3
with RIP1 leads to phosphorylation of both kinases;
however, the identity of the activating kinases is not
known. He et al®® suggest that RIP3 undergoes
autophosphorylation, while Cho et al*' suggest that
an as-yet-to-be-determined kinase phosphorylates
RIP3. It is not clear which kinase phosphorylates
RIP1. Necroptosis has been identified as a mecha-
nism of cell death in renal, cardiac, and retinal I/R
injuries.*?*® We have shown that rat livers undergoing
I/R injury are characterized by massive necrosis that
may be caused by TNF-a—mediated necroptosis.*®*®
Characterization of the processes involved to activate
necroptosis during liver I/R injury has not yet been
undertaken.

TNF-o ACTIVATES CELL SURVIVAL AND
PROLIFERATION

Engagement of sTNF-a with TNFR1 activates cell
survival and proliferation pathways if Complex 1 is
retained on the cell membrane. Complex 1 leads to
either of 2 signal transduction pathways: the canon-
ical (classical) NF-xB pathway or the MAPK pathway
(Figure 3). The polyubiquitination of RIP1 and
TRAF2/5 by clAP1/2 results in the recruitment of
NEMO to the complex.*®*2 NEMO is associated with
TAK1, a member of the MAPKKK family. TAK1
activates IKK, which phosphorylates 1kB.>® IkB be-
comes polyubiquitinated, releasing NF-xB, and IxB is
targeted to the proteasome for degradation. NF-kB
translocates to the nucleus and activates transcription
of genes that regulate cell survival and proliferation.
The canonical NF-xB pathway has been well studied,
and Hayden and Ghosh®* have provided a recent
overview of the progress made in NF-«xB research.

Alternatively, Complex 1 leads to the activation of
the MAPK signal transduction pathway through
TRADD and TRAF2/5. TRAF2/5 oligomerizes, result-
ing in the binding of TAK1 (a MAPKKK) to
TRAF2/5.5%°6 Activated MAPKKK follows the classical
MAPK phosphorylation cascade by activating a
MAPKK that, in turn, phosphorylates the 3 terminal
MAPKs: p38 MAPK, JNK, and ERK1/2. Phosphorylat-
ed MAPKs translocate into the nucleus to activate
transcription factors. The MAPK pathway has been
the focus of intense efforts in designing and applying
pharmacological inhibitors in vivo and in vitro with
some inhibitors advancing to clinical trials for a variety
of pathologies, including inflammatory diseases and

The Ochsner Journal



Legend

D RIP1
v

TRAF2/5
DD

B FrabD
(& Phosphate

-8

Mitochondria

@ D

@ o> o l]

caspase 9

@

caspase 8 (ﬂ% O(X% caspase 10

! ‘/ */ caspase 3/7

Shuh, M

|} ‘r
Apoptosis

Necroptosis

Figure 2. Signal transduction by TNF-o leads to apoptosis or necroptosis. Invagination of Complex 1 results in the formation of
Complex 2a (apoptosome) or 2b (necroptosome). Soluble TNF-o binds to its cognate receptor, TNFR1, which is bound to SODD
via the TNFR1 DD. Binding of TNF-o to TNFR1 releases SODD, enabling the binding of TRADD, followed by the assembly of RIP1,
TRAF2/5, and clAP1/2. Endocytosis of Complex 1 leads to the degradation of clAP1/2 and the formation of Complex 2a, which
consists of TRADD, TRAF2/5, RIP1, FADD, and the zymogens procaspase-8 and -10. Procaspase-8 and -10 are cleaved, and
caspase-8 and -10 cleave BID into tBID, activating the mitochondrial death pathway. Caspase-8 and -10 also activate caspase-

3, -6, and -7, leading to apoptosis.

cancer.®” As with NF-kB, MAPK signaling pathways
are an active area of research, and excellent reviews
have been published that provide the recent progress
in MAPK studies.?®

Although genes that upregulate cell division are
transcribed through NF-xB and MAPK signal trans-
duction, antiapoptotic genes are also expressed. NF-
kB induces the expression of c-FLIP.%® Three isoforms
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of FLIP have been identified: c-FLIP_, c-FLIPg, and c-
FLIPg. All three regulate caspase-8 activation and DR-
induced apoptosis. However, c-FLIP consists of FLIPg
and FLIP_ in the literature.®°®* Recent data indicate
that c-FLIP has pro- and antiapoptotic functions and is
regulated by its intracellular stoichiometry.®® Low,
moderate, or no levels of c-FLIP mediate apoptosis,
while high levels of c-FLIP may stimulate prolifera-
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Figure 3. Signal transduction by TNF-« leads to cell survival and proliferation. Retention of Complex 1 on the cell surface
commits the cell to proliferate via 2 signal transduction pathways: NF-xB or MAPK. Polyubiquitination of RIP1 releases NEMO or
IKK and recruits both TAK1 (MAPKKK) and IKK. Active TAK1 phosphorylates the IKK complex (IKK-o, -B, and -y), which
phosphorylates IxB. Phospho-IxB is ubiquitinated, released from the transcription factor NF-xB, and targeted for degradation by
the proteasome. NF-xB translocates to the nucleus to activate transcription. Binding of TNF-o to TNFR1 may also form another
version of Complex 1 that consists of oligomers of TRAF2/5 bound to TNFR1. TRAF2/5 recruits TAK1 to the complex. TAK1, a
MAPKKK, phosphorylates MAPKK, which in turn phosphorylates the terminal MAPKs: p38 MAPK, JNK, and ERK1/2. Phospho-
JNK and phospho-ERK1/2 translocate to the nucleus to activate transcription.

tion.62667 |nterestingly, JNK phosphorylates the E3
ubiquitin ligase ITCH, which ubiquitinates c-FLIP to
induce c-FLIP degradation, leading to apoptosis.®®
Thus, JNK antagonizes NF-«B during TNF-o—mediat-
ed Complex 1 signal transduction.

TNF-oo AND THE IMMUNE RESPONSE IN

HEPATIC I/R INJURY

Hepatic I/R injury occurs in numerous clinical
settings, including but not limited to liver hemorrhage
and shock, surgical resection, and transplantation.
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Although the pathophysiology of I/R injury involves
multiple pathways, inflammatory cells and soluble
factors are key mediators. Two general immune
mechanisms have been identified during liver trans-
plantation. The lack of ATP production because of
glycogen consumption and oxygen depletion triggers
the surface expression of DAMP/PAMP during ische-
mia (Figure 4). Kupffer cells and DCs express TLRs
that bind the endogenous DAMPs/PAMPs expressed
by the ischemic cells in the liver.®*"2 The Kupffer cells
and DCs become activated and respond with a
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Figure 4. I/R injury to hepatocytes is mediated by immune cells. The initial immune cascade is
caused by the expression of DAMP/PAMP on the surfaces of cells, including hepatocytes. The
resident macrophages, Kupffer cells, and dendritic cells express TLRs that bind DAMPs/PAMPs
and activate the immune cells, releasing ROS, cytokines, and chemokines. Reperfusion
activates adaptive immune cells (CD4+ T cells, v T cells, and NKT cells) and innate immune
cells (primarily neutrophils) that are recruited to the site of tissue injury. The cells release a
second cascade of mediators. TNF-o is produced in both the initial and secondary cascades.

Shuh, M

Hepatocytes express TNFRI in response to the massive influx of TNF-o.

classic inflammatory reaction cascade, producing
ROS and proinflammatory cytokines such as TNF-
%73-77

A second immune-mediated response occurs
during the reperfusion phase. The initial inflammatory
response during ischemia leads to the recruitment of
leukocytes, particularly neutrophils and CD4+ T cells.
These cells activate and secrete a secondary wave of
cytokines and chemokines, amplifying the immune
reaction at the site of I/R injury.”®8% T cell-deficient
mice have reduced I/R injury, and systemic treatment
with immunosuppressive drugs attenuates I/R injury in
various organs, suggesting that decreasing T cell
function is beneficial to organ survival.84®¢ The
activated T cells constitutively express their surface
stimulatory molecules CD28 and CD154, which are
recognized by B7 and CD40, respectively, on antigen-
presenting cells during I/R injury.8>87%° The costimu-
lation of the CD4+ T cell’'s CD28 and CD154 leads to
the phosphorylation of CD28 by Lck and the activation
of the PI signaling pathway. The phosphorylation
events initiating from these kinases, as well as signal
transduction events from the antigen-TCR complex
and cytokine/cytokine receptor complexes, result in
gene transcription, including TNF-a, which leads to
additional T cell proliferation and cytokine and chemo-
kine production, further damaging the tissue.

Platelets also express CD40 that binds to the T
cel’'s CD154 receptor and mediates tissue damage
following I/R injury.®'® The infiltration of NKT cells into
renal and hepatic I/R injured tissue recruits neutrophils,
and activated NKTs produce various cytokines, includ-
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ing IFN-y, IL-2, IL-13, and TNF-a.%*°% NKT cells are
found in high quantities in the liver, and the production
of TNF-a by NKT cells is yet another level of
redundancy by the immune system in response to
I/R injury. CD8+ T cells have been implicated in renal
and intestinal I/R injury. Mice that underwent renal I/R
exhibited increased IL-1B, IL-6, TNF-o, IFN-y, MIP-2,
and RANTES expression.®®°® CD8-deficient mice
showed lower cytokine expression levels, but kidney
histology was unchanged after I/R induction, suggest-
ing a chronic effect of CD8+ T cell infiltration.*® Another
type of inflammatory cells, mast cells, has not been
shown to be involved in I/R injury.'® Thus, multiple
immune system events generate proinflammatory
cytokines that initiate and amplify the responses that
lead to tissue injury.

PHARMACOLOGICAL TARGETS OF TNF-u-
MEDIATED SIGNAL TRANSDUCTION IN
HEPATIC I/R INJURY

The dual roles of TNF-o present a conundrum
when using inhibitors against TNF-o. Complete
knockout of the TNF-o, TNFR1, or TIMP-3 gene in
mice results in the inability of the liver to regenerate
after tissue damage.'®'%® In the case of TIMP-3
knockout in mice, the deregulation of TACE/ADAM17
leads to sustained production of soluble TNF-a, which
leads to increased inflammation and increased cell
death.'® Thus, TIMP-3 is critical to maintaining the
homeostasis of the liver by regulating TNF-« release.
Monoclonal antibodies (etanercept, infliximab, adali-
mumab, golimumab, and certolizumab pegol) against
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TNF-a have been approved for inflammatory diseas-
es, including rheumatoid arthritis, psoriatic arthritis,
juvenile idiopathic arthritis, psoriasis, ankylosing
spondylitis, and inflammatory bowel disease.'®*'%°
Applications of TNF-ao monoclonal antibodies in liver
I/R studies appear to attenuate tissue injury.”1%61%7
We used recombinant TIMP-3 in a rat I/R model and
showed that liver damage is dramatically decreased
in TIMP-3-treated animals prior to I/R induction as
compared to untreated animals.*®*® Hernandez et
al'®® recently generated shRNAs to silence the TNF-o
gene in a mouse liver I/R model. Although the data
showed a correlation between decreased liver injury
and shRNA pretreatment, the ALT levels in shRNA-
treated mice were higher than in the control group,
suggesting that tissue damage was still occurring. We
suggest that this result may be caused by the lack of
TNF-o for cell survival signal transduction that is
required for liver regeneration.

Some researchers have targeted TNF-o’s prolifer-
ative effects by using specific inhibitors of down-
stream signal transduction proteins. The rationale of
these efforts is to diminish or inhibit immune cell
proliferation. A review of the literature indicates that
MAPK inhibitors, especially those targeting p38
MAPK, provide insights into the contrasting roles of
MAPK in I/R injury. MAPK induces gene expression
that leads to cell proliferation, and data in I/R injury
studies indicate that upregulation of immune cell
proliferation is a direct result. Studies assessing the
effect of MAPK induction with small molecules in I/R
injury are well documented in the retina, heart, kidney,
lung, brain, and liver and show mixed results. In
myocardial I/R injury, p38 MAPK aggravates lethal
injury but can also protect the heart under certain
circumstances, although this theory remains contro-
versial. 109117

In liver I/R injury, p38 MAPK inhibitors appear to
attenuate tissue damage in animals.''®'2° However,
these studies have not determined the mechanism of
action by the inhibitor, whether immune cells and/or
hepatocytes are targeted. Nilotinib, a second-gener-
ation receptor tyrosine kinase inhibitor, protects
against liver I/R injury in the mouse by reducing p38
MAPK in liver nonparenchymal cells and reducing
JNK activation in hepatocytes.'®' Nilotinib did not
inhibit p38 MAPK in bulk liver and may be selective for
nonparenchymal cells that are involved in TLR
signaling.”® Interestingly, nilotinib did not inhibit its
known receptor tyrosine kinases and may be exerting
its effects through another pathway.

CONCLUSIONS

TNF-o’s opposing functions—survival versus
death—present a challenge in understanding the
mechanism of I/R injury and designing treatments to
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prevent tissue damage, particularly during liver
transplantation. The regenerative capability of the
liver must be retained, and TNF-a plays an important
role in hepatocyte proliferation. Thus, complete
inhibition of TNF-a is not desirable in treating liver
I/R injury. Identification of specific intermediates in the
TNF-0/TNFR1 signal transduction pathway and di-
rected targeting of proapoptotic and pronecroptotic
events may be the strategy for developing pharma-
cological therapies in liver I/R injury.
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