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Abstract

Context—Predicting hospital readmission risk is of great interest to identify which patients
would benefit most from care transition interventions, as well as to risk-standardize readmission
rates for purposes of hospital comparison.

Objective—To summarize validated readmission risk prediction models, describe their
performance, and assess suitability for clinical or administrative use.

Data Sources—MEDLINE, CINAHL, and Cochrane Library through March 2011, EMBASE
through August 2011, and hand search of reference lists.

Study Selection—Dual review to identify English language studies of prediction models tested
with medical patients, with both derivation and validation cohorts.

Data Extraction—Data were extracted on the population, setting, sample size, follow-up
interval, readmission rate, model discrimination and calibration, type of data used, and timing of
data collection.

Results—Of 7,843 citations reviewed, 30 studies of 26 unique models met criteria. The most
common outcome used was 30-day readmission; only one model specifically addressed
preventable readmissions. Fourteen models relying on retrospective administrative data could be
potentially used for standardization of readmission risk and hospital comparisons; of these, nine
were tested in large US populations and had poor discriminative ability (c-statistics 0.55 — 0.65).
Seven models could potentially be used to identify high-risk patients for intervention early during
a hospitalization (c-statistics 0.56 — 0.72), and five could be used at hospital discharge (c-statistics
0.68 — 0.83). Six studies compared different models in the same population and two of these found
that functional and social variables improved model discrimination. Though most models
incorporated medical comorbidity and prior utilization variables, few examined variables
associated with overall health and function, illness severity, or social determinants of health.
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Conclusions—Most current readmission risk prediction models, whether designed for
comparative or clinical purposes, perform poorly. Though in certain settings such models may
prove useful, efforts to improve their performance are needed as use becomes more widespread.

Introduction

Methods

An increasing body of literature attempts to describe and validate hospital readmission risk
prediction tools. Interest in such models has grown for two reasons. First, transitional care
interventions may reduce readmissions among chronically ill adults.1-3 Readmission risk
assessment could be used to help target the delivery of these resource-intensive interventions
to the patients at greatest risk. Ideally, models designed for this purpose would provide
clinically relevant stratification of readmission risk and give information early enough
during the hospitalization to trigger a transitional care intervention, many of which involve
discharge planning and begin well before hospital discharge. Second, there is interest in
using readmission rates as a quality metric. Recently, the Centers for Medicare & Medicaid
Services (CMS) began using readmission rate as a publicly reported metric, with plans to
lower reimbursement to hospitals with excess risk-standardized readmission rates.* Valid
risk adjustment methods are required for calculation of risk-standardized readmission rates
which could, in turn, be used for hospital comparison, public reporting, and reimbursement
determinations. Models designed for these purposes should have good predictive ability; be
deployable in large populations; use reliable data that can be easily obtained; and use
variables that are clinically related to, and validated in, the populations in which use is
intended.®

This systematic review was performed to synthesize the available literature on validated
readmission risk prediction models, describe their performance, and assess their suitability
for clinical or administrative use.

Data sources and searches

We searched Ovid MEDLINE, CINAHL, and the Cochrane Library (Central Trial Registry,
Systematic Reviews, and Abstracts of Reviews of Effectiveness) from database inception
through March 2011, and EMBASE through August 2011, for English-language studies of
readmission risk prediction models in medical populations. All citations were imported into
an electronic database (EndNote X2, Thomson Reuters, New York, NY). Appendix A
provides the search strategies in detail.

Study selection

Seven investigators reviewed the citations and abstracts identified from electronic literature
searches. Full-text articles of potentially relevant references were retrieved for further
review. Each article was independently assessed by two reviewers using the eligibility
criteria shown in Appendix B. Eligible articles were published in English and evaluated the
ability of statistical models to predict hospital readmission risk. Because a set of predictive
factors derived in only one population may lack validity and applicability,8 we included only
studies of models that were tested in both a derivation and validation cohort, even if these
results were presented in separate papers. We did not pre-specify the method of validation,
nor did we exclude studies in which the derivation and validation cohorts were drawn from
the same population (i.e., split-half validation). We did not limit studies by diagnosis within
medical populations, but we excluded studies focused on psychiatric, surgical, and pediatric
populations as factors contributing to readmission risk might be considerably different in
these patient groups,. Finally, we excluded studies from developing nations as these were
unlikely to provide directly applicable results.

JAMA. Author manuscript; available in PMC 2013 March 20.
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Data extraction and quality assessment

From each study, we abstracted the following: population characteristics, setting, number of
subjects in the derivation and validation cohorts, utilization outcome, readmission rate,
range of readmission rates according to predicted risk, and model discrimination. To
facilitate a high-level comparison of predictor variables, we grouped final model variables
into one of six categories (medical comorbidity, mental health comorbidity, illness severity,
prior utilization, overall health and function, and sociodemographic/social determinants of
health).’

To characterize the practical utility of each model, two reviewers abstracted from each study
the type of data used and the timing of data collection. Disagreements between reviewers
about these classifications were resolved through group discussion. Data type consisted of
administrative, primary (e.g., survey, chart review), or both. Regarding timing, we classified
a model as using real-time data if the variables would be available on or shortly after index
hospital admission, and as using retrospective data if the variables would not be available
early during a hospitalization. For example, a model using prior healthcare utilization and
data from patient surveys conducted early during a hospitalization would be classified as
using real-time data, while a model using index hospital length of stay or index hospital
discharge diagnostic codes would be classified as using retrospective data. Because of
coding delays, models relying on administrative codes from index hospital admission were
considered retrospective.

We report the c-statistic, with 95% confidence interval when available, to describe model
discrimination. The c-statistic, which is equivalent to the area under the receiver operating
characteristic curve, is the proportion of times the model correctly discriminates a pair of
high- and low-risk individuals.8 A c-statistic of 0.5 indicates the model performs no better
than chance; a c-statistic of 0.7 to 0.8 indicates modest or acceptable discriminative ability,
and a threshold of greater than 0.8 indicates good discriminative ability.?: 10 If the c-statistic
was not reported, we abstracted other operational statistics such as sensitivity, specificity
and predictive values for representative risk score cut-offs when available. Model calibration
is the degree to which predicted rates are similar to those observed in the population. To
describe model calibration we report the range of observed readmission rates from the
predicted lowest to highest risk groupings.

To guide our methodologic assessment of included studies, we adapted elements — including
cohort definition, follow-up, adequacy of prognostic and outcome variable measurement,
and validation method — from a prognosis study quality tool and clinical decision rule
assessment tool (Appendix C).% 11

Data synthesis

Results

The included studies were too heterogenous to permit meta-analysis. Therefore, we
qualitatively synthesized results, focusing on model discrimination, the populations in which
the model has been tested, practical aspects of model implementation, and the types of
variables included in each model.

From 7,843 titles and abstracts, 286 articles were selected for full-text review (Figure
available as online supplement). Of these, 30 studies of 26 unique models across a broad
variety of settings and patient populations met our inclusion criteria (Table 1). Most (N=23)
studies were based on US healthcare data. The remainder were from Australia (2 studies),
England (2), Ireland (1), Switzerland (1), or Canada (1). Fourteen studies included only
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patients at least 65 years of age. Of these, seven relied solely on Medicare administrative
data. Four studies used VA data.

Total sample size ranged from just 173 patients to more than 2.7 million. The outcome of
30-day readmission was reported most commonly, though some models chose other follow-
up intervals ranging from 14 days to 4 years. Among 21 studies reporting a c-statistic, values
ranged from 0.55 — 0.83 (Table 1), but only six studies reported a c-statistic above 0.70
indicating modest discriminative ability. Performance was similar between studies using
split-sample validation methods (n=21, c-statistic range 0.59-0.75), and those that used
external validation methods (n=9, c-statistic range 0.53-0.83). Among models that analyzed
the relationship between risk categories and actual readmission rates, a substantial gradient
in readmission rate was present between patients at the lowest vs. the highest risk level. For
example, among six models using 30-day readmission as an outcome, the lowest and highest
risk groups differed by 20.4 to 34.5 percentage points in their actual readmission rates.

Models relying on retrospective administrative data

Fourteen models were based on retrospective administrative data and could potentially be
used for hospital comparison purposes (Table 1). Most of these included medical
comorbidity and prior utilization variables, but few considered mental health, functional
status and social determinant variables (Table 2). The three models with c-statistics = 0.70
were developed and tested in large European or Australian cohorts. One examined the risk
of two or more unplanned readmissions for all hospitalized patients in England, including
pediatric and obstetric patients, for one calendar year.12 A Swiss study of potentially
preventable readmissions is described in greater detail below.13 An Australian model
incorporating over 100 medical comorbidities and administrative social determinant
variables performed at a modest level in asthma patients, but poorly in myocardial infarction
patients.14

The nine large population-based or multicenter US studies generally had poor discriminative
ability (c-statistics 0.55 — 0.65). The CMS used a methodologically rigorous process to
create three models for congestive heart failure, acute myocardial infarction, and pneumonia
admissions based on Hierarchical Condition Categories, which are groups of related
comorbidities.1>-17 All three models showed relatively poor ability to predict 30-day all
cause readmissions (c-statistics 0.61, 0.63, and 0.63, respectively). A recent study evaluating
the CMS heart failure model, and an older heart failure model fared similarly (c-statistics
0.59 and 0.61, respectively).18: 19 The other four US models have limited generalizability:
one captured readmissions to one medical center only,20 and the others were developed over
two decades ago.21-23

Models using real-time administrative data

Three administrative data-based models were designed to identify high-risk patients in real-
time to potentially facilitate targeted interventions. A model with modest discriminative
ability (c-statistic 0.72, 95% CI 0.70-0.75) examined 30-day heart failure readmissions in a
single urban US health system with a large socioeconomically disadvantaged population.2*
It incorporated variables from an automated electronic medical record system, including
numerous social factors such as number of address changes, census tract socioeconomic
status, history of cocaine use, and marital status. The only study focused specifically on
Medicaid enrollees used a 0 to 100 risk score for 12-month readmissions and found patient
cost profiles varied widely with risk score.2> Finally, a British model used prior utilization
and comorbidity data, and also controlled for observed to expected readmission rates for the
admission hospital, but predictive ability remained modest (c-statistic 0.69).26
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Models incorporating primary data collection

Nine models incorporated survey or chart review data and could potentially be used for
clinical intervention purposes, though five used data unlikely to be available early during a
hospitalization. The best performing of these used administrative comorbidity and prior
utilization data (c-statistic 0.77) along with functional status data (c-statistic 0.83) from the
Medicare Beneficiaries Survey to predict a composite outcome of readmissions and nursing
home transfers.2” The survey was not routinely administered during index hospitalization
and it is unclear to what extent the use of retrospective survey data affects the predictive
ability of the model. Similarly, a medical record study in Ireland retrospectively applied a
nine-item questionnaire, including items such as discharge polypharmacy, and performed
modestly well (c-statistic 0.70).28 A simple Canadian model used medical comorbidities up
through index hospital discharge along with index hospital length of stay and prior
utilization (c-statistic 0.68, 95%CI 0.65-0.71).2° Increasing scores on another four-item
model of medical comorbidities, prior utilization and discharge creatinine were associated
with increasing readmission rates in heart failure patients.30

Four models incorporated primary data collected in real-time. Only two of these models
have been tested in contemporary populations, the others having been conducted more than
two decades ago. One survey-based model developed at six academic hospitals included
social determinant, comorbidity, utilization, and self-rated health variables, but had poor
predictive ability (c-statistic 0.61).31 The Probability of Repeated Admissions (PRA) is a
simple eight-item survey tool developed in older Medicare beneficiaries, but it also had poor
predictive ability across several studies (c-statistic 0.56-0.61, 95% CI 0.44-0.67).32-34

Use of variables

A comparison of the types of variables considered for, and included in, the final models can
provide some information about the contribution of different types of variables to
readmission risk prediction (Table 2). Nearly all studies included medical comorbidity data
and many included prior utilization variables, usually prior hospitalizations. Basic
sociodemographic variables such as age and gender were considered by most studies but, in
many instances, these variables did not contribute enough to be included in the final model.
Table 2 also highlights important gaps in model development: few studies considered
variables associated with illness severity, overall health and function, and social
determinants of health.

Six studies that compared the performance of different models within the same population
offer further insights about the incremental value of different types of variables (Table 3).
Amarasingham and colleagues found that an automated electronic medical record-based
model incorporating sociodemographic factors such as drug use and housing discontinuities,
was more predictive than comorbidity-based models.24 Coleman and colleagues found the
inclusion of variables such as functional status from survey data improved model
performance slightly compared to the use of utilization and comorbidity-based
administrative data alone (c-statistics 0.83 vs 0.77).27

Other comparative studies found little difference among models.Clinical data, such as
laboratory and physiologic variables, from medical records or registries did not enhance
performance of claims-only CMS models.15-17. 28 A US study of older patients found that an
intricate ICD-9 code based disease complexity system added very little discriminative ability
to a poorly performing Health Care Financing Authority model.23 A large Swiss study of
potentially preventable readmission risk compared a very simple non-clinical model, a
Charlson comorbidity-based model, and a more complex hierarchical diagnosis and
procedures based model called SQLape, finding only slight differences among them (c-

JAMA. Author manuscript; available in PMC 2013 March 20.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Kansagara et al.

Page 6

statistics 0.67, 0.69, and 0.72, respectively).13 Finally, Allaudeen and colleagues found
internal medicine interns using a gestalt approach predicted readmissions with a similar poor
level of ability as an older, established survey-based model (PRA) in a small, single center
cohort.34

Potentially preventable readmissions

Only one model attempted to explicitly define and identify potentially preventable
readmissions.3® Investigators conducted a systematic medical record review to define
potentially preventable readmissions and develop an administrative data-based algorithm. A
subsequent publication (described above) compared the performance of three models in
predicting readmissions according to their algorithm.13

Discussion

In this systematic review, we found 26 readmission risk prediction models of medical
patients tested in a variety of settings and populations. Several are being applied currently in
clinical, research or policy arenas. Half the models were largely designed to facilitate
calculation of risk-standardized readmission rates hospital comparison purposes. The other
half were clinical models that could be used to identify high-risk patients for whom a
transitional care intervention might be appropriate. Most models in both categories have
poor predictive ability.

Readmission risk prediction remains a poorly understood and complex endeavor. Indeed,
models of patient level factors such as medical comorbidities, basic demographic data, and
clinical variables are much better able to predict mortality than readmission risk.18: 24,29
Broader social, environmental, and medical factors such as access to care, social support,
substance abuse, and functional status contribute to readmission risk in some models, but the
utility of such factors has not been widely studied.

It is likely that hospital and health system-level factors, which are not present in current
readmission risk models, contribute to risk.36 For instance, the timeliness of post-discharge
follow-up, coordination of care with the primary care physician, and quality of medication
reconciliation may be associated with readmission risk.3 38 The supply of hospital beds
may independently contribute to higher readmission rates.3? Finally, the quality of inpatient
care could also contribute to risk,40 though the evidence is mixed.*! Though the inclusion of
such hospital-level factors would conceivably improve the predictive ability of models, it
would be inappropriate to include them in models that are used for risk-standardization
purposes. Doing so would adjust hospital readmission rates for the very deficits in quality
and efficiency that hospital comparison efforts seek to reveal, and which could be targets for
quality improvement interventions.

Public reporting and financial penalties for hospitals with high 30-day readmission rates are
spurring organizations to innovate and implement quality improvement programs.42: 43
Nevertheless, the poor discriminative ability of most of the administrative models we
examined raises concerns about the ability to standardize risk across hospitals in order to
fairly compare hospital performance. Until risk prediction and risk adjustment become more
accurate, it seems inappropriate to compare hospitals in this way and reimburse (or penalize)
them on the basis of risk-standardized readmission rates. Others have reached similar
conclusions,** and have also expressed concern that such financial penalties could
exacerbate health disparities by penalizing hospitals with fewer resources.*® Still others have
argued that readmission rate is an incomplete accountability measure that fails to consider
“the real outcomes of interest — health, quality of life, and value.”48
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Use of readmission rates as a quality metric assumes that readmissions are related to poor
quality care and are potentially preventable. However, the preventability of readmissions
remains unclear and understudied. We found only one validated prediction model that
explicitly examined potentially preventable readmissions as an outcome, and it found only
about one-quarter of readmissions were clearly preventable.13 A recent systematic review of
34 studies found wide variation in the percentage of readmissions considered preventable;
estimates ranged from 5% to 79%, with a median of 27%.4” More work is needed to develop
readmission risk prediction models with an outcome of preventable readmissions. This could
not only improve risk-standardization efforts, but also allow hospitals to better focus limited
clinical resources in readmission avoidance programs.

As with models that are used for risk-standardization, readmission risk models that are
intended for clinical use also have certain requirements and limitations. Clinical models
would ideally provide data prior to discharge, discriminate high- from low-risk patients, and
would be adapted to the settings and populations in which they are to be used. Very few
models met all these criteria, and only one of these — a single-center study — had acceptable
discriminative ability.2* As with the risk-adjustment models, most of the models developed
for clinical purposes had poor predictive ability, though notable exceptions suggest the
addition of social or functional variables may improve overall performance.24 27

The best choice of model may depend on setting and the population being studied. The
success of some models in certain populations and the lack of success of others suggest the
patient-level factors associated with readmission risk may differ according to the population
studied. For example, while medical comorbidities may account for a large proportion of
risk in some populations, social determinants may disproportionately influence risk in
socioeconomically disadvantaged populations. Our review finds, though, that very few
models have incorporated such variables.

Even though the overall predictive ability of the clinical models was poor, we did find that
high- and low-risk scores were associated with a clinically meaningful gradient of
readmission rates. This is important given resource constraints and the need to selectively
apply potentially costly care transition interventions. Even limited ability to identify a
proportion of patients at risk for future high-cost utilization can increase the cost-
effectiveness of such programs.26. 48

Of note, very few models incorporated clinically actionable data that could be used to triage
patients to different types of interventions. For example, marginally housed patients, or
those struggling with substance abuse, might require unique discharge services. Relatively
simple, practical models that use real-time clinically actionable data, such as the Project
BOOST model, have been created, but their performance has not yet been rigorously
validated.4?

Our review concurs with and adds to the findings of several other reviews that found
deficiencies in the predictive abilities of risk prediction models. One recent review limited to
US studies examined general risk factors for preventable readmissions, but did not search
explicitly for validated models, and many of the included studies suffered from poor study
design.5Y The authors suggest that, in general, measures of poor health such as comorbidity
burden, prior utilization, and increasing age were associated with readmissions. Two other
reviews focused on specific diagnoses and found very few readmission risk models for heart
failure,** COPD,5! or myocardial infarction.52

Our review has certain limitations. We included studies outside the United States, given that
portions of US health care may resemble other countries' health systems, but applicability of
models from other countries to the US may still be limited. Our classifications of data types,
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data collection timing, and the intended use of each model, are subject to interpretation, but
we attempted to mitigate subjectivity by using a dual-review and consensus process. Finally,
few studies directly compared models within the same population, and summary statistics
such as the c-statistic should not be used to directly compare models across different
populations.

Additional research is needed to assess the true preventability of readmissions in US health
systems. Given the broad variety of factors that may contribute to preventable readmission
risk, models that include factors obtained through medical record review or patient report,
may be valuable. Innovations to collect broader variable types for inclusion in administrative
data sets should be considered. Future studies should assess the relative contributions of
different types of patient data (e.g., psychosocial factors) to readmission risk prediction by
comparing the performance of models with and without these variables in a given
population. These models should ideally be based on population specific conceptual
frameworks of risk. Implementation of risk stratification models and their effect on work
flow and resource prioritization should be assessed in a broad variety of hospital settings.
Also, given that many models have limited predictive ability and may require some
investment of time and cost to implement, future studies should further evaluate the relative
value of clinician gestalt compared to predictive models in assessing readmission risk.

In summary, readmission risk prediction is a complex endeavor with many inherent
limitations. Most models created to date, whether for hospital comparison or clinical
purposes, have poor predictive ability. Though in certain settings such models may prove
useful, better approaches are needed to assess hospital performance in discharging patients,
as well as to identify patients at greater risk of avoidable readmission.
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Table 2
Variables considered by studiesin evaluating therisk of readmission
L : Evaluated but not
Variable Included '";'Sg‘i'e’;“’dd n (N) included in (N) Not considered” in (N) studies
studies

Medical comorbidities

Specific diagnoses or comorbidity 0) 3)
index 12-21, 23, 25-32, 53, 54, 57-59 22,24, 55
Mental health comorbidities

Mental illness

13-15, 17, 18, 24, 25, 54, 59 16, 20, 26, 58 19, 22, 23, 28-32, 53, 55, 57

EtOH/substance use
13-15, 17-19, 24-26, 53, 54

®)
16,20, 28, 57,59

(8)
22,23,29-82, 55,58

IlIness severity
IlIness severity index 1) 1)
24 58 12,13, 15-18, 20, 23, 26, 28-32, 53-55, 57, 59
Lab findings 4) 1)
18, 30, 55, 57 28 12,13, 15-17, 20, 23, 26, 29, 31, 32, 53, 54, 58, 59
f (4) 4
. 2,3,20,2 18, 30, 57, 59 15-17, 20, 26, 28, 29, 31, 32, 54, 55
Prior utilization
Hospitalizations 1)
12, 13, 22, 24-28, 30-32, 54, 58, 59 29 15-20, 23, 53, 55, 57
ER visits 4 (1)
25,29, 55, 57 15-20, 22, 23, 26, 28, 30-32, 53, 54, 58, 59
Clinic visits/Missed clinic visits ?3) 0)
24,25, 32 15-20, 22, 23, 26, 28-31, 53-55, 57-59
Index hospital length of stay 4 3 (15)
19,21, 29,31 30,53, 58 15-18, 20, 22-24, 26, 28, 32, 54, 55, 57, 59
Overall health and function
Functional status; ADL dependence; ) 6
mobility 21,57 29-32, 58, 59 15-20, 22-24, 26, 28, 53-55
Self-rated health, quality of life ?3) )
27,31, 32 28,57 15-20, 22-24, 26, 29,30, 53-55, 58, 59
Cognitive impairment @) 5 9)
19, 22-24, 26, 29, 30, 53, 55

15-18, 28, 57, 59

®
20,31, 32, 54, 58

Visual or hearing impairment 1)
27

@
32

(21)
15-20, 22-24, 26, 28-32, 53-55, 57-59

Sociodemogr aphic factors

Age (19) (7) @
12-18, 20-23, 2527, 32, 53, 54, 57, 59 19, 24, 20-31, 55, 58 28

Gender (15) 8) 1)
12-18, 20-26, 32 19, 29-31, 53-55, 58 28

Race/ethnicity 7) (G)] (8)

12,14, 19, 20, 22, 25, 26

24, 30-32, 54, 55, 57, 58

15-18, 23, 28, 29, 53

Social determinants of health

SES/income/employment status (5)
12,14, 24, 25,54

(7)
20,26, 31, 32, 57-59

(10)
15-19, 22, 23, 28, 29, 53
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e . Evaluated but not
. Included in final model in (N A : . . .
Variable ; ) included in (N) Not considered” in (N) studies
studies p
studies
1 6 1 5
Insurance status 19, 20, zg, 37. 31,53 (57) 30, 32,(55), 58,59
Education (0) 4 a7
28,31, 32, 58 15-20, 22-24, 26, 29, 30, 53-55, 57, 59
Marital status/# of people in home 4) (6) (11)
24,28, 31,59 29, 32, 53, 54, 57, 58 15-20, 22, 23, 26, 30, 55
Caregiver availability, other social ) 1) (19)
support 32,57 31 15-20, 22-24, 26, 28-30, 53-55, 57-59
Access to care/rurality ) (14)
19, 22, 31, 53, 54 20,29 15-18, 23, 24, 26, 28, 30, 32, 55, 57-59
Discharge location (home, NH) 2) 1)
19,20 53 15-18, 22-24, 26, 28-32, 54, 55, 57-59

*
Six studies did not report candidate variables and only reported the final model.12-14, 21, 25, 27

TExampIes include use of telemetry, shock, planned vs emergent index hospitalization, heart rate, ejection fraction.

iThis category is not relevant to studies of Medicare patient515'18' 23 and non-US studies.12: 13, 28, 29, 54
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Table 3

Studiesthat compared modelswithin a population

Study and models compar ed

Model description

Page 19

C-gtatistic (95% ClI or SE

if reported)
Halfon, 200613
Nonclinical model Age, sex, prior utilization 0.67
Modified Charlson score based model Charlson score® plus prior utilization 0.69
Modified SQLape model6! Complex administrative model combining comorbidity, age, and 0.72
utilization data into 49 risk categories
Hammill 201118
Claims-only model CMS administrative heart failure model®® 0.59
Claims-clinical model CMS heart failure model + serum creatinine, serum sodium, 0.60

hemoglobin, systolic blood pressure

Allaudeen, 201134

PRA™2

Age, sex, self-rated health, availability of informal caregiver,
coronary disease, diabetes, hospital admission within past year,
prior utilization

0.56 (0.44-0.67)

Prediction by physician

Interns, residents, and attending physicians predicted chance of
readmission based on overall evaluation of patient

0.58-0.59 (0.46-0.70)

Prediction by non-physician provider

Nurses and case managers predicted chance of readmission based
on overall evaluation of patient

0.50-0.55 (0.38-0.67)

Amarasingham, 2010%

ADHERE mortality model

Blood urea nitrogen, creatinine, and systolic blood pressure

0.56 (0.54-0.59)

CMS heart failure model®®

Complex administrative comorbidity model consisting of age, sex,
and 35 hierarchical condition categories

0.66 (0.63-0.68)

Tabak mortality model52

Age, 17 lab and vital sign variables within 24 hours of hospital
presentation

0.61 (0.59-0.64)

Electronic readmission model

Includes Tabak mortality score, history of depression or anxiety,
single status, sex, residential stability, Medicare status, residence
census tract in lowest socioeconomic quintile, history of
confirmed cocaine use, history of missed clinic visit, use of a
health system pharmacy, number of prior admissions, presented to
emergency department between 6 am and 6 pm for index
admission.

0.72 (0.70-0.75)

Coleman, 200427

Administrative model

Age, sex, prior utilization, Medicaid status, Charlson score, 0
heart disease, cancer, diabetes

0.77

Administrative + self-report model

Administrative model + self-rated health, ADL assistance need,
visual impairment, functional status

0.83

Naessens, 199223

Modified Health Care Financing

Administration (HCFA) mortality model53

Age, sex, 16 DRG, and 8 comorbidities

0.59 (SE=0.01)

HCFA + COMPLEX

Complicated administrative model incorporating DRG based
disease staging and number of body systems affected + HCFA

0.61 (SE=0.01)

Abbreviations: ADHERE denotes Acute Decompensated Heart Failure Registry; Cl, Confidence Interval; CMS, Center for Medicaid and Medicare

Services; COMPLEX, a measurement of comorbidity and disease severity;23 HCFA, Health Care Financing Administration; IDI, Integrated
Discrimination Improvement; PRA, Probability of Repeated Admission; SE, Standard Error.

*
Variables were obtained from chart abstraction, whereas original PRA instrument is based on patient surveys.
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