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Breast cancers today are of predominantly T1 (0.1 ≥ 2.0 cm) or T2 (> 2 ≤ 5 cm) categories due to early diagnosis. Molecular
profiling using microarrays has led to the notion of breast cancer as a heterogeneous disease both clinically and molecularly. Given
the prognostic power and clinical use of tumor size, the purpose of this study was to search for molecular signatures characterizing
clinical T1 and T2. In total 46 samples were included in the discovery dataset. After adjusting for hormone receptor status, lymph
node status, grade, and tumor subclass 441 genes were differently expressed between T1 and T2 tumors. Focal adhesion and
extracellular matrix receptor interaction were upregulated in the smaller tumors while p38MAPK signaling and immune-related
pathways were more dominant in the larger tumors. The T-size signature was then tested on a validation set of 947 breast tumor
samples. Using the T-size expression signatures instead of tumor size leads to a significant difference in risk for distant metastases
(𝑃 < 0.001). If further confirmed, this molecular signature can be used to select patients with tumor category T1 who may need
more aggressive treatment and patients with tumor category T2 who may have less benefit from it.

1. Introduction
Breast cancer is by far the most frequent cancer among
women, and ranks second overall [1]. Guidelines for breast
cancer treatment are based upon classical clinicopathological
parameters: age, tumor size, grade, lymph node status, and
histological type; in addition to hormone receptor status [2].
Lymph node (N) status is the most powerful single indicator
of breast cancer prognosis [3], while tumor size, categorized
into four groups (T1–4) is the second strongest indicator and
is independent of lymph node status [3]. Here we attempted
to identify the molecular background behind this prognostic
effect of tumor size.

Mammographic screening has led to breast cancer diag-
nosis at preclinical stage and, as a consequence, most diag-
nosed cases present as T1 or T2, with significantly better
survival in T1 tumors [4]. Nevertheless, T1 tumors may also
give recurrence or metastases. Chemotherapy and hormonal
treatment reduce the risk of recurrence or distant metas-
tases by approximately 30% and according to the current
guidelines whether a tumor is T1 or T2 is a critical factor in
treatment decision. However, 70–80% of patients would have
survived without adjuvant treatment [5]. How to distinguish
the patients that would benefit from adjuvant treatment
would therefore be of great value to the patient preventing
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Figure 1: Unsupervised hierarchical clustering using the 441 significant probes after adjustment for clinical parameters. Genes are listed
vertically and each patient is represented in the columns. Clinical T1 tumors are shown in green while clinical T2 tumors are shown in red.

possible severe side effects, and to the community saving
from unnecessary health expenses.

Microarray technology has enabled to study thousands
of genes simultaneously. Interpretation of the data requires
advanced statistical analysis [6] and there has been a longway
to clinical implication [7]. Hierarchical clustering has been
the simplest algorithm applied to organize both genes and
samples into groups based on similarity of gene expression
[8]. Based on this, breast cancers have been separated into
several molecular subclasses [9].This implies breast cancer as
a heterogeneous group ofmalignancywith distinctmolecular
signature. The molecular subgroups have been studied in

respect of clinical implication and are significantly correlated
to overall survival and recurrence of disease [10]. As opposed
to this unsupervised approach, the principle of supervised
analysis is one where predictive models are built based on
existing knowledge of the clinical characteristics [11, 12]. This
methodology has also been used to establish a good and a
poor prognosis profile which is a more powerful predictor
of outcome in young patients with breast cancer than the
standard systems based on clinicohistological criteria [10, 13].

Since one of themost crucial factors of treatment decision
is tumor size, we aimed to find a gene expression profile
which will best characterize the two most common groups of
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Figure 2: Focal adhesion is one of the pathways upregulated in clinical T1 and downregulated in clinical T2. Red star implies the gene is
upregulated in clinical T1 and downregulated in clinical T2.

tumors: T1 and T2. We first identified the most differentially
expressed genes between T1 and T2 tumors in 46 patients and
characterized the biological pathways active in each category.
We then validated this gene list on other publically available
datasets.

2. Materials and Methods

2.1. Sample Collection. Core needle biopsies were collected
at Akershus University Hospital, Norway, between 2003
and 2007. The tumors were detected clinically or through
screening by mammography. The samples were taken under
ultrasound guidance and immediately placed into RNA later
(Sigma Aldrich, St. Louis, MO, USA). The stabilized samples
were stored at −80∘C. The study is approved by the Regional
Committee for Medical and Health Research Ethics (REK)
and all women included have signed a consent form.

This study includes in total 46 samples, 27 T1 and 19
T2 infiltrating ductal carcinomas. T1 lesion is defined as no
more than 2 cm in size while T2 lesion is defined as above
2 cm up to 5 cm. The clinical parameters of the tumors are
summarized in Table 1 and Figure 1. Within the T1 group
two women had recurrence or metastasis, both of these are
deceased. In addition two other women in this group are
deceased but without cancer specific death. In the T2 group
two patients had metastasis or recurrence, one of these has
deceased. In addition there was one more case of mortality
in this group; this patient developed malignant melanoma
with liver metastasis which was the probable cause of death.

Among the women in the T2 group two patients developed a
new breast cancer.

2.2. RNA Isolation. Frozen biopsies were homogenized in
600𝜇L Trizol (Invitrogen, Carlsbad, CA, USA) using a 5mm
steal bead (Qiagen, Hilden, Germany) and a Mixer Mill
MM301 (Retsch, Haan, Germany) at 20Hz for 2min before
adding an additional 600𝜇L Trizol, followed by 240𝜇L
chloroform (Sigma Aldrich). After centrifugation (15min,
12000×g, 4∘C) the upper aqueous phase was transferred to
a new tube and RNA precipitated by adding an equal volume
of isopropanol. After centrifugation the pellet was washed 2-
3 times with 75% ethanol and dissolved in 40 𝜇L RNase-free
water (Ambion, Austin, TX, USA). Concentration was mea-
sured using NanoDrop (Thermo Fisher Scientific, Waltham,
MA, USA) and RNA quality assayed on a 2100 Bioanalyzer
(Agilent, Santa Clara, CA, USA). The purified RNA was
stored at –80∘C.

2.3. Microarray Analysis. 10 𝜇g total RNA was amplified
using Amino Allyl MessageAmp II aRNA Amplification
Kit (Ambion) followed by posttranscriptional labeling with
CyDye Cy3 or Cy5 (GE HealthCare, Chalfont St. Giles,
UK). As a reference probe universal human reference RNA
(UHR; Stratagene, La Jolla, CA, USA) was amplified and
labeled as above. Amplification and labeling efficiency were
controlled on the NanoDrop. Labeled cRNA corresponding
to 20 picomoles cyanine dye each of experimental and
reference samples were mixed and hybridized to Agilent



4 ISRN Oncology

ECM ProteoglycanECM Integrin
VLA proteins

ECM Integrin

VLA proteins

ECM Integrin
Cytoadhesin

𝛼1

𝛽1

𝛼3

𝛽1

𝛼

𝛽1

𝛼5

𝛽1

𝛼6

𝛽1

𝛼7

𝛽1

𝛼2

𝛽1

Collagen

Collagen

Collagen

Laminin

Laminin

Fibronectin

Laminin

Laminin

Laminin

Fibronectin

Fibronectin

OPN

THBS

Reelin

Chad

Leukocytes
proteins

𝛼4

𝛽7

𝛼V

𝛽1

𝛼11

𝛽1

𝛼10

𝛽1

𝛼9

𝛽1

𝛼8

𝛽1

Fibronectin

Fibronectin

OPN

Vitronectin

Collagen

Collagen

Collagen

Laminin

OPN

Fibronectin

Vitronectin

Tenascin

Tenascin

Other
combination

Glycoprotein

Ig-SF

Focal adhesion

𝛼V

𝛽8

𝛼V

𝛽6

𝛼V

𝛽5

𝛼6

𝛽4

𝛼IIb

𝛽3

𝛼V

𝛽3

GPV

GPI𝛼

GPI𝛽

GPIX

GPV

CD36

SV2

Syndecan

CD44

𝛼DG 𝛽DG

CD47

RHAMM

Fibronectin

Vitronectin

VWF

OPN

BSP

Tenascin

THBS

Vitronectin

Fibronectin

VWF

THBS

Vitronectin

BSP

THBS

Fibronectin

Vitronectin

Tenascin

Fibronectin

Collagen

Laminin

Laminin

Collagen

Laminin

Collagen

Laminin

Fibronectin

Tenascin

THBS

Fibronectin

Collagen

THBS

VWF

Laminin

THBS

Agrin

Perlecan

ECM-receptor interaction

Npnt

HA

HA

Figure 3: ECM receptor interactions are upregulated in clinical T1 and downregulated in clinical T2. Red star implies the gene is upregulated
in clinical T1 and downregulated in clinical T2.

Whole Human Genome Oligo Microarrays (1 × 44 k format)
per manufacturer’s protocol (Ver. 4.1). After hybridization at
60∘C for 17 hours the arrays were washed and scanned using
an Agilent scanner.

Data collection and quality assessment were performed
using Agilent Feature Extraction software v8.5 with default
parameters. Preprocessing was performed using JExpress Pro
v2.7 [14]. Poor spots flagged by Feature Extraction were
filtered out and Loewess normalization applied. Missing
values were calculated with the LSimpute function for genes
with less than 5% missing values. To find significant changes
of genes/probes between the two tumor stages, Statistical
Analysis of Microarray (SAM) [15] was applied. To adjust for
lymph node status, differential grade, estrogen and proges-
terone receptor status, and breast cancer subtype, a partial
least squares regression analysis was performed with the pls
package in R [16, 17]. To find biological functions pathway
analysis was performed for the up- and downregulated
genes in T1 and T2 using DAVID [18, 19]. The upregulated

genes in T1 are simultaneously the downregulated genes in
T2 and vice versa. To confirm and visualize the differen-
tial expression between T1 and T2 tumors, unsupervised
hierarchical clustering using the genes/probes significantly
deregulated by SAM was performed in JExpress Pro. The
microarray data have been submitted to the ArrayExpress
Archive (http://www.ebi.ac.uk/microarray-as/ae/), accession
number: E-MTAB-1049.

2.4. Validation Set. To validate the T-size signature in an
independent dataset, we collected expression profiles of 947
breast tumor samples [20] from six published microarray
datasets [21–26] with updated followups. The datasets are
accessible from NCBI’s Gene Expression Omnibus (GEO,
http://www.ncbi.nlm.nih.gov/geo/) with the following iden-
tifiers; GSE6532 for the Loi dataset [21], GSE3494 for the
Miller dataset [22], GSE1456 for the Pawitan dataset [23],
GSE7390 for the Desmedt dataset [24], and GSE2603 for

http://www.ncbi.nlm.nih.gov/geo/
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Figure 4: Neurotrophin signaling pathway is among the pathways downregulated in clinical T1 and upregulated in clinical T2. Red stars
imply genes that are downregulated in clinical T1 and upregulated in T2.

the Minn dataset [25]. The Chin dataset [26] is available
fromArrayExpress (http://www.ebi.ac.uk/) with identifier E-
TABM-158.

These datasets were all measured on Human Genome
HG-U133A Affymetrix arrays. Each dataset was RMA-
normalized [27] and median centered per gene. All over-
lapping samples from the Desmedt and Loi datasets were
excluded. The datasets were then merged based on the
common probes. Gene centering has been shown to effec-
tively remove many data set specific biases allowing effective
integration of multiple data sets [28]. The merged dataset did
not show batch effect after pulling (see Zhao et al. [20]).

2.5. Gene Signatures Evaluated on the Validation Set. For the
T-size signature, tumors in the validation set were assigned
to either T1-like group or T2-like group using the nearest of
the T-size expression centroids (distances computed using
correlation to the centroids). The risk group assignment
corresponded to the label of the centroid with the highest

correlation. We did not apply a correlation cutoff when
assigning risk groups; every sample received a classification
based on the T-size signature.

We further compared the prognostic power of the T-size
signature with eight established prognostic gene signatures
for breast cancer. These are Intrinsic [9, 29, 30], PAM50
[31], 70-gene or MammaPrint (Agendia, Amsterdam, The
Netherlands) [13, 32], 76-gene [33], Genomic-Grade-Index
(GGI) [21, 34], 21-gene-Recurrence-Score (RS) or Oncotype
DX (Genomic Health Inc., Redwood City, CA) [35], Wound-
Response (WR) signature [36, 37], and Hypoxia signature
[38, 39]. All included gene signatures were implemented
using the original algorithms. For Intrinsic and PAM50, in
addition to subtype classification, a risk score per sample was
computed by linear combination of the centroid correlations
in ROR-S model (Risk-Of-Relapse scores by Subtype alone)
[31]. A pseudo Oncotype DX Recurrence Score per patient
was computed by the unscaled Recurrence Score [35]. For 76-
genes, GGI and RS, rather than assigning risk groups based
on published cutoffs, we used a population-based approach

http://www.ebi.ac.uk/
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Figure 5: T-size signature for prediction for Distant Metastasis Free Survival (DMFS) on the Affy947 breast cancer dataset. Survival
probabilities associated with the risk groups are shown by Kaplan Meier plot. A total of 912 patients had available DMFS status. Follow-up
time is shown in month. (a) T-size signature in the complete set. (b) In pT1 tumor subset. (c) In pT2 tumor subset.

in which a fixed proportion of the population was assigned to
each risk group.The proportions were derived from previous
datasets associated with individual signatures [24, 34, 35].
We found this necessary as our analyses differed from the
original methods in technical or methodological manners
(see details in Zhao et al. [20]). To make a fair comparison
across signatures, we assessed the signatures on the full
dataset.

2.6. Survival Analysis. The signatures were evaluated for
prediction of Distant Metastasis Free Survival (DMFS). A

total of 912 patients on the validation set (𝑛 = 947)
had available DMFS status with median followup for 81
months. The Kaplan-Meier survival curves were plotted for
the corresponding risk groups. The differences in survival
probabilities associated with the risk groups were tested by
a logrank test.

A likelihood ratio test was used to assess the significance
of the overall effect in a univariate comparison of predictors.
Deviance was used to check the goodness of the model
fit. The marginal contribution by a single predictor in the
univariate setting was evaluated using the proportion of
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Table 1: Summary of patient characteristics.

Sample Stage Size/cm Grade Node ER PgR Recurrence/metastasis Deceased
24 T1 0.8 2 1 Positive Positive
29 T1 0.8 2 0 Positive Positive
51 T1 1.0 1 0 Positive Negative
55 T1 0.8 3 0 Positive Positive
62 T2 2.5 3 2 Negative Negative
69 T1 1.4 2 0 Positive Positive
73 T1 1.8 2 0 Positive Positive
78 T1 1.2 2 0 Positive Positive
81 T2 2.3 2 1 Positive Positive
83 T1 1.9 3 1 Positive Positive
84 T1 1.0 2 0 Positive Positive
94 T1 1.9 3 0 Positive Negative Yes Yes
99 T2 4.0 3 0 Negative Negative
101 T1 1.9 3 0 Positive Positive Yes
122 T2 3.4 3 1 Positive Negative Yes
124 T1 0.9 1 0 Positive Positive
129 T1 0.8 2 0 Positive Negative
130 T2 2.2 3 2 Positive Positive Yes Yes
143 T2 2.8 2 0 Positive Positive
147 T1 1.0 1 0 Positive Positive
148 T1 0.9 2 0 Positive Positive
149 T1 1.0 1 0 Positive Positive
152 T1 1.5 2 1 Positive Positive
170 T2 4.0 2 1 Negative Negative
172 T1 1.9 2 1 Negative Negative Yes
175 T2 2.5 3 0 Negative Negative
176 T2 2.7 3 0 Positive Positive
178 T1 1.2 2 1 Negative Positive Yes Yes
179 T1 1.8 2 1 Positive Positive
191 T1 1.4 1 0 Positive Positive
200 T1 1.5 2 0 Negative Positive
211 T1 1.7 2 2 Positive Positive
213 T2 3.0 3 1 Negative Negative
214 T1 1.2 2 0 Positive Negative
218 T2 2.1 1-2 1 Positive Negative
222 T2 2.1 2 0 Positive Positive New BC
227 T1 1.8 2 0 Negative Positive
228 T2 3.0 3 0 Negative Negative
231 T2 2.1 2 0 Positive Negative
233 T2 3.0 3 0 Negative Negative New BC
237 T2 2.1 2 0 Positive Positive
244 T1 0.6 2 0 Positive Positive
270 T2 3.0 3 0 Positive Negative Yes
272 T2 2.3 2 1 Positive Negative
280 T2 3.2 2 0 Negative Positive
283 T1 1.3 2 1 Positive Negative
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Table 2: Upregulated pathways in T1 breast cancer tumors compared to T2 tumors.

Term Genes Count % 𝑃 value Benjamini
Focal adhesion (KEGG PATHWAY) MYL7, ITGA2, ITGB3, COL4A6, SHC4 5 3.5 3.6𝐸 − 2 8.6𝐸 − 1
Arrhythmogenic right ventricular
cardiomyopathy (ARVC) (KEGG PATHWAY) LEF1, ITGA2, ITGB3 3 2.1 8.2𝐸 − 2 9.0𝐸 − 1

Small cell lung cancer (KEGG PATHWAY) ITGA2, ITGB3, COL4A6 3 2.1 9.7𝐸 − 2 8.4𝐸 − 1
ECM-receptor interaction (KEGG PATHWAY) CDKN1B, ITGA2, COL4A6 3 2.1 9.7𝐸 − 2 8.4𝐸 − 1

Table 3: Downregulated pathways in T1 breast cancer tumors compared to T2 tumors.

Term Genes Count % 𝑃 value Benjamini
Neurotrophin signaling pathway (KEGG PATHWAY) YWHAZ, GRB2, RAC1, YWHAQ, FRS2 5 2.8 4.2𝐸 − 2 9.8𝐸 − 1
p38 MAPK Signaling Pathway (BIOCARTA) GRB2, RAC1, MKNK1 3 1.7 5.0𝐸 − 2 9.8𝐸 − 1
Prion diseases (KEGG PATHWAY) C1QA, C1QB, C1QC 3 1.7 5.3𝐸 − 2 9.1𝐸 − 1
Jak-STAT signaling pathway (KEGG PATHWAY) OSM, IFNA2, GRB2, IL10RA, IL4R 5 2.8 8.1𝐸 − 2 9.2𝐸 − 1
Systemic lupus erythematosus (KEGG PATHWAY) C1QA, C1QB, HLA-DPB1, C1QC 4 2.2 8.7𝐸 − 2 8.7𝐸 − 1
Toll-like receptor signaling pathway
(KEGG PATHWAY) IFNA2, MYD88, TICAM1, RAC1 4 2.2 9.1𝐸 − 2 8.2𝐸 − 1

variation explained in the outcome variable (PVE) [40],
which is an indicator for the importance of covariates in the
Cox model. The Hazard Ratio (HR) was used as an accuracy
measure for the risk group prediction for different predictors.
The concordance index (C-index) [41] was computed to assess
the predictive discrimination ability of each of the predictors
in the corresponding univariate Cox model. For a multivari-
ate comparison of predictors, the relative importance of a
covariate in a multivariate Cox model was measured by the
partial PVE.

3. Results

After preprocessing 36,669 genes were included for further
analyses. Comparing the gene expression profiles between
T1 and T2 tumors and using partial least squares regres-
sion (PLS) analysis to adjust for lymph node status, dif-
ferential grade, hormone receptor status, and breast cancer
subtype, yielded 441 genes differentially expressed genes
at FDR <1% (Supplementary Table S1 available online at
http://dx.doi.org/10.1155/2013/924971). Unsupervised hierar-
chical clustering using these 441 probes resulted in T1 and T2
tumors to cluster for most part separately (Figure 1) except
four T1 tumors that clustered with the T2 tumors. One of
these patients developed metastasis to the lung and to the
bone, and later died. Another one is still alive but had bilateral
breast cancer in addition to primary lung cancer.The last two
patients in this group are free of recurrence and metastasis.

3.1. Pathway Analysis. To further study the differences in
genes between T1 and T2 tumors, we performed pathway
analysis. Of the 441 significant probes, 184 probes were
upregulated in T1 (downregulated in T2), and 257 probes
were downregulated in T1 (upregulated T2).The genes upreg-
ulated in T1 were enriched for several pathways (Table 2),
including Focal Adhesion (Figure 2) and ECM- (extracellular
matrix) receptor interaction (Figure 3). Among the important

upregulated genes are several collagens and integrins, and p27
(cyclin dependent kinase inhibitor 1B).

The downregulated genes in T1, upregulated in T2 were
enriched for important pathways likeNeurotrophin signaling
pathway (Figure 4), p38MAPK signaling pathway, and several
pathways involved in immune response (Table 3). Important
genes in these pathways are MNK1 (MAP kinase interacting
serine/threonine-protein kinase 1), GRB2 (Growth factor
receptor bound protein 2), RAC1 (ras-related C3 botulinum
toxin substrate 1), and several immune-related genes, such as
IFN, IL6, MHCII, and complement component 1.

3.2. Validation of the T-Size Signature. In the validation of the
T-size signature, a total of 480 samples were called as T1-like,
and 467 were classified as T2-like. For all signatures except
Hypoxia on the complete set for DMFS (𝑛 = 912), differences
in DMFS between risk groups were highly significant (not
shown; see Zhao et al. [20]). Specifically for the T-size
signature, the separation between T1-like group and T2-like
groupwas highly significant (𝑃 < 0.001; Figure 5(a)) with T2-
like group associated with higher risk for distant metastasis.
We also observed highly significant separation of two risk
groups for DMFS in the patient group with pT1 size tumors
(𝑛 = 440; 𝑃 < 0.001; Figure 5(b)); while in the pT2 tumor
subgroup (𝑛 = 459), T-size signature achieved less significant
separation for the risk prediction (𝑃 = 0.031; Figure 5(c)).

We performed univariate analysis for the T-size signature
and clinical parameters including tumor size (1–3), node
status (positive versus negative), ER status (positive versus
negative), and histological grade (1–3), respectively. The
performance comparisons by using the likelihood ratio test,
the deviance, the proportion of variation explained (PVE), the
concordance index (C-index), and the Hazard Ratio (HR) are
summarized in Table 4. A multivariate Cox model was used
to simultaneously assess the T-size signature and the included
clinical parameters in the study.Due to the known association

http://dx.doi.org/10.1155/2013/924971
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Table 4: Univariate comparison of predictors.

Covariate HR [95% CI] 𝑃 PVE Deviance 𝐶

T-size signature
(Overall effect) 4.30𝐸 − 07 2.76𝐸 − 02 25.55 0.58
T2-like (versus T1-like) 1.92 [1.48–2.48] 7.22𝐸 − 07

Tumor size
(Overall effect) 5.63𝐸 − 08 3.62𝐸 − 02 33.38 0.60
2 (versus 1) 1.95 [1.50–2.55] 7.83𝐸 − 07

3 (versus 1) 3.39 [1.96–5.88] 1.37𝐸 − 05

Node
(Overall effect) 2.40𝐸 − 06 2.46𝐸 − 02 22.24 0.58
+ (versus −) 1.89 [1.46–2.45] 1.35𝐸 − 06

ER
(Overall effect) 2.07𝐸 − 02 5.85𝐸 − 03 5.35 0.54
+ (versus −) 0.72 [0.55–0.94] 1.78𝐸 − 02

Histological grade
(Overall effect) 2.45𝐸 − 04 2.11𝐸 − 02 16.63 0.60
2 (versus 1) 1.78 [1.15–2.77] 1.04𝐸 − 02

3 (versus 1) 2.37 [1.52–3.69] 1.78𝐸 − 02

Table 5: Multivariate comparison of predictors.

Covariate HR [95% CI] 𝑃 Partial PVE
T-size signature

T2-like (versus T1-like) 1.70 [1.25–2.32] 8.03𝐸 − 04 1.42𝐸 − 02

Tumor size
2 (versus 1) 1.74 [1.29–2.35] 2.72𝐸 − 04 1.62𝐸 − 02

3 (versus 1) 2.07 [0.97–4.40] 5.98𝐸 − 02 1.62𝐸 − 02

Node
+ (versus −) 1.68 [1.24–2.28] 8.11𝐸 − 04 1.25𝐸 − 02

Histological grade
2 (versus 1) 1.45 [0.92–2.29] 1.14𝐸 − 01 2.05𝐸 − 02

3 (versus 1) 1.49 [0.91–2.47] 1.16𝐸 − 01 2.05𝐸 − 02

between ER status and survival, we included ER status as
stratification variable (Table 5).

4. Discussion

Approximately 15% of all women diagnosed with breast
cancer die from their disease within 5 years of diagnosis [42]
despite having been treated according to national clinical
guidelines [2]. Both genomic and clinical variables should
be induced in a common algorithm to yield the most
accurate prediction model. Microarray has made it possible
to study thousands of genes simultaneously. This generates
information about gene expression profiles that can be
computed in different ways. One of these is the clustering of
patients according to the gene expression in their tumors.The
majority of the gene lists are generated to distinguish patients
frombeing subject to unnecessary adjuvant treatment or with
the intention of individualizing therapy and treatment.

Several genetic signatures have been presented [13, 23, 32–
34].This work has led to the development of special kits such
asMammaPrint (Agendia, Amsterdam,TheNetherlands) [13,

32] and Oncotype DX (Genomic Health Inc., Redwood City,
CA, USA) [35]. By combining information from multiple
gene signatures, onewould potentially increase the prediction
power and bring out an overall picture of this disease. Zhao
et al. aimed to develop an analytical framework that allows
us to utilize the combined strength from individual gene
signatures [43]. Such a framework and the resulting model
will be broadly applicable for survival prediction across
heterogeneous tumor groups capturing a broad spectrum
of biological aspects. The tumor size associated signature
presented here has the purpose to identify the molecular
characteristics associated to size and does not claim to
provide prognostic index superior to the existing ones. The
signature specific difference in DMFSwithin the T1 subgroup
and the T2 subgroup, shown here, are used only to suggest
that it can be used as supplementary information to tumor
size.

Most first generation signatures are good for predicting
prognosis in early stage breast cancer. There is only a minor
overlap in genes in the different signatures [44], but they
produce similar risk group assignment in the same dataset.
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Proliferation and the level of proliferation-related genes
are the strongest prognostic factors in ER positive cancer.
Proliferation-related genes are often highly expressed in ER
negative cancers, so in the first generation signatures almost
all ER negative cancers seem to have poor prognosis. It
was initially meant that these prognostic signatures could
replace the classical histopathological findings, but meta-
analysis has revealed that tumor size and lymph node status
give prognostic information independent of the molecular
signatures [45].

The present study attempts to identify, independent of
grade, receptor status and lymph node status, the molecular
signature, and the underlying biological pathways associ-
ated to tumor size, which is an objective property without
possibility of interobserver disagreement. The most signifi-
cant pathways upregulated in T1 compared to T2 are focal
adhesion, ECM-receptor interaction, and two organ specific
pathways (Table 2). Important genes occur at several steps in
these pathways. One of these genes being P27(Kip) (cyclin
dependent kinase inhibitor 1B). The cell-cycle regulating
protein p27Kip1 (p27) has dual roles by acting as both a
cdk inhibitor and as an assembly factor for different cdk
complexes. Loss of p27 has been linked to malignant features
in different tumors [46]. High levels of p27 are expressed
in normal human mammary epithelium, but loss of p27 is
frequent in breast cancer and has been demonstrated to have
prognostic implications [47]. Patients with tumors expressing
low levels of p27were associatedwith poor prognosis, and it is
especially pronounced in hormone-receptor positive tumors
[48]. HER2 positive primary breast cancers often reveal low
levels of p27 [49]. As mentioned, in our material p27 is
upregulated in T1 tumors compared to T2 tumors and this
is in coherence with earlier studies. Thus this could be a
possible marker, among others, that could be used to select
the T1 tumors that have a greater possibility of recurrence.
The lower p27, the worse prognosis, consequently requiring
stronger treatment.

Pathways downregulated in T1 and upregulated in T2 are
shown in Table 3. These are all pathways associated with the
immune response, and a majority of the actual downregu-
lated genes are immune response related genes, like IFN, IL6,
MHC II, and Complement component 1. This is consistent
with a more aggressive lesion that requires more effort from
the immune system. Among the genes downregulated in T1
tumors compared to T2 tumors is GRB2. Grb2 is an adaptor
protein that is essential for a variety of cellular functions
and acts as a critical downstream intermediary in several
oncogenic signaling pathways [50]. In human breast cancer
cells Grb2 is overexpressed. In an unpublished work we have
demonstrated that there is a significant difference in the
expression of this gene in normal tissue and breast cancer
tissue, and also in normal tissue adjacent to tumor. The
role of Grb2 as a signal transducer for several oncogenic
growth factor receptors and the broad involvement of Grb2 in
multiple steps of the metastasis cascade make it a good target
for antitumor therapeutic strategies [50]. Like for p27, maybe
this gene could be measured in the patients with smaller
tumors to select those with worse prognosis.

RAC1 (ras-related C3 botulinum toxin substrate 1) may
represent an attractive target. Rac GTPases, small G-proteins
widely implicated in tumorigenesis andmetastasis, transduce
signals from tyrosine-kinase, G-protein-coupled receptors
(GPCRs), and integrins, and control a number of essential
cellular functions including motility, adhesion, and prolifer-
ation. In breast cancer cells Rac1 is a downstream effector
of ErbB receptors and mediates migratory responses by
ErbB1/EGFR ligands such as EGF or TGF𝛼 and ErbB3 ligands
such as heregulins [51]. This gene is a potential target for use
in therapy of breast cancer.

5. Conclusions

In summary we show here that there is a molecular profile
that is associated to tumor size. Thus a gene-expression
signature-based approach combined with the classical TNM
classification as well as analysis of key genesmay pave the way
to improved individualized therapy.
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