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Abstract
A molecular dynamics (MD) simulation based protocol for structure refinement of template-based
model predictions is described. The protocol involves the application of restraints, ensemble
averaging of selected subsets, interpolation between initial and refined structures, and assessment
of refinement success. It is found that sub-microsecond MD-based sampling when combined with
ensemble averaging can produce moderate but consistent refinement for most systems in the
CASP targets considered here.
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Introduction
Much progress has been made towards predicting the tertiary structure of proteins from their
amino-acid sequence.1–3 By far the most success has been found with template-based
modeling (TBM) methods4–6 where information from known experimental structures is
utilized. Traditionally, TBM would use a single homologous protein for which a structure is
available, but the best methods combine structural information from multiple templates in a
variety of different algorithms.1,7–11 Using such methods, structures for most soluble
proteins can be obtained today with high accuracy as long as sufficiently close structural
templates can be found in the Protein Data Bank.12 Nevertheless, the resulting models for
non-trivial cases often retain structural errors with respect to experimental structures that
limit the use of such models in further studies. For example, TBM-derived structures are
often problematic as drug design targets13,14 or as starting structures for detailed
mechanistic studies via molecular dynamics simulations and other computational methods.15

Structure refinement methods aim at the further improvement of TBM-based models
towards experimental accuracy.16–18 Because TBM-based models already utilize knowledge
from related structures, most refinement algorithms that have been proposed rely on physics-

*Corresponding author: Phone: (517) 432-7439, FAX: (517) 353-9334, feig@msu.edu.

Supporting Information
One additional table for the performance of the median structure, as well as two additional figures showing the change in GDT-HA of
individual targets vs. time, one for the unrestrained 24 ns simulation without restraints, and one for the 200 ns simulation. This
material is available free of charge via the Internet at http://pubs.acs.org.

NIH Public Access
Author Manuscript
J Chem Theory Comput. Author manuscript; available in PMC 2014 February 12.

Published in final edited form as:
J Chem Theory Comput. 2013 February 12; 9(2): 1294–1303. doi:10.1021/ct300962x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pubs.acs.org


based techniques, in particular molecular dynamics (MD) simulations.16,19–21 Although
successful examples of MD-based refinement have been reported in the past,2,11,19–26

consistent success appears to be hindered by a combination of insufficient sampling,11,27,28

force field inaccuracies,20,29 and an inability to reliably identify refined structures that may
be generated during the course of an MD simulation.11,23,29–32 To address these issues,
statistical potentials21,33–35 and optimized force fields20,36,37 have been used as well as
effective sampling techniques such as replica-exchange19,24,25,33 and self-guided Langevin
dynamics38 simulations. In some studies it was possible to generate improved structures by
as much as 0.5 Å in root-mean-square deviation (RMSD) in one out of five models,25,33 but
reliable identification of a single refined structure remained difficult. Recently, Fan et al.24

have shown that by mimicking the electrostatic effects with chaperone Hamiltonian replica-
exchange MD simulation can generate refined structures for 10 out of 15 targets with
improvements of more than 1 Å RMSD for the secondary structure elements, but again
reliable selection of refined structures without knowledge of the native state remained
challenging. However, on average models selected based on a statistical potential function,
Distance-scaled Finite Ideal gas REference (DFIRE),39,40 could be improved by 0.25 Å
from the initial models.24

A common observation is that unrestrained MD simulations of template-based models
almost invariably end up drifting away from the native structure.19,23 Refinement is more
likely to occur when structures are restrained,19,23 but the drawback of using restraints is
that the degree to which structures can be refined is limited. The most extensive test of MD-
based refinement published so far involved simulations up to 100 µs for CASP8 (Critical
Assessment of techniques for protein Structure Prediction) and CASP9 refinement targets.23

In that work from the Shaw group, the final structures were not improved on average but
refinement could be achieved by using a cluster-based selection method to reach 1% in
terms of GDT-TS (Global Distance Test-Total Score)41 for conformations extracted from
simulations exceeding 10 µs in length. Better structures with sometimes much more
significantly improved GDT-TS scores were generated in these simulations but could not be
identified reliably.23

Finally, Zhang et al.36 used a fragment-guided MD technique, in which different fragments
of target proteins were restrained to their homologous templates. Using this technique,
improvements in GDT-HA (GDT-High Accuracy) scores were possible for targets with
initial GDT-HA scores of greater than 50. However, for CASP8 and CASP9 targets average
improvement was limited to only 0.6% in terms of GDT-HA and the improvement in RMSD
was insignificant.

Here, we are presenting a structure refinement protocol that combines MD-based sampling
in explicit solvent using the latest CHARMM (Chemistry at HARvard Molecular
Mechanics) force field42, a scoring protocol that identifies the most native-like structures,
and ensemble averaging to mimic the conditions under which experimental structures are
obtained. Using this protocol, we are able to consistently refine CASP8 and CASP9 targets
with relatively modest computational resources.

In the following, the computational methods are described before results are presented and
discussed.

Methods
We have performed all-atom molecular dynamics (MD) simulations for 26 refinement
targets from CASP8 and CASP9. The targets used here as test sets are listed in Table 1. The
initial structures were provided by the CASP organizers and represent predicted models of
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high accuracy for the respective targets that were submitted during CASP. Along with the
initial coordinates, the CASP organizers also provided information for many targets about
regions that refinement should focus on. This information was used here to apply restraints
on the remaining parts of the structure considered to be accurate. For targets where a
refinement residue range was not provided during CASP we determined a residue restraint
list during the respective CASP rounds when knowledge of the experimental structures was
not yet available under the assumption that the core secondary structure elements are likely
to be more correct than other parts of the structure. The resulting list of restraints for each
target is given in Table 1. For 16 targets the restraint regions were selected based on CASP
suggestions, and for the remaining 10 targets restraints were based on core secondary
structure elements.

For each initial structure, missing hydrogens were built using the HBUILD module in
CHARMM.43,44 The protein structures were then solvated in a cubic box of water with a
minimum distance of 10 Å between any protein atom and the edge of the box. The systems
were neutralized by adding Na+ or Cl− as counterions to balance the overall charge. All of
the systems were equilibrated by minimization followed by heating through short
simulations over 1 ps at 50 K, 100 K, 150 K, 200 K, 250 K, and 298 K. Subsequent
production simulations were carried out at 298 K and 1 bar pressure in the NTP (constant
number of particles, temperature, and pressure) ensemble over different simulation lengths
up to 200 ns.

The CHARMM36 force field42 was used in combination with the TIP3 water model45. The
CHARMM36 force field was recently introduced as an improved version of the previous
CHARMM22/CMAP force field46,47. The main differences are improved sampling of
backbone propensities in better agreement with experimental data, in particular NMR J-
coupling data, and improved side chain torsions, also to improve agreement with
experimental data.42 In all simulations, periodic boundaries were applied and particle-mesh
Ewald summation was used to calculate electrostatic interactions using a grid spacing of 1
Å. Direct-space electrostatic and Lennard-Jones interactions were truncated using a
switching function between 8.5 Å and 10 Å. All simulations used holonomic constraints on
bonds involving hydrogens so that a 2 fs integration time step could be used. Simulations
were carried out with and without restraints according to Table 1. Restraints were applied
through a harmonic force on Cα atoms with a force constant of 1 kcal/mol/Å2.

Because part of our refinement protocol involves averaging over structural ensembles, a
second set of simulations was carried out to allow side chains in the averaged structures to
relax while maintaining the backbone geometries. This was accomplished by resolvation of
the refined structures followed by minimization over 5000 steps and two short MD
simulations at 10 K and 100 K, each for 40 ps. During these minimization and MD
simulations, all Cα atoms were restrained with a force constant of 100 kcal/mol/Å2. The
quality of the structures before and after the final refinement simulations was assessed using
the MolProbity structure validation web service48

All of the systems were initially setup using CHARMM43,44 and the MMTSB (Multiscale
Modeling Tools for Structural Biology) Tool Set49. Production simulations were carried out
using NAMD50. Analysis was carried out using a combination of CHARMM, the MMTSB
Tool Set, and custom scripts and programs.

Results
Molecular dynamics simulations were carried out for the CASP8 and CASP9 refinement
targets starting from the template-based models provided during the respective CASP rounds
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for the CASPR refinement competition. Simulations were run with and without restraints
and over different lengths of 24 ns, 200 ns, or eight times 3 ns to compare the effect of
different amounts of sampling. The conformations sampled for each target during these
simulations were then subjected to different selection and averaging protocols with the goal
to obtain refined structures. Each protocol and the corresponding results are described in
more detail in the following.

Final and Best Structures
The most straightforward MD-based refinement protocol would consist of simply
considering the final structure at the end of a given MD run. Tables 2 and 3 show the change
in RMSD and GDT-HA, respectively, relative to the native structures for the final structures
under different conditions. We show here changes in both RMSD and GDT-HA51 values
because they emphasize different aspects. GDT-HA represents the fraction of residues in the
model that are within a short RMSD cutoff from a reference structure. Improvements in
GDT-HA characterize to what extent the fraction of high-quality parts of a given structure is
increased while ignoring parts of a structure that are of poor quality. RMSD changes capture
the entire structure including bad parts of the structure. Often, GDT-HA and RMSD are
highly correlated but in some cases, we find refinement in one measure but not in the other
and vice versa. The first observation from the results in Tables 2 and 3 is that without
restraints most of the structures move away from the native structure, some significantly,
despite the relatively short simulation length of 24 ns. However, for the few cases where the
final structure is refined, the improvement can also be quite significant, by about 1 Å for two
targets. The occasional success but overall failure with unrestrained MD simulations is
consistent with similar findings by other groups.23 When restraints are applied during
simulations of the same length, the number of refined targets increases from 5 to 9 (out of
total of 26 cases considered here) but while the restraints prevent large deviations away from
the native they also limit to what extent structures can be improved.

Extending the sampling to 200 ns further increases the number of structures that were
refined at the end to 11 (according to RMSD) or 13 (according to GDT-HA). However, even
better results were found when the average final structures from many short simulations (8 ×
3 ns) were considered with now more than half of the structures being refined. The use of
multiple short simulations is expected to improve sampling over a single long
simulation33,52 and our results suggest that increased sampling does lead to improved
success with refinement. This is in agreement with previous findings.23 It is interesting to
note that when selecting the average final structure from the 8 × 3 ns simulations, we already
find an average improvement in GDT-HA score by 1.2, comparable to the results reported
by the Shaw group after much longer simulations.

As shown in Figures S1 and S2 (supplementary material), the RMSD and GDT-HA scores
fluctuate significantly during the simulations and while the final structures are often not
improved, there are improved structures at other times during the simulation for many
targets. Tables 2 and 3 also show the improvement in RMSD and GDT-HA for the best
structures (in terms of RMSD or GDT-HA) that were sampled during the simulations.
Without restraints, only about half of the targets are refined at some point during the
trajectory, but with restraints refined structures are found for almost all of the targets, in
particular during the longer 200 ns simulation and during the multiple short simulations. The
average maximum improvement in terms of GDT-HA is again similar to the values for the
simulations from the Shaw group after about 10 µs. This finding raises the possibility that
such long simulations may not be necessary to achieve refinement and that other
methodological factors may be more critical.
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Lowest-scoring Structures
Since refined structures were generated during most of the simulations, the next question we
investigated was whether application of a scoring function to an ensemble of structures
extracted from the MD runs would allow us to identify the most native-like, and therefore
refined structures. Table 4 shows the change in RMSD and GDT-HA with respect to the
experimental structures when selecting the conformation with the lowest DFIRE score. We
chose DFIRE as one of the best-performing scoring functions that has been widely applied
in structure prediction applications.39,40 The results indicate that selecting structures based
on the lowest DFIRE score has similar performance or is even slightly worse than simply
taking the final structures. This is not entirely surprising when considering the correlation
coefficients between RMSD or GDT-HA and the DFIRE score. Although the correlation
coefficients largely have the correct sign (positive for RMSD, negative for GDT-HA), their
small magnitude – with a few exceptions – suggests that it would be difficult to reliably
select a single structure. We also considered other scoring functions (data not shown) and
found similar results.

Ensemble-averaged Structures
Next, we considered that experimental structures are the product of conformational
averaging rather than representing single snapshots. Consequently, we obtained average
structures from the MD-generated structure ensembles. Figure 1 shows the effect of
averaging different percentages of the MD-generated structures that were sorted either
according to their DFIRE score or based on their distance from the initial structure
(iRMSD). We find that averaging generally outperforms selecting a single structure, while
averaging over the 10% of structures with the lowest DFIRE scores results in a maximum
improvement in GDT-HA by 2.6, which is about half of what could be achieved
theoretically if the best conformation could be selected from each trajectory. However, when
considering RMSD, an even smaller ensemble of only the 1% best-scoring structures results
in a maximum improvement by 0.04 Å. Interestingly, selecting structures according to low
iRMSD values, i.e. averaging over structures that have moved the least from the initial
structure, also results in refinement. The rationale for that finding is that when structures
start to deviate significantly from the initial template-based model, they are much more
likely to move away from the native structure than towards it.

The observation that both DFIRE and iRMSD appear to be suitable metrics to identify
ensembles of structures that when averaged provide structures that are likely closer to the
native state, prompted us to consider a combination of both scores for selecting a subset of
structures to be averaged. Since the range of these two scores is different, we first
normalized the values by subtracting the mean and dividing by their respective standard
deviations for a given set of structures. We then chose values in an open arc segment as
illustrated in Fig. 2. Given the identity line through the origin (dashed line in Fig. 2),
structures were chosen within a given angle θ/2, around the line to the origin and at a
minimum radial distance ρ from the center of the distribution.

To find optimal values of (ρ, θ), we varied ρ from 0.2 to 1.9 with increments of 0.1, and
changed the angle θ from 30 to 200 degrees at increments of 10. For each target, we
extracted the structures that lie in the aforementioned region, and then calculated the average
structure. Figure 3 shows the average improvements in RMSD and GDT-HA as functions of
ρ and θ. As optimal values that maximize both RMSD and GDT-HA we chose ρ=1.2 and
θ=120°. Using these values, the RMSD is improved by 0.07 Å and GDT-HA scores by 2.6.
The improvements in RMSD and GDT-HA for individual targets using this criterion are
given in Table 5. We find that GDT-HA is not further improved over simply selecting the
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10% of the structures with the lowest DFIRE score but the improvement in RMSD appears
to be more significant.

A drawback of structure averaging is that further refinement is necessary afterwards to
generate stereochemically good models. As an alternative protocol, we also selected the
ensemble structure closest to the subset averages. The data given in Table S1 shows that on
average there is no improvement in RMSD and there is only a small improvement in GDT-
HA for structures taken from the 200 ns simulation. This suggests that averaging rather than
selecting a single structure is a key to the success of the refinement protocol described here.

Structure Interpolation
As a result of subset averaging described above we can generate refined structures for a
majority of cases (15–16 out of 26 in terms of RMSD and 21–23 in terms of GDT-HA, see
Table 5). The idea we followed next was that whether it would be possible to refine
structures further by extrapolating the 3N-dimensional vector between the initial model and
the refined structures. More specifically, we consider the vector difference between the Cα

coordinates in the initial model, , and the ones obtained from the ensemble-averaged

structures , most of which are refined relative to the initial model. Note, that the
average structure is already superimposed to the initial model as a result of how the
ensemble average was generated. We then tested whether a new set of coordinates obtained
according to Eq. 1 would increase the degree of refinement:

Eq. 1

where α is a scaling factor. Here, α=0 corresponds to the initial model, and α=1
corresponds to the ensemble-averaged structure. Values of α between 0 and 1 would
correspond to interpolation between the initial and refined structures, values beyond 1 would
be extrapolation beyond the refined structures. Figure 4 shows the effect of applying Eq. 1
on the overall change in GDT-HA and RMSD. We find the optimum value of α to be α=0.6
for maximizing improvements in RMSD, and α=1 for GDT-HA. This result was surprising
as we expected that values of α>1 may improve structures further. However, closer
inspection of which targets are most affected by the structure interpolation approach
suggests that scaling coordinates according to Eq. 1 has a stronger effect on the RMSD of
targets where the RMSD increased during the refinement stage (see Fig. 5), i.e. structures
that were made worse during the refinement. On the other hand, there was less of an impact
on the structures that could be refined. Hence, the overall effect is an average improvement.
It is unclear to what extent this is a general finding but as a result of applying the structure
interpolation method (with α=0.8) we find further improvement in terms of RMSD.
However, GDT-HA becomes slightly worse when the structure interpolation method is
applied.

The restraints applied during the MD simulations were either given by the CASP organizers
or determined by us (see Table 1). An interesting question is whether the origin of the
restraint list had an impact on the refinement success. The changes in RMSD and GDT-HA
after refinement for the targets with CASP-suggested restraints were −1.4 Å and 2.6,
respectively, but somewhat less, −0.04 Å and 2.0, respectively, for the targets where we
selected the restraints. Hence, refinement is most successful if sampling can be targeted to
the regions known to be deviating most from the native.

Mirjalili and Feig Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2014 February 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Quality Assessment
Finally, we considered whether it is possible to predict in which cases refinement is
successful and when structures become worse as a result of refinement. Motivated by a
previous analysis using a correlation-based metric,53,54 we considered the correlation
between the two scores iRMSD and DFIRE, both of which are available without knowledge
of the native structure. The rationale for using this score is that because iRMSD is often
correlated with RMSD (see Table 4), a correlation between DFIRE and iRMSD is indicative
of a correlation between DFIRE and RMSD. Figure 5 shows the change in RMSD after
refinement as a function of this correlation coefficient. It can be seen that all of the
significantly refined structures have a correlation coefficient between −0.4 and 0.4 while
higher correlation coefficients larger than 0.4 correlate with a lack of refinement. Significant
correlation between DFIRE and RMSD (and by proxy with iRMSD) most likely occurs
when structures move by a significant extent. It appears from this analysis that in those cases
the motion is likely to be away from the native structure rather than towards it. Using a
DFIRE/iRMSD correlation coefficient of <0.4 as a criterion that refinement has been
successful, we identify four cases, TR435, TR462A, TR614, and TR622, that are outside
this range and for which refinement was therefore assumed not to be successful. If we use
the initial model (ΔRMSD=0) for these targets instead of the ‘refined’ structures, the
average change in RMSD from the native improves further, to −0.12 (without structure
interpolation) and to −0.14 (with structure interpolation). The effect on GDT-HA is less
clear, because the improvement is actually slightly decreased for the 200 ns set but it
improves for the 8 × 3 ns sampling set.

Final Refinement of Averaged Structures
So far, the structural analysis has focused on the Cα coordinates. As a result of the averaging
and structure interpolation procedures, the generated structures are of poor quality in terms
of bond geometries, clashes, etc. which is readily apparent when submitting those models to
structural analysis tools (see Table 6). In order to generate overall high quality structures, we
performed additional short MD simulations where the Cα atoms were constrained to
maintain the overall improvement in structure but where other atoms were allowed to relax.
The quality of the final models was improved dramatically (see Table 7) to result in high-
quality refined structures. After the final step, the average change in RMSD was still −0.0.8
Å, and the change in GDT-HA was 2.3. For comparison with other studies, we also
calculated the average improvement in GDT-TS for the final structures to be 1.6.

Discussion and Conclusion
We are presenting here a new protocol for structure refinement that is based on MD
simulations, but adds a new scoring and averaging protocol. A summary of the performance
with different structure selection methods is presented in Table 7. Overall, the refinement
results reported here are moderate, but what we consider most important is that we are able
to consistently refine the large majority of structures rather than making a significant
fraction worse as in earlier attempts at structure refinement. The overall refinement results
are better than those reported recently by the Shaw group despite the much shorter
simulations used here which may be due to a number of different reasons. The force field
that was used here is a recently updated version of the CHARMM force field that appears to
outperform most other available force fields in other tests.42 Furthermore, the use of
ensemble averages instead of single structures appears to lead to significant improvements
that may compensate for the much more limited sampling compared to the work by Shaw et
al. With respect to the sampling, we find that nearly equivalent refinement can be achieved
with multiple short simulations rather than a single long simulation. This is consistent with
previous findings,33,52 but is a point that merits further investigation since it is generally
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much easier to run many short simulations than one very long simulation on commonly
available computer platforms. We also attempted here to employ an extrapolation scheme to
further refine structures –which was not successful so far – and an assessment criterion to
determine whether structure refinement is successful –which does appear to have merit.

Another question is whether the refinement success is biased by how the starting structures
were generated. The targets considered here were selected by the CASP organizers from the
best predictions during the CASP competition. While this limits the methods by which the
models were generated to a few top groups, an effort was made to avoid selecting models
from only one participating group. Hence, the models used as starting structures here
represent some degree of diversity in terms of how they were created. Since we see
consistent refinement across most of the targets we assume that refinement success is
independent of the exact way the structures were initially prepared. Furthermore, similar
results for sampling from 200 ns simulations vs. 8 × 3 ns simulations suggests that just a few
nanoseconds were enough to equilibrate the structures sufficiently.

Finally, it would be interesting to see whether repeated application of the protocol presented
here can be used in an iterative protocol to achieve more significant refinement. These are
areas that we will focus on in more detail in future studies.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Change in RMSD with respect to native structure (A) and in GDT-HA (B) upon averaging
different subsets of structures sorted by either DFIRE scores or iRMSD. Results from the
200 ns MD runs are shown in blue (circles) and from 8×3 ns sampling in green (triangles).
Open symbols denote iRMSD-based selection; closed symbols refer to DFIRE-based
selection.
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Figure 2.
Subset selection based on combination of DFIRE and iRMSD scores (normalized by their
respective standard deviations). Selected structures (green triangles) are outside the circle
with radius (ρ) and within the segment with angle (θ).
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Figure 3.
Change in RMSD with respect to native structure (A) and GDT-HA (B) as a function of
radius (ρ), and angle (θ). Parameters considered to be optimal and used subsequently for
subset averaging are indicated by ‘X’.
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Figure 4.
Change in RMSD with respect to native structure (A) and GDT-HA (B) upon structure
interpolation between the initial (α=0.0) and the subset-averaged structures (at α=1.0).
Results from 200 ns MD runs are shown in blue (circles) and from 8×3 ns sampling in green
(triangles).
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Figure 5.
Change in RMSD with respect to native structure as a function of correlation between
iRMSD and DFIRE scores with (green triangles) and without (red squares) structure
interpolation.
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Table 1

CASP8 and CASP9 refinement targets used here as test cases with the total number of residues and Cα-RMSD
of the initial models from the respective native structures. Restraint regions denote residues for which
harmonic restraints were applied to maintain structures near their initial structures. The targets were sorted
according to increasing RMSD values. The regions suggested by CASP are shown in bold.

Target # of
res.

RMSD
(Å)

GDT-
HA

Restraint regions

TR592 105 1.26 72.9 17–29;36–46;58–67;76–121

TR453 87 1.47 71.3 5–34;45–91

TR432 130 1.65 77.5 1–84;93–130

TR462a 75 1.76 57.7 1–5;10–16;21–30;35–42;50–53;57–60;64–75

TR594 140 1.82 67.0 1–71;82–101;114–140

TR614 121 1.87 71.5 11–33;53–64;75–109

TR435 137 1.89 67.9 15–19;26–27;38–66;75–87;92–94;98–103;113–133;137–151

TR530 80 1.99 69.1 36–44;56–74;80–115

TR488 95 2.11 75.0 1–11;17–95

TR469 63 2.18 63.5 3–7;11–28;33–50;54–65

TR462b 68 2.42 48.9 76–83;88–91;97–106;114–124;127–129;133–136;140–143

TR389 135 2.64 63.3 10–15;22–34;49–55;68–73;81–82;100–109;116–126

TR464 69 2.73 59.8 18–37;44–56;61–86

TR569 79 3.01 52.2 1–25;44–49;62–79

TR454 192 3.24 42.3 5–24;29–34;40–44;50–71;77–107;113–138;147–167;176–196

TR567 142 3.44 58.3 4–21;28–47;55–59;67–74;90–101;109–145

TR574 102 3.58 40.0 28–35;49–57;71–73;79–81;85–91;97–106

TR557 125 4.06 46.8 1–11;21–40;49–52;73–100;107–125

TR429a 79 4.31 54.8 22–37;44–57;68–80;89–93;98–100

TR517 159 4.64 53.6 1–62;89–159

TR606 123 4.85 52.6 56–144

TR429b 76 4.98 30.3 101–104;108–111;115–122;128–154;162–176

TR624 69 5.19 35.9 5–11;16–20;34–51;57–73

TR568 97 6.15 35.8 62–77;91–94;107–108;124–158

TR622 122 6.47 51.9 1–96

TR576 138 6.85 45.3 25–56;66–119
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Table 7

Summary of the average improvements in RMSD (Å) and GDT-HA for all the attempted methods for
structure selection out of 8×3 ns and 200 ns simulation sets; Best in trajectory is given as a reference for the
maximum possible improvement.

Method:
Δ RMSD (Å) Δ GDT-HA

8 × 3 ns 200 ns 8 × 3 ns 200 ns

Best in trajectory −0.27 −0.33 4.2 5.5

Final Structure 0.02 0.14 1.2 0.3

Lowest DFIRE 0.05 0.04 −0.5 0.7

Average over 10% lowest DFIRE −0.03 −0.04 1.6 2.6

Average over 1% lowest iRMSD 0.01 −0.04 1.4 2.4

Subset average from combined DFIRE/iRMSD scores 0.00 −0.07 1.5 2.6

Closest structure to subset average 0.07 0.01 −0.6 0.6

Subset average and structure interpolation −0.01 −0.10 1.6 2.4

Subset average/interpolation with correlation-based filtering −0.06 −0.14 1.9 2.3
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