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Abstract
Understanding how the brain matures in healthy individuals is critical for evaluating deviations
from normal development in psychiatric and neurodevelopmental disorders. The brain’s
anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion
tractography offers unprecedented power to reconstruct these networks and neural pathways in
vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-
handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31
female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean
age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging
(HARDI) at 4 Tesla. After we performed whole brain tractography, 70 cortical gyral-based regions
of interest were extracted from each participant’s co-registered anatomical scans. The degree of
fiber connections between all pairs of cortical regions, or nodes, were found to create symmetric
fiber density matrices, reflecting the structural brain network. From those 70×70 matrices we
computed graph theory metrics characterizing structural connectivity. Several key global and
nodal metrics changed across development, showing increased network integration, with some
connections pruned and others strengthened. The increases and decreases in fiber density,
however, were not distributed proportionally across the brain. The frontal cortex had a
disproportionate number of decreases in fiber density while the temporal cortex had a
disproportionate number of increases in fiber density. This large-scale analysis of the developing
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structural connectome offers a foundation to develop statistical criteria for aberrant brain
connectivity as the human brain matures.
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1. Introduction
The human brain changes profoundly, both functionally and structurally, between childhood
and adulthood (Dosenbach et al., 2010; Gogtay et al., 2004; Lenroot et al., 2007; Sowell et
al., 2003; Shaw et al., 2008). Following the massive growth in the number of synapses after
birth, anatomical studies show a decline in synaptic density, as short-range connections are
pruned in favor of long-range ones (Huttenlocher, 1979; Huttenlocher, 1990). Studies of
structural connectivity using diffusion imaging show that the fractional anisotropy of water
along white matter tracts – an index of myelination and axonal coherence – increases in
childhood, plateaus in adulthood, and declines in old age (Kochunov et al., 2010). Studies of
functional connectivity have employed resting-state fMRI data to estimate the
“developmental ages” or relative maturity of participants, finding that chronological age
accounts for over half of the variance in functional brain connectivity in developmental
samples (Dosenbach et al., 2010). Defining the developmental trajectory for various
measures of brain structure and function is critical for understanding general principles of
neural network development. Determining the normal developmental trajectory will also
help to identify deviations in structural circuitry implicated in neuropsychiatric disorders
such as autism or schizophrenia (Scott-Van Zeeland et al., 2010).

Graph theory is a branch of mathematics developed to describe and analyze networks,
offering a variety of metrics that have become popular for characterizing networks in the
brain. By modeling the brain as a collection of nodes (hubs) and edges (connections between
them), graph theory quantifies network topology through a number of standard parameters
(Sporns et al., 2004). One of these is path length, a measure of the distance, in edges,
between one brain region (node) and another (Rubinov & Sporns, 2010). Global efficiency
is the inverse of path length – networks with shorter average path lengths are generally more
efficient in transferring information. These metrics are genetically influenced (Dennis et al.,
2011) and their properties are known to depend on specific genetic variants in normal adults
and cognitively impaired adults (Brown et al., 2011; Dennis et al., 2012a).

To date, a few studies have begun to assess how graph theory metrics of structural
connectivity change during development. Gong et al. (2009) examined anatomical
connectivity in 95 subjects aged 19–85. Hagmann et al. (2010), tracked white matter
maturation in 30 subjects between 18 months and 18 years of age. We were particularly
interested in the developmental period from early adolescence to early adulthood, when the
brain fully matures. The pioneering study by Hagmann and colleagues was limited by small
sample size (30 subjects), so we set out to chart the developmental trajectory of network
metrics in a much larger cross-sectional sample (439 subjects).

To map structural brain connectivity between childhood and adulthood, we scanned 439
subjects between ages 12 and 30, with high-field (4-Tesla) high angular resolution diffusion
imaging (HARDI). We computed standard graph theory metrics from 70×70 connectivity
matrices of fiber density. These connection matrices were probed for linear and non-linear
relationships with age. We hypothesized that we would find evidence of decreased path
length with age, reflecting a developmental process of pruning short-range connections and
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strengthening long-range connections (Casey et al., 2000; Hagmann et al., 2010; Thomason
et al., 2010).

2. Material and methods
2.1 Participants

Participants were recruited as part of a 5-year research project examining healthy Australian
twins with structural MRI and diffusion weighted imaging, with a projected sample size of
approximately 1150 at completion (de Zubicaray et al., 2008). Our analysis included 439
right-handed subjects (adult sample: 211 females/126 males, mean age=23.6, SD=2.19; 12
year old sample: 31 females/24 males, mean age=12.3, SD=0.18; 16 year old sample: 25
females/22 males, mean age=16.2, SD=0.37). This population included 146 monozygotic
(MZ) twins, 259 dizygotic (DZ) twins, and 34 non-twin siblings, from 275 families. 337
were adults, 55 were adolescents, and 47 were children, shown in Table 1. Since our current
focus is on description of network growth trajectories, the present analyses make no use of
twin relatedness to estimate genetic and environmental components.

The population was racially homogeneous: 100% of subjects were Caucasian. Subjects were
screened to exclude those with a history of significant head injury, neurological or
psychiatric illness, substance abuse or dependence, or had a first-degree relative with a
psychiatric disorder. All participants were right-handed, as assessed by 12 items on the
Annett’s Handedness Questionnaire (Annett et al., 1970). The adult cohort and the 16 year
old cohort both completed the Multidimensional Aptitude Battery II (MAB-II) IQ test
(Jackson, 1998). Most participants who completed the MAB-II did so at age 16 (92%); the
others completed the MAB-II at a later session, some at the scan session (4% were between
17–20 years, 3% were between 20–23 years, 1% were between 25–29 years). The 12-year-
old cohort did not complete the MAB IQ scale. Study participants gave informed consent;
institutional ethics committees at the Queensland Institute of Medical Research, the
University of Queensland, the Wesley Hospital, and at UCLA approved the study. The adult
subjects in this sample partially overlap with a sample examined in prior studies (Braskie et
al., 2011; Braskie et al., 2012), which revealed single-gene effects on measures of brain
integrity and connectivity, but did not assess children.

2.2 Scan Acquisition
Whole-brain anatomical and high angular resolution diffusion images (HARDI) were
collected with a 4T Bruker Medspec MRI scanner. T1-weighted anatomical images were
acquired with an inversion recovery rapid gradient echo sequence. Acquisition parameters
were: TI/TR/TE = 700/1500/3.35ms; flip angle = 8 degrees; slice thickness = 0.9mm, with a
256×256 acquisition matrix. HARDI was also acquired using single-shot echo planar
imaging with a twice-refocused spin echo sequence to reduce eddy-current induced
distortions. Imaging parameters were: 23cm FOV, TR/TE 6090/91.7ms, with a 128×128
acquisition matrix. Each 3D volume consisted of 55 2-mm thick axial slices with no gap and
1.79×.1.79 mm2 in-plane resolution. 105 images were acquired per subject: 11 with no
diffusion sensitization (i.e., T2-weighted b0 images) and 94 diffusion-weighted (DW)
images (b = 1159 s/mm2) with gradient directions evenly distributed on a hemisphere in the
q-space. Some subjects’ HARDI scans were acquired with a 77-gradient protocol (b = 1177
s/mm2), as the 105-gradient protocol was too long for some adolescents to sit through. We
have previously undertaken several detailed studies (Zhan et al., 2009; Zhan et al., 2012a,b)
to determine how angular and spatial resolution affect brain connectivity maps, and the
results and stability at high numbers of diffusion gradients are reported in those papers. The
number of gradients affects the accuracy of reconstruction of the diffusion profile, but by the
time 50–60 gradients are reached, the primary measures of diffusion, including the principal
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eigenvector, have converged (Zhan et al., 2008, Zhan et al., 2009b,c). The connectivity
matrix has been found to depend more on the voxel size than the number of gradients, and
the voxel size was kept the same in the adolescents. Scan time for the 105-gradient HARDI
scan was 14.2 min. Scan time for the 77-gradient HARDI scan was 10.8 min.

2.3 Cortical Extraction and HARDI Tractography
Connectivity analysis was performed exactly as in Jahanshad et al. (2011). Briefly, non-
brain regions were automatically removed from each T1-weighted MRI scan using ROBEX
(JE Iglesias, TMI 2011), and from a T2-weighted image from the DWI set, using the FSL
tool “BET” (FMRIB Software Library, http://fsl.fmrib.ox.ac.uk/fsl/). Intracranial volume
estimates were obtained from the full brain mask, and included cerebral, cerebellar, and
brain stem regions. All T1-weighted images were linearly aligned using FSL (with 9 DOF)
to a common space (Holmes et al., 1998) with 1mm isotropic voxels and a 220×220×220
voxel matrix. Raw diffusion-weighted images were corrected for eddy current distortions
using the FSL tool, “eddy_correct”. For each subject, the 11 eddy-corrected images with no
diffusion sensitization were averaged, linearly aligned and resampled to a downsampled
version of their corresponding T1 image (110×110×110, 2×2×2mm). Averaged b0 maps
were elastically registered to the structural scan using a mutual information cost function
(Leow et al., 2005) to compensate for EPI-induced susceptibility artifacts.

35 cortical labels per hemisphere, as listed in the Desikan-Killiany atlas (Desikan et al.,
2006), were automatically extracted from all aligned T1-weighted structural MRI scans
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/). As a linear registration is performed
by the software, the resulting T1-weighted images and cortical models were aligned to the
original T1-weighted input image space and down-sampled using nearest neighbor
interpolation (to avoid intermixing of labels) to the space of the DWIs. To ensure tracts
would intersect cortical labeled boundaries, labels were dilated with an isotropic box kernel
of width 5 voxels.

The transformation matrix from the linear alignment of the mean b0 image to the T1-
weighted volume was applied to each of the 94 gradient directions to properly reorient the
orientation distribution functions (ODFs). At each HARDI voxel, ODFs were computed
using the normalized and dimensionless ODF estimator, derived for q-ball imaging (QBI) in
(Aganj et al., 2010). We performed HARDI tractography on the linearly aligned sets of DWI
volumes using these ODFs. Tractography was performed using the Hough transform method
as described in (Aganj et al., 2011).

Elastic deformations obtained from the EPI distortion correction, mapping the average b0
image to the T1-weighted image, were then applied to the tracts’ 3D coordinates for accurate
alignment of the anatomy. Each subject’s dataset contained 5,000–10,000 useable fibers (3D
curves). Fibers were filtered to eliminate those that may have arbitrarily been drawn on the
brain-boundary due to noise and high FA. All duplicate fibers were removed.

For each subject, a full 70×70 connectivity matrix was created. Each element described the
proportion of the total number of fibers connecting each of the labels; diagonal elements of
the matrix describe the total number of fibers passing through a certain cortical region of
interest. These values were calculated as a proportion - they were normalized to the total
number of fibers traced for each person in the study - so that results were not skewed by raw
fiber count.

2.4 Graph Theory Analyses
On the 70×70 matrices generated above, we used the Brain Connectivity Toolbox (Rubinov
& Sporns, 2010; https://sites.google.com/a/brain-connectivity-toolbox.net/bct/Home) to
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compute seven standard measures of global brain connectivity - characteristic path length
(CPL), mean clustering coefficient (MCC), global efficiency (EGLOB), small-worldness
(SW), and modularity (MOD), as well as normalized path length (lambda) and normalized
clustering coefficient (gamma). CPL measures the average path length in a network, where
the path length is defined as the minimum number of edges that must be traversed to get
from one node to another (note this depends on the number of nodes traversed, and does not
depend on the physical length of axons or how they are organized spatially in the brain).
MCC is a measure of how many neighbors of a given node are also connected to each other,
in proportion to the maximum number of connections in the network. EGLOB is inversely
related to CPL: networks with a small average CPL are generally more efficient than those
with large average CPL. SW represents the balance between network differentiation and
network integration, calculated as a ratio of local clustering and characteristic path length of
a node relative to the same ratio in a randomized network. We created 15 simulated random
networks. The ratio of clustering in our network to the average clustering in a simulated
random network – with the same number of nodes and connections – is gamma, while the
ratio of characteristic path length in our network to the average path length in a simulated
random network is lambda. MOD is the degree to which a system may be subdivided into
smaller networks (Bullmore & Bassett, 2010). We also calculated 4 standard nodal measures
of connectivity – regional efficiency (EREG), “betweenness centrality” (BC), degree, and
clustering coefficient (CC). EREG is the global efficiency computed for each node and is
related to the clustering coefficient (Latora & Marchiori, 2001). BC is the fraction of all of
the shortest paths in a network that contain a given node with higher numbers indicating
participation in a large number of shortest paths (Kintali, 2008). Degree is the number of
links (edges) connected to a node (Sporns, 2002). Equations to calculate these measures may
be found in Rubinov and Sporns (2010).

One possible step in graph theory analyses is selecting a sparsity, which is related to
thresholding the network (removing nodes and edges based on their weightings). The
sparsity is the fraction of connections retained from the full network: setting a sparsity level
of 0.2 means that only the top 20% of connections are retained for calculations. Selecting a
single sparsity level may arbitrarily affect the network measures, so we computed measures
at multiple sparsities, and integrated the measures across that range to generate more stable
scores. As noted in Dennis et al. (2012b), the sparsity (threshold) determines which nodes
remain in a network and is typically defined with the goal of eliminating noisy or unreliable
connections. To minimize any effects of arbitrary thresholding, we calculated our network
measures over a range of thresholds (Achard & Bullmore, 2007; Bassett et al., 2008; He et
al., 2008; Khundrakpam et al., 2012;) and integrated over that range. We have shown this
can improve their robustness and test-retest reliability (Dennis et al., 2012c). We selected
the range 0.2–0.3 to calculate and integrate these measures, as that range is biologically
plausible (Sporns, 2011) and more stable (Dennis et al., 2012a). We calculated these
measures for the whole brain over a range of sparsities (0.2–0.3, in 0.01 increments), and
calculated the area under the curve of those 11 data points to generate an integrated score for
each measure. We also computed network measures for the left and right hemispheres
independently.

2.5 Age Regression
Age-related effects on graph theory metrics of structural brain connectivity were estimated
using a general linear model including mixed effects, as well as a simpler linear mixed
effects model, as follows:

(Eq. 1)
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(Eq. 2)

Here, “graph theory metrics” could be any of CPL, MCC, EGLOB, SW, MOD, lambda, or
gamma. A is the constant graph theory metric term, the βs are the covariate regression
coefficients, and α is a coefficient that accounts for random effects. Random effects were
used to account for familial relatedness. Both age and age2 were included as variables to
model both linear and non-linear age effects. We modeled these variables (age, sex, ICV,
age2) as fixed effects. We initially included an interaction term, age*sex, as well, but it was
not kept in the model as it did not fit. ICV denotes intracranial volume, in mm3. We
additionally tested the raw 70×70 fiber density matrices on an element-by-element basis to
test for any effects of age and age2, using the same models as above.

3. Results
3.1 Whole Brain Analyses

The model that included age and age2 together, with sex and ICV as additional covariates
(as shown in Eq. 1), revealed significant linear trends of decreasing CPL, lambda
(normalized path length), gamma (normalized clustering coefficient), SW, and MOD with
age. Most of these also had a significant age2 term in the opposite direction, indicating an
age effect that leveled off. This slowing down of the age effect would be expected, in early
adulthood. Scatterplots of these results, and those for the left and right hemispheres treated
separately, are shown in Figure 1. Studies of sex differences in graph theoretical measures of
structural brain connectivity are few (Gong et al., 2011; Yan et al., 2011). From these few
studies we expected females to have higher global efficiency and higher regional efficiency
in temporal nodes. We also expected males to have higher regional efficiency in frontal
nodes. We found significant sex effects for SW and gamma. For both, females tended to
have greater values than males. The model described by Eq. 2, modeling age, sex, and ICV
yielded significant age effects for CPL, gamma, and SW, with all of them decreasing with
age, as hypothesized. The beta coefficients and corresponding p-values for these whole brain
analyses are shown in Table 2. We also found a borderline significant sex effect (it did not
survive multiple comparison correction for the number of whole brain global measures
tested within this model, FDR correction) for SW for this model. Results were all corrected
for multiple comparisons using the false discovery rate method (FDR; Benjamini &
Hochberg, 1995). Linear best-fit lines are charted in Figure 1, with their regression
coefficients, or estimated slopes. These linear trend lines and b values come from the
regression model including sex and ICV as covariates, not simply age and the BCT measure
of interest. The regression coefficients (b values) for age and age2 are often of opposite sign,
meaning that as we adjust for one covariate, the other tends to fit in the opposite direction.
This indicates a plateau in adulthood, in line with intuition and empirical data on
developmental trajectories for other anatomical measures (Thompson et al., 2005).

3.2 Left Hemisphere Analyses
When restricted to the intra-hemispheric connections within the left hemisphere (meaning
those that began and terminated at left hemisphere nodes), the simpler linear model with
only age described by Eq. 2 yielded significant results for MCC, EGLOB, and MOD, as well
as borderline significant results for lambda and gamma. FDR correction for multiple
comparisons was applied across the left and right hemisphere analyses together, within
model (q = 0.05). The beta coefficients and corresponding p-values for the whole-brain
analyses are presented in Table 3 and Figure 1. There were no significant sex effects for the
left hemisphere analyses.
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3.3 Right Hemisphere Analyses
The model with age and age2 together (Eq. 1), when restricted to only intra-hemispheric
connections within the right hemisphere, yielded borderline significant results for MCC,
gamma, SW, and MOD (p < 0.05) but not FDR correction. The simpler model with only age
described by Eq. 2 yielded significant results for MCC, gamma, EGLOB, SW, and MOD.
The beta coefficients and corresponding p-values for whole brain analyses are shown in
Table 4 and Figure 1. Results are FDR corrected across left and right hemisphere analyses
within model for multiple comparisons (q = 0.05). There were sex effects for SW in the right
hemisphere, but they only survived FDR for the model described by Eq. 2.

3.4 Nodal Analyses
Analyses of nodal measures of connectivity (regional efficiency - EREG, degree, clustering
coefficient - CC, and betweenness centrality - BC) yielded a number of significant results
for the model described by Eq. 1, which are shown in Table 5. When age was assessed alone
(Eq. 2), age showed effects on several nodal measures (Table 6). Results are FDR corrected
for multiple comparisons within model across all nodes and across all four metrics tested (q
= 0.05). Details of how the significant changes break down by lobe can be found in Table 7.
Figure 2 summarizes the developmental results, showing the differences in paths between
groups and the differences in degree at certain nodes. Additionally, Supplementary Video 1
and Supplementary Video 2 online and Figure 3 display the increases and decreases,
respectively, in degree and fiber density across ages 12–30. While we lack scan data for
some parts of the age range, we used the regression coefficients from our analysis to
estimate network metrics at each year.

3.5 70×70 Fiber Density Matrices
As we found significant results at the hierarchical levels, we also examined the original
70×70 fiber density matrices, from which these metrics were calculated, for age effects to
focus on specific connections. When modeled together (Eq. 1), we found 112 connections
with a significant association with age and 50 connections with a significant association with
age2, out of 1280 connections tested. We ran our analyses in two different ways – the first
analysis examined connections existing in at least 95% of subjects, designed to reveal
connections that exist in all age groups but change in fiber density. The second kind of
analysis examined connections existing in at least 5% of subjects, designed to reveal
connections that are gained or lost with age. Out of 2485 possible connections (70×70,
symmetrical), we tested only those where at least 5% of subjects had a connection, resulting
in 1280 connections tested. When effects of age were modeled alone (Eq. 2), we found 483
connections with a significant association with age, as shown in Figure 4. Results are FDR-
corrected across all tested connections (q = 0.05). When age was modeled alone, and
analyses were restricted to only connections present in at least 95% of subjects, there were
309 connections tested, 213 of which survived FDR, also shown in Figure 4. Table 8 shows
the top 10 increases and top 10 decreases – i.e. those with the most significant age
association (based on lowest p-value) when age was modeled alone and analyses were
restricted to connections present in at least 95% of subjects. The left hemisphere is over-
represented in these most significant results, perhaps due to the greater effect sizes in the left
hemisphere than in the right. There were more connections that decreased in proportional
fiber density than increased. The overall number of connections did not change with age;
changes were seen in the proportional fiber density of specific connections. Fiber decreases
were disproportionally seen in the frontal cortex, while the temporal cortex had
disproportionally more fiber density increases.

These analyses were all performed on matrices than had been normalized by the number of
fibers tracked, meaning that the results depict changes in proportional fiber density rather
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than absolute fiber density. However, when analyses were run on the absolute fiber density
data, the results were generally unchanged. Compared to the 213 connections found to have
a significant age effect on the proportional fiber density data, the absolute fiber density age
analysis revealed 220 significant connections. 203 of the 220 significant connections from
the absolute fiber density analysis were the same ones that showed significance in the
proportional fiber density analysis. 17 new connections were found in the absolute analysis
and 10 connections that had been significant in the proportional fiber density analysis were
no longer significant in the absolute fiber density analysis. Importantly, however, all
significant results were in the same direction, so decreases in proportional fiber density are
in fact true decreases in absolute fiber density, and do not simply imply that some
connections are increasing to a lesser degree than the average. Figure 5 shows the
developmental trajectory for 70×70 connections and degree, with an average network shown
for each group. Supplementary Video 1 and Supplementary Video 2 online, and Figure 3
display these changes as well.

3.6 Cross-Hemisphere Connections
Of the 213 connections that survived FDR correction above, 9 were interhemispheric
connections. We decided to further examine cross-hemisphere connections by restricting our
70×70 matrices to just assess interhemispheric connections. Of the 20 connections tested, 7
connections showed an age effect – those between the left isthmus of the cingulate and the
right posterior cingulate, the left posterior cingulate and right paracentral gyrus, the left and
right posterior cingulate, the left posterior cingulate and right precuneus, the left posterior
cingulate and right superior frontal gyrus, the left precuneus and the right posterior
cingulate, and the left superior frontal gyrus and right precuneus. All of these increased in
fiber density with age (Figure 6).

3.7 Sex Differences
In addition to the sex differences found above, there were also a few differences in nodal
measures of EREG and degree. While few, these results do fit with previous ones from
Gong et al. (2009). These are shown in Table 8 and Figure 7. Results are FDR corrected (q =
0.05) with respect to the total number of nodes and measures tested.

4. Discussion
The current study sought to characterize the developmental trajectory of graph theory
metrics of structural connectivity from early adolescence to early adulthood. Although our
study was cross-sectional, its sample size was much larger than most prior studies of the
developing structural connectome, offering greater power to detect age effects. The brain
continues to mature into the twenties (Gogtay et al., 2004) and myelination and network
remodeling continue throughout life (Bartzokis, 2004). Between ages 12 and 30, we found a
number of linear and nonlinear age effects across the whole brain, for left and right
hemispheres, and for specific nodes. These age effects were also seen in the connectivity
matrices that served as the basis to compute the graph theory metrics, with significant age
effects on fiber density. We also found significant sex differences in a few nodal measures.

For the whole-brain graph theory measures, we found significant effects of decreasing path
length, clustering, small-worldness, and modularity with age, and all of these plateaued in
early adulthood. Changes in “small-worldness” reflect a network property that itself depends
on changes in either normalized clustering coefficient (gamma), normalized path length
(lambda), or the ratio between those two. In our results it appears that it was the ratio
between these two that changed, as gamma decreased at a faster rate than did lambda. These
results are mostly in line with those of Hagmann et al. (2010), who also reported decreased
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clustering and small-worldness in a much smaller sample of 30 subjects. The global results
of decreasing path length, clustering, and modularity suggest that structural network
integration increases during the teenage years. All subjects, regardless of age, showed a
small-world topology in their brain networks. Adolescence is marked by parallel decreases
in gray matter density, due in part to synaptic pruning (Gogtay et al., 2004), and increases in
intracortical myelination through young adulthood (Giedd et al., 1999). As some short-range
connections are pruned and other long-range ones are strengthened (Casey et al., 2000;
Hagmann et al., 2010; Thomason et al., 2010), we might expect the anatomical network as a
whole to have a shorter path length, and this is indeed what we found. The fiber density of
connections where an age effect was detectable decreased in many connections,
disproportionately in the frontal cortex, while it increased in some connections,
disproportionately in the temporal and parietal cortices (Figure 5).

In the left hemisphere analyses, we found linear effects of increasing clustering, global
efficiency and modularity with age. In the right hemisphere, we found opposite trends of
linear decreases in clustering, global efficiency, small-worldness, and modularity with age.
It is curious that the left hemisphere shows trends opposite to the right, and to the network as
a whole; this may point to different developmental processes occurring within each
hemisphere (Paus et al., 1999; Scheibel et al., 1985; Shaw et al., 2009; Sowell et al., 2003).
It appears that these results are driven by asymmetries in the adults for global efficiency and
modularity, as both were higher in the left hemisphere than the right for adults, but roughly
the same for the 12 year olds. Trends for the clustering coefficient may also be due to
anatomical asymmetries for both age groups. Recent work from our laboratory studied
asymmetry of these measures in the same sample, finding greater small-worldness in the
right hemisphere (Daianu et al., 2012). Our results are contrary to those of Iturria-Medina et
al. (2011), who found greater global efficiency in the right hemisphere, but these were from
a relatively small sample of 11 subjects, and our sample is over 40 times larger. One
possible explanation is the consistent finding of right/left asymmetry in overall cerebral
hemispheric volume, with the right hemisphere being larger on average (Bilder et al., 1994;
Giedd et al., 1996). The asymmetry of the many structural and functional features of the
brain has long been noted (Hellige, 1993; Toga & Thompson, 2003), with researchers
finding asymmetry in FA (Büchel et al., 2004) and regional volumes (Good et al., 2001), as
well as finding that the level of asymmetry in fiber integrity was heritable (Jahanshad et al.,
2010).

For the nodal analyses, we found many linear and non-linear age effects, for all four of the
nodal metrics tested. For betweenness centrality, there were more decreases with age than
increases, perhaps demonstrating network refinement as fibers are pruned from some
connections. Betweenness centrality shows how “central” a node is to the network, based on
how many of the shortest paths go through that node. The clustering coefficient increased in
about the same number of nodes as it decreased with age - this network measure refers to
how many of a node’s neighbors are also connected to each other. For both betweenness
centrality and the clustering coefficient, we could not discern any obvious pattern in the
nodal locations of the increases or decreases. The nodal degree reflects the number of nodes
a given node is connected to, and we found roughly equal representations of statistically
significant increases in degree and decreases in degree with age. However, in the frontal
cortex, many more nodes decreased in degree than increased. Conversely, of the nodes in the
temporal cortex showing an age effect, more increased in degree than decreased. Similarly,
we found roughly equal increases and decreases in regional efficiency with age, but there
were more frontal nodes that decreased in efficiency than increased, and more temporal
nodes that increased in efficiency than decreased. This may be a manifestation of the more
protracted developmental trajectory of the frontal lobe compared to other lobes (Gogtay et
al., 2004), or it may point to different processes occurring in different regions of the brain. A
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few of these nodes also had significant age2 terms that fit in the opposite direction,
suggesting that these age effects plateaued in early adulthood. Gong et al. (2009) also
reported more increases in regional efficiency in the temporal cortex with age, but they were
examining a different age range (19–85). Regional efficiency is a nodal measure related to
global efficiency, computed on node neighborhoods.

Tests of age effects on the 70×70 connectivity matrices revealed that fiber density decreased
in more connections than it increased, but these decreases were distributed
disproportionately around the brain. Follow-up analyses on the absolute fiber density data
confirm that a decrease in proportional fiber density truly reflects a decrease in absolute
fiber density, rather than just a more modest increase than average. Connections to and from
the frontal cortex disproportionately decreased with age, relative to the changes detected in
other brain regions (Figures 3 and 5, Supplementary Video 2). This was partially due to
lower overall variance in the frontal cortex relative to both the temporal or parietal cortices,
and also due to the greater effect sizes detected in the frontal cortex (and parietal cortex)
than in the temporal cortex. Conversely, those connections leading to and from regions in
the temporal cortex showed disproportionately more fiber density increases with age (Figure
3 and 5, Supplementary Video 1). Of all the significant age-related changes in fiber density,
57% were decreases and 43% were increases. Within the significant changes in connections
that terminate in the frontal cortex, however, 70% were decreases and 30% were increases.
Of the significant changes in the temporal cortex, 43% were decreases and 57% were
increases. In the occipital cortex, 55% were decreases and 45% were increases. In the
parietal cortex, 52% were decreases and 48% were increases. This mirrors the distribution of
our nodal results assessing regional efficiency: the nodal degree is likely a driving factor
behind these nodal results.

Prior work has revealed different developmental trajectories for the volumes of different
cortical gray matter regions as well as lobar volumes that include white matter as well
(Gogtay et al., 2004; Sowell et al., 2003). Giedd et al. (1999) found that the temporal cortex
tended to achieve its peak for both gray and white matter volume at a later age than other
lobar brain regions. Sowell et al. (2003) found that gray matter density (GMD) in the
superior frontal sulcus steadily declined from age 7 on, but it increased in the superior
temporal sulcus until age 30, after which it steadily declined. They found this same inverted
U-shaped trajectory for a number of temporal regions, but the frontal regions all showed a
steady decline in GMD from age 7 on. These findings were supported by similar results
from a previous study (Sowell et al., 2002a). Several processes are active throughout
development, and if they occur at different rates across the cortex, they could lead to these
different trajectories and patterns of differences. Huttenlocher (1979; 1990) found different
rates of synaptic pruning across the cortex. Additionally, continuing myelination (Bartzokis,
2004; Bartzokis et al., 2010), and the addition of new neurons (reviewed by Gould, 2007)
may contribute to the changes we report here.

Studies of callosal development during adolescence show developmental increases in
volume or cross-sectional area for the splenium and isthmus (Thompson et al., 2000; Chung
et al., 2001), suggesting an increase with age in the level of myelination and/or axon count
for interhemispheric connections traveling through those regions. The splenium and isthmus
connect the temporal, parietal, and occipital cortices with their counterparts on the opposite
hemisphere, as well as with some other cortical regions (Hofer & Frahm, 2006; Witelson,
1989). All of our 7 interhemispheric connections with detectable age effects had a terminus
in the parietal lobe or posterior cingulate. This is perhaps most likely to be due to increased
myelination (Bartzokis et al., 2010).
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We found a few sex differences in global and nodal connectivity as well. Females had
greater small-worldness and gamma (which are related measures) in whole brain parameters.
Gamma (normalized clustering coefficient) is a measure of network segregation as it
measures how many of a nodes neighbors are interconnected. This result suggests that
females have more clustered, highly segregated networks than males do. Females also had
greater degree in the left temporal pole, while males had greater degree in the right pars
orbitalis and greater efficiency in the left precuneus and right pars orbitalis. While there are
both consistent and conflicting results when it comes to sex differences in the brain (Kimura,
2000), a number of previous studies have noted proportionally larger temporal lobes in
females than males (Harasty et al., 1997; Sowell, et al., 2002b; Luders et al., 2009) with
thicker cortices (Sowell et al., 2007), possibly contributing to this effect on degree and
efficiency. Gong et al. (2009), found greater global and local efficiency in females, which
we did not, but they did find greater regional efficiency in females in temporal nodes and
greater regional efficiency in males in frontal nodes, which overlaps with our results. Yan et
al. (2011), found similar results, also revealing a sex by brain size interaction, where smaller
brains showed higher local efficiency in women but not on men. Studies of sex differences
in brain structural networks are important for possibly explaining the differences in
susceptibility to disease or outcome after brain injury (Turkheimer & Farace, 1992). Future
work should investigate whether these differences have any consequences for sex
differences in cognition or vulnerability to disease, or if they are simply due to allometry
(non-proportional scaling of brain structures relative to body size; Brun et al., 2010).

One limitation of the current study is the uneven sampling of the different age ranges, due to
the availability of cohorts assessed at 12 and 16 but not in between. Nonparametric
regression models may therefore be more appropriate for deriving p-values for the fitted
regression coefficients. Obviously, the specific parcellation scheme chosen will affect graph
theory metrics. Zalesky et al. (2010) found that graph theory metrics were sensitive to
parcellation resolution (i.e., the number of nodes), but Hagmann et al. (2010) found very
similar developmental trajectories at two different parcellation resolutions. Other future
parcellation schemes may be more sensitive to developmental effects, but the Desikan-
Killiany atlas has been shown by our laboratory to yield connectivity measures that are
genetically influenced (Jahanshad et al., 2011; Jahanshad et al., 2012); it was one of the
atlases used by Hagmann et al. (2010).

5. Conclusions
In summary, we found that structural brain networks decrease in path length, clustering,
small-worldness, and modularity with age, although this effect may differ by hemisphere.
We found significant sex differences in nodal measures of connectivity, but it remains to be
seen whether these differences are related to any sex differences in cognitive function or in
resilience to disease. Graph theory metrics have been associated with disease and cognitive
function (Brown et al., 2011; Langer et al., 2011; Li et al., 2009), so investigating this
difference further may shed light on sex differences in aspects of cognition or disease
vulnerability. Defining the expected developmental trajectory of structural connectivity
measures in healthy individuals is critical for gauging the effect of neuropsychiatric
disorders, and ultimately of interventional factors, on development.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Scatterplots showing significant associations between global graph theory connectivity
scores and age in whole brain, left, and right hemispheres
Linear trendlines added with slopes and b values (regression coefficients) corresponding to
results from Tables 1–3. Slopes taken from b values from Eq. 2 results, no linear trendline in
included for modularity (whole brain), as that analysis was not significant.
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Figure 2. Image depicting developmental effects, comparing children (12 and 16 year olds) to
adults (20–30 year olds)
The diameter of each node is inversely proportional to the p-value for the degree analyses –
large diameter means node was significantly different in degree between children and adults.
Non-significant nodes are colored black. Nodes numbered in blue increase in degree with
age, while those numbered with red decrease in degree with age. Blue connections are those
that changed with age, corresponding to significant boxes in Figure 3. For this image we
looked only at connections present in at least 95% of subjects. Author NJ is the creator of
this image.
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Figure 3.
Still images from Supplementary Video 1 and Supplementary Video 2 displaying the
increases and decreases in degree and fiber density between age 12 and age 30. While we
lack scan data for some parts of this age range, we used the regression coefficients from our
analysis to estimate network metrics at each year.
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Figure 4. P map of age effects, when modeled alone (Eq. 2), with 70×70 fiber density matrix from
which graph theory metrics were calculated
Colors correspond to strength of p value as indicated by color bar. Gray boxes were not
tested as those connections were not present. For the top p map connections that were
present in at least 5% of subjects were tested, for the bottom p map, connections that were
present in at least 95% of subjects were tested. Black boxes were tested but not significant.
FDR corrected (q < 0.05). See Table 6 for region key.
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Figure 5. Image depicting developmental trajectory, with averaged networks shown for four
groups (12 year olds, 16 year olds, 20–24 year olds, 24–30 year olds)
The color of each connection is proportional to the average fiber density within group with
red signifying the thickest connections and blue the thinnest connections; the color of the
node is proportional to the average degree of that node within group. For this image we
looked only at connections present in at least 95% of subjects. Author NJ is the creator of
this image.
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Figure 6. P maps of age effects, when modeled alone (Eq. 2), with 35×35 interhemispheric fiber
density matrix
Colors correspond to strength of p value as indicated by color bar. Blue highlighting on
regions indicate significance. Gray boxes were not tested as those connections were not
present. Black boxes were tested but not significant. FDR corrected (q < 0.05). See Table 6
for region key.
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Figure 7. Bar graphs of nodes showing significant sex effects for degree (integrated over range of
sparsities)
FDR corrected (q < 0.05).
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Table 2
Effects of age and age2, both modeled together (Eq. 1) and just age (Eq. 2) on global
connectivity metrics for the whole brain

FDR corrected within model, with left and right hemisphere analyses FDR corrected separately from whole
brain analyses.

Age and Age2 combined (Eq. 1)

Age Age2

Characteristic path length/Lambda −0.11 (0.0043) / −0.038 (0.0073) 0.050 (0.022) / 0.024 (0.033)

Mean clustering coefficient/Gamma ns / −0.38 (0.00018) ns / 0.18 (0.0018)

Global efficiency ns ns

Small-worldness −0.26 (0.00053) 0.13 (0.0034)

Modularity −0.077 (0.013) 0.044 (0.013)

Sex

Small-worldness 0.018 (0.011)

Gamma 0.022 (0.020)

Age (Eq. 2)

Age

Characteristic path length/Lambda −0.023 (1.0×10−6) / −0.011 (1.9×10−6)

Mean clustering coefficient/Gamma ns / −0.066 (8.0×10−8)

Global efficiency ns

Small-worldness −0.043 (3.1 ×10−6)

Modularity ns

Sex

Small-worldness 0.014 (0.034)
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Table 3
Effects of age and age2, both modeled together (Eq. 1) and just age (Eq. 2) on global
connectivity metrics for the left hemisphere

FDR corrected as described for Table 1 (q < 0.05).

Age and Age2 combined (Eq. 1)

Age Age2

Characteristic path length/Lambda ns / ns ns / ns

Mean clustering coefficient/Gamma ns / ns ns / ns

Global efficiency ns ns

Small-worldness ns ns

Modularity ns ns

Age (Eq. 2)

Age

Characteristic path length/Lambda ns / −0.0054 (0.021)

Mean clustering coefficient/Gamma 0.0082 (0.0036) / −0.024 (0.027)

Global efficiency 0.0082 (3.6×10−5)

Small-worldness ns

Modularity 0.013 (0.0043)

Neuroimage. Author manuscript; available in PMC 2014 January 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Dennis et al. Page 27

Table 4
Effects of age and age2, both modeled together (Eq. 1) and just age (Eq. 2) on global
connectivity metrics for the right hemisphere

FDR corrected as described for Table 1 (q < 0.05).

Age and Age2 combined (Eq. 1)

Age Age2

Characteristic path length/Lambda ns / ns ns / ns

Mean clustering coefficient/Gamma −0.054 (0.033) / −0.28 (0.0041) ns / ns

Global efficiency ns ns

Small-worldness −0.27 (0.0022) 0.10 (0.041)

Modularity −0.086 (0.025) ns

Sex

Global efficiency 0.0050 (0.0079)

Age (Eq. 2)

Age

Characteristic path length/Lambda ns / ns

Mean clustering coefficient/Gamma −0.012 (5.7×10−5) / −0.095 (4.2×10−15)

Global efficiency −0.012 (1.9×10−7)

Small-worldness −0.095 (3.7×10−16)

Modularity −0.028 (1.4×10−9)

Sex

Global efficiency 0.0050 (0.01)
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Table 5
Effects of age and age2 together on nodal graph theory metrics, as modeled by Eq. 1

‘ns’ corresponds to non-significant effect. FDR corrected within model across all nodal metrics tested (q <
0.05). Bolded entries survive FDR across all metrics and all nodes within model. Non-bolded entries were
survived FDR within metric but did not survive FDR across all metrics tested.

Betweenness
Centrality

Clustering Degree Regional
Efficiency

Age

L Cuneus ns ns 10 (0.0035) ns

L Entorhinal ns ns 13 (0.00024) ns

L Inferior Parietal −72 (4.6×10−6) 0.24 (0.00052) −12 (1.2×10−4) −0.10 (4.5×10−4)

L Lat Occipital −54 (3.7×10−5) 0.25 (0.0021) −7.2 (0.0059) ns

L Parahippocampal ns −0.50 (9.6×10−3) 14 (0.00043) 0.16 (0.00020)

L Paracentral −130 (0.0011) ns ns ns

L Postcentral −24 (0.0069) ns −9.1 (0.0025) −0.072 (0.0088)

L Post Cingulate 220 (0.00044) −0.22 (3.4×10−6) 19 (6.4×10−4) 0.14 (6.9×10−4)

L Precentral −120 (0.00088) ns −9.5 (0.0099) −0.082 (0.0051)

L Rostral Ant Cingulate ns ns 10 (0.0096) ns

L Rostral Mid Frontal −95 (0.0012) 0.26 (0.0020) −10 (0.0017) −0.091 (0.0040)

L Sup Frontal ns ns 11 (0.0085) 0.086 (0.0055)

L Supra-marginal ns ns −5.9 (0.010) ns

L Frontal Pole ns ns −8.2 (0.0020) −0.34 (0.0053)

R Caudal Ant Cingulate −44 (0.0086) 0.21 (0.0029) −11 (0.0026) −0.091 (0.0075)

R Isthmus of the Cingulate −100 (0.011) ns ns ns

R Parahippocampal ns ns ns 0.12 (0.0056)

R Paracentral −54 (0.0049) ns ns ns

R Postcentral ns −0.34 (5.1×10−6) 12 (0.00065) 0.10 (0.0014)

R Precuneus −190 (0.0026) ns ns ns

R Rostral Ant Cingulate −63 (0.0052) ns −7.7 (0.0054) ns

R Rostral Mid Frontal ns ns −7.2 (0.0021) ns

R Sup Temporal −50 (0.0012) ns −9.5 (2.1×10−4) −0.091 (2.9×10−5)

R Supra-marginal ns ns ns 0.077 (0 0066)

Age2

L Entorhinal ns ns −6.3 (0.0010) ns

L Inferior Parietal 32 (0.00033) ns 5.0 (0.00020) 0.050 (0.00023)

L Parahippocampal ns 0.22 (0.0021) ns ns

L Post Cingulate ns 0.95 (0.00047) −8.2 (0.00088) −0.054 (0.0011)

R Postcentral ns 0.17 (6.9×10−5) ns ns

R Sup Temporal ns ns 5.0 (2.5×10−5) 0.045 (0.00019)
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Table 6
Effects of age alone on nodal graph theory metrics, as modeled by Eq. 2 and Eq. 3

All 70 connections were tested but only those significant in one of the analyses are included in the table in the
interest of space. ‘ns’ corresponds to non-significant effect. FDR corrected (q < 0.05). All entries included
survive FDR within model across all four metrics tested and all nodes tested.

Betweenness
Centrality

Clustering Degree Regional
Efficiency

Age

L Caudal Ant Cingulate ns −0.032 (7.4×10−05) 2.7 (0.0054) 0.022 (0.0031)

L Caudal Mid Frontal ns −0.022 (0.024) −1.4 (0.025) ns

L Cuneus ns −0.037 (0.0029) 2.6 (7.5×10−09) 0.027 (8.7×10−09)

L Entorhinal ns 0.10 (0.0039) 1.5 (0.00025) 0.050 (0.00012)

L Fusiform 16 (0.0022) −0.037 (0.00036) 1.6 (6.8×10−05) 0.019 (1.8×10−07)

L Inferior Parietal −17 (2.0×10−16) 0.059 (9.3×10−13) −2.9 (3.0×10−20) −0.023 (1.5×10−14)

L Isthmus of the Cingulate 35 (0.00033) −0.028 (9.7×10−07) 3.6 (3.0×10−12) 0.027 (2.6×10−12)

L Lat Occipital −14 (5.4×10−17) 0.072 (3.1×10−12) −2.2 (1.6×10−11) −0.020 (6.5×10−09)

L Lat Orbitofrontal ns 0.042 (0.00050) −1.6 (0.011) ns

L Lingual ns −0.031 (0.00080) 1.6 (5.0×10−06) 0.014 (6.5×10−06)

L Mid Temporal −4.4 (0.00023) 0.031 (0.0020) −1.4 (0.00016) −0.013 (0.0013)

L Parahippocampal 8.2 (0.0038) −0.11 (2.4×10−12) 4.2 (5.7×10−17) 0.044 (2.5×10−16)

L Paracentral −27 (3.2×10−08) ns ns ns

L Pars opercularis ns ns −0.95 (0.0017) ns

L Pars orbitalis −0.50 (0.021) ns −0.82 (0.00041) −0.0086 (0.025)

L Pars triangularis ns ns −0.91 (0.0065) ns

L Peri-calcarine 11 (0.0030) −0.045 (3.1×10−06) 2.1 (3.8×10−06) 0.018 (5.34×10−06)

L Postcentral −7.7 (7.8×10−12) 0.063 (4.3×10−11) −3.1 (1.3×10−14) −0.025 (8.0×10−13)

L Post Cingulate 59 (3.1×10−14) −0.059 (1.7×10−20) 5.4 (6.5×10−21) 0.040 (6.2×10−22)

L Precentral −23 (3.6×10−07) 0.023 (0.011) −2.0 (7.2×10−06) −0.014 (4.9×10−05)

L Precuneus −23 (0.0056) ns 1.1 (0.0020) 0.0086 (0.0017)

L Rostral Ant Cingulate 54 (2.8×10−14) −0.063 (3.8×10−14) 3.3 (1.6×10−11) 0.028 (1.2×10−10)

L Rostral Mid Frontal −26 (2.7×10−12) 0.063 (4.0×10−10) −4.0 (2.2×10−19) −0.034 (1.6×10−17)

L Sup Frontal 42 (8.2×10−06) −0.028 (7.1×10−07) 3.0 (4.7×10−09) 0.024 (5.3×10−10)

L Sup Parietal −28 (1.2×10−13) 0.034 (1.7×10−07) −1.9 (2.9×10−08) −0.016 (3.4×10−08)

L Supra-marginal −7.7 (9.8×10−06) ns −1.5 (7.8×10−08) −0.0082 (0.00057)

L Frontal Pole ns ns −2.5 (9.9×10−14) −0.054 (0.00014)

L Transverse Temporal ns −0.072 (6.9×10−12) 1.6 (2.4×10−06) 0.020 (3.7×10−05)

L Insula ns −0.015 (0.0018) 0.68 (0.015) 0.0082 (0.00093)

R Caudal Ant Cingulate −12 (2.2×10−08) 0.033 (9.8×10−05) −2.1 (6.3×10−07) −0.014 (0.00025)

R Caudal Mid Frontal −6.8 (0.00081) ns ns ns

R Entorhinal ns 0.14 (6.5×10−05) ns ns
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Betweenness
Centrality

Clustering Degree Regional
Efficiency

R Isthmus of the Cingulate −15 (0.0012) ns ns ns

R Lat Occipital −20 (1.4×10−09) 0.039 (9.8×10−05) −1.1 (0.00020) −0.010 (0.00095)

R Lingual 15 (0.011) −0.034 (0.00014) 1.0 (0.0060) 0.011 (0.0026)

R Med Orbitofrontal ns ns −1.8 (0.0020) −0.014 (0.0085)

R Mid Temporal 11 (3.1×10−09) −0.054 (1.4×10−07) 1.8 (1.0×10−08) 0.018 (4.7×10−08)

R Paracentral −7.7 (0.00048) 0.038 (0.00014) −1.3 (0.0025) −0.0086 (0.021)

R Pars opercularis 3.9 (4.5×10−08) −0.042 (1.2×10−05) 1.6 (3.2×10−06) 0.020 (2.5×10−07)

R Postcentral 8.2 (4.9×10−05) −0.045 (1.6×10−07) 2.6 (2.2×10−09) 0.022 (6.3×10−08)

R Post Cingulate −12 (0.00065) 0.015 (0.022) ns ns

R Precentral −18 (0.00024) ns ns ns

R Precuneus −38 (1.1×10−06) 0.022 (3.9×10−05) −1.1 (0.0017) −0.0077 (0.0070)

R Rostral Ant Cingulate −6.3 (0.014) ns −1.4 (9.2×10−06) −0.010 (0.0014)

R Rostral Mid Frontal −20 (2.2×10−06) 0.032 (5.2×10−06) −1.8 (3.8×10−11) −0.013 (4.4×10−07)

R Sup Temporal −6.3 (0.0010) 0.026 (0.0090) −1.2 (6.2×10−07) −0.011 (1.9×10−05)

R Supra-marginal 15 (1.2×10−10) −0.041 (2.0×10−09) 2.3 (5.5×10−09) 0.027 (5.6×10−14)

R Transverse Temporal ns ns 1.1 (0.00060) 0.012 (0.0021)
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Table 8

List of 10 most significant age-related increases and 10 most significant age-related decreases in proportional
fiber density when age is examined alone. When only one region is listed, an age-related increase or decrease
in the proportion of fibers going through that node was found.

Top 10 increases in fiber density

Connection b-val

L Supramarginal × L Inferior Parietal −0.000358

R Caudal Middle Frontal −0.000347

L Lateral Orbitofrontal × L Rostral Mid Frontal −0.000255

L Med Orbitofrontal × L Rostral Mid Frontal −0.000314

L Postcentral × L Insula −0.000276

L Insula × L Supramarginal −0.000429

L Inferior Parietal −0.00108

L Supramarginal × L Posterior Cingulate −0.000296

L Sup Frontal × L Rostral Mid Frontal −0.000483

R Sup Frontal × R Rostral Ant Cingulate −0.000309

Top 10 decreases in fiber density

Connection b-val

L Posterior Cingulate 0.00337

L Paracentral × L Posterior Cingulate 0.00143

L Posterior Cingulate × L Precuneus 0.000967

L Posterior Cingulate × L Sup Frontal 0.000999

R Postcentral × R Insula 0.000593

L Isthmus of the Cingulate 0.00277

R Postcentral 0.000956

L Sup Frontal × R Prefrontal 0.000168

L Isthmus of the Cingulate × L Precuneus 0.00176

L Caudal Ant Cingulate × L Sup Frontal 0.00101
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Table 9
Region key

Abbreviation Region Abbreviation Region

L-BSTS L Banks of the Superior Temporal Sulcus R-BSTS R Banks of the Superior Temporal Sulcus

L-CAC L Caudal Anterior Cingulate R-CAC R Caudal Anterior Cingulate

L-CMF L Caudal Middle Frontal R-CMF R Caudal Middle Frontal

L-CC L Corpus Callosum R-CC R Corpus Callosum

L-Cun L Cuncus R-Cun R Cuncus

L-Ento L Entorhinal R-Ento R Entorhinal

L-Fus L Fusiform R-Fus R Fusiform

L-InfP L Inferior Parietal R-InfP R Inferior Parietal

L-InfT L Inferior Temporal R-InfT R Inferior Temporal

L-IsC L Isthmus of the Cingulate R-IsC R Isthmus of the Cingulate

L-LOcc L Lateral Occipital R-LOcc R Lateral Occipital

L-LOrb L Lateral Orbitofrontal R-LOrb R Lateral Orbitofrontal

L-Ling L Lingual R-Ling R Lingual

L-MOrb L Medical Orbitofrontal R-MOrb R Medical Orbitofrontal

L-MidT L Middle Temporal R-MidT R Middle Temporal

L-ParaH L Parahippocampal R-ParaH R Parahippocampal

L-ParaC L Paracentral R-ParaC R Paracentral

L-ParsOp L Pars opercularis R-ParsOp R Pars opercularis

L-ParsOr L Pars orbitalis R-ParsOr R Pars orbitalis

L-ParsTri L Pars triangularis R-ParsTri R Pars triangularis

L-PeriCal L Peri-calcarine R-PeriCal R Peri-calcarine

L-PCen L Postcentral R-PCen R Postcentral

L-PCing L Posterior Cingulate R-PCing R Posterior Cingulate

L-PreC L Precentral R-PreC R Precentral

L-Prec L Precuneus R-Prec R Precuneus

L-RAC L Rostral Anterior Cingulate R-RAC R Rostral Anterior Cingulate

L-RMF L Rostral Middle Frontal R-RMF R Rostral Middle Frontal

L-SupF L Superior Frontal R-SupF R Superior Frontal

L-SupP L Superior Parietal R-SupP R Superior Parietal

L-SupT L Superior Temporal R-SupT R Superior Temporal

L-SuprM L Supra-marginal R-SuprM R Supra-marginal

L-Fpole L Frontal Pole R-Fpole R Frontal Pole

L-Tpole L Temporal Pole R-Tpole R Temporal Pole

L-TrT L Transverse Temporal R-TrT R Transverse Temporal

L-I L Insula R-I R Insula
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Table 10
Sex differences in nodal measures of connectivity

Males were coded as ‘1’ and females as ‘2’, thus a positive b value indicates greater nodal scores in females.
FDR corrected (q < 0.05).

Degree Regional
Efficiency

L Precuneus ns −0.0082 (0.00057)

L Temporal Pole 1.3 (0.00038) ns

R Pars orbitalis −0.91 (0.00049) −0.019 (8.5×10−5)
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