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Abstract
Acute kidney injury [AKI] refers to a clinical syndrome encompassing various etiologies and
occurring in a variety of clinical settings, with manifestations ranging from subtle biochemical and
structural changes, to minimal elevation in serum creatinine, to anuric renal failure. Understanding
the spectrum of AKI and the importance of the early pre-clinical damage stage has resulted in an
improved ability to define and stage pediatric AKI, to understand the AKI-to-CKD transition, and
harness novel damage biomarkers to predict AKI and its adverse outcomes. These concepts are
expanded upon in this review, with an emphasis on publications from the past three years.
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Introduction
For several decades, clinicians have used the term acute renal failure [ARF] to designate the
discrete event of a failed kidney, characterized by a rapid accumulation of blood urea
nitrogen and creatinine. However, “ARF” over-emphasizes the failure of kidney function,
and does not account for the diverse molecular, biochemical, and structural processes that
transpire in an acutely injured kidney, well before the decline in function. Thought leaders
have therefore proposed the term “acute kidney injury” (AKI). This refers to a broad clinical
syndrome encompassing various etiologies and occurring in a variety of clinical settings,
with manifestations ranging from subtle biochemical and structural changes, to minimal
elevation in serum creatinine, to anuric renal failure [1]. The conceptual model for AKI
starts with subjects who are at increased risk (due to genetic or clinical risk factors), and
proceeds through an intermediate and previously unrecognized damage stage (now
identified by novel biomarkers) to the stage of functional ARF [1, 2]. Embracing the
spectrum of AKI and the importance of the early pre-clinical damage stage has resulted in
several paradigm-shifting outcomes. First, there has been an improvement in our ability to
define, classify, and stage pediatric AKI [1, 3]. Second, we now know that even very small
early increases in serum creatinine predict the subsequent development of overt clinical AKI
in children [4]. Third, we have witnessed a revolution in the early prediction of AKI and its
outcomes using novel damage biomarkers pioneered largely in pediatric studies [5]. Fourth,
we have come to realize that pediatric AKI is plagued with common and serious adverse
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outcomes [6–8]. These concepts are expanded upon in the subsequent sections of this
review, with an emphasis on publications from the past three years.

Pediatric AKI should be defined in a standardized manner
Historically, progress in pediatric AKI was hindered by the myriad definitions. During the
past decade, two major classification systems have emerged (RIFLE and AKIN), based on
serum creatinine and urine output criteria. A modification of the RIFLE criteria was
suggested for pediatric use (pRIFLE), substituting serum creatinine values with estimated
creatinine clearance [using the Schwartz formula]. Recent pediatric AKI studies have
employed the pRIFLE criteria to report on AKI incidence, severity of illness, length of
hospital stay, and mortality [4, 9–11]. However, a systematic review of 12 pediatric studies
using RIFLE or pRIFLE classification reported wide variations in the application of the
criteria, and inconsistencies in the relationships between the RIFLE class and measures of
morbidity and mortality [12]. Consequently, the precise incidence, prevalence, and
outcomes of pediatric AKI still remain unclear.

Recognizing the need for a single consensus definition and staging system that could be
applied to both children and adults, the Kidney Disease: Improving Global Outcomes
(KDIGO) group has proposed the following definition for AKI [1]:

• Increase in serum creatinine by ≥0.3 mg/dl [≥26.5 µmol/l] within 48 hours; OR

• Increase in serum creatinine to ≥1.5 times baseline within the prior 7 days; OR

• Urine volume <0.5 ml/kg/h for 6 hours

The KDIGO staging of AKI is illustrated in Table 1, and incorporates RIFLE, pRIFLE, and
AKIN classifications. Both the definition and staging feature a 0.3 mg/dl increase in serum
creatinine to specifically be applicable to pediatric AKI. The KDIGO staging also allows for
a child with eGFR <35 ml/min per 1.73 m2 to be classified as Stage 3, in contrast with the
adult criterion of ≥4 mg/dl serum creatinine (which would be unrealistic in infants and
young children). The uniform adoption of the KDIGO definition and staging of AKI holds
significant promise for improving our understanding of pediatric AKI epidemiology, and
therefore deserves our undivided attention.

Pediatric AKI is common but lacks awareness
There is now growing evidence to indicate that pediatric AKI is not only common, but also
rising in incidence. Potential explanations for the mounting incidence rate include the
increased availability of treatment options for many critical illnesses (sepsis, congenital
heart disease, bone marrow transplants), and advances in neonatal and pediatric intensive
care. While pediatric centers have previously reported an AKI incidence of only 1% of all
general hospital admissions, the incidence is substantially higher in specialized populations
with critical illnesses that are now routinely managed. Recent retrospective and prospective
studies from around the globe indicate an AKI incidence of 10–35% (by RIFLE or AKIN
criteria) among children admitted to pediatric intensive care units [13–15]. This incidence
jumps up to nearly 90% if only mechanically ventilated children with trauma or vasopressor
requirement are included [16]. In children undergoing cardiac surgery, reports from several
countries indicate an AKI incidence (by RIFLE or AKIN criteria) of 30–50% [17–22]. Even
among non critically ill children, the incidence of AKI by pRIFLE criteria was high at 34%
when those receiving potentially nephrotoxic medications were analyzed [23]. Thus,
pediatric AKI is reaching epidemic proportions, especially among critically ill children, in
whom kidney failure is just as common as other major organ failures. Indeed, among adults,
AKI has a general incidence of 2.1/1000 population, similar to that of acute myocardial
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infarction, the latter condition clearly much more widely appreciated by clinicians,
researchers, and the general public [24]. Future studies employing consensus definitions in a
rigorous manner will be necessary to raise awareness of this increasingly common condition.

Pediatric AKI epidemiology has changed
The epidemiology and etiology of pediatric AKI is greatly influenced by the clinical setting
and geographic location. In developed countries, the epidemiology of pediatric AKI has
shifted during the past two decades from primary glomerular diseases to a hospital-acquired
complication of other systemic illnesses. The most prevalent causes now include sepsis,
congenital heart disease, ischemic injury in critically ill neonates and children, nephrotoxins,
and malignancy [9, 10]. Even in underdeveloped countries, the pattern of pediatric AKI in
urban areas closely resembles that seen in the more developed countries [10]. Ironically,
even tragically, pediatric AKI has become the consequence of improved critical care.

Pediatric AKI has important consequences
The short-term outcomes of AKI have been well documented in children undergoing cardiac
surgery. In a prospective multinational study of 311 children undergoing cardiac surgery,
AKI was independently associated with prolonged mechanical ventilation and increased
length of hospital stay [19]. This independent association has now been confirmed in other
large studies from several countries [20–22]. Importantly, a retrospective analysis of infants
who developed AKI after cardiac surgery revealed a mortality rate of 7%; multivariable
logistic regression analysis showed that more severe AKI was associated with greater in-
hospital mortality [20]. For AKIN stage II, the odds ratio of death was 5.1 and for AKIN
stage III, it was 9.46.

The short-term outcomes of children with AKI as a complication of critical illness are also
well known. In a multicenter retrospective analysis of 2,106 pediatric ICU admissions, AKI
was independently associated with longer ICU stay and mechanical ventilation [14]. A
recent large retrospective study of 3,396 admissions to a single pediatric ICU illustrated that
those who presented with AKI on admission had a 32% mortality rate and those who
developed AKI at any time during the ICU stay had a 30% mortality rate [13]. Remarkably,
this persistently high mortality rate of 30–40% in critically ill children with AKI has been
consistently demonstrated in several very recent studies [9, 10, 14–16, 25].

Thus, notwithstanding advances in pediatric renal and critical care, severe AKI requiring
renal replacement therapy in children is still associated with a mortality rate of 30–50%, and
this has not changed appreciably over the past two decades. This may reflect, in part, the fact
that those with severe AKI also have increasing severity of their primary illness, so that an
improvement in survival rates is not readily apparent despite renal replacement therapy. This
notion is supported by a multicenter retrospective analysis of 344 children requiring
continuous renal replacement therapy, in whom the overall mortality rate was 42% [26].
However, there was significantly better survival in patients with less severity of their
primary illness, including drug intoxication (100%), primary renal disease (84%), and tumor
lysis syndrome (83%). Despite dialysis, survival was lowest in the sickest children with liver
disease (43%), pulmonary disease (45%), and bone marrow transplant (45%).

The previous assumption that patients who survived an episode of AKI would recover
kidney function has been challenged. A recent meta-analysis of 13 published cohort studies
showed that adults with AKI are at a 9-fold higher risk of developing CKD, and a 3-fold
increased risk of developing ESRD, when compared to patients without AKI [27]. Similar
evidence is accumulating in the pediatric population [6–8, 28]. In a prospective study of
children who developed AKI and were followed up for 3–5 years, 60% developed evidence
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for CKD (proteinuria, decreased GFR, hypertension), 9% developed ESRD, and 20% died
[29]. A shorter 1–3 year follow up of 126 critically ill children who suffered an episode of
AKI [30] showed that 10% developed CKD (eGFR < 60 ml/min per 1.73 m2 or
albuminuria), but 47% showed evidence of CKD risk (eGFR 60–90 ml/min per 1.73 m2 or
hypertension). However, several unknowns remain. Can clinical risk factors (e.g. etiology
and severity of AKI, pre-existing CKD, other co-morbid factors) determine the risk of CKD
after AKI? Can novel biomarkers predict this risk? Can early interventions prevent
progression of CKD? Ongoing long-term follow up studies in both children and adults [31]
are expected to clarify some of these questions, but clearly a lot more work is needed to
strengthen the emerging recommendation that children with AKI require long-term
evaluation for CKD. Future studies should also incorporate lessons learned from
contemporary basic science studies that have unveiled the mechanisms leading to vascular
rarefaction and progressive interstitial fibrosis after AKI [32], and the role of novel
regulatory proteins such as neutrophil gelatinase-associated lipocalin and kidney injury
molecule-1 as pathogenic factors as well as early biomarkers for the AKI-to-CKD transition
[33].

The causes of death in pediatric AKI have changed
Modern renal replacement therapies have largely eliminated the traditional life-threatening
complications of AKI, including hyperkalemia, arrhythmias, and uremic coma. Why, then,
do children with AKI still die? Both clinical and experimental evidence points to four major
factors. First, the detrimental cross-talk between the acutely injured kidney and other organs
implicates AKI as an instigator and multiplier of pulmonary, cardiac, hepatic, and
neurologic dysfunction, which likely accounts for the vicious cycle of AKI and multi-organ
failure leading to mortality [34]. Second, AKI impairs the immune function and markedly
escalates susceptibility to infection [35]. This sets up another vicious cycle whereby
infections lead to sepsis and AKI, and sepsis-induced immune dysfunction is further
exacerbated by the AKI-induced immune dysregulation. Third, AKI contributes to
medication failure from many reasons. On the one hand, critically ill children with AKI are
at substantial risk for adverse outcomes of drug therapy, due to reduced renal clearance,
decrease in protein binding, and decrease in drug metabolism [36–38]. On the other hand,
under-dosing of critical medications such as antibiotics often occurs, due to unstable
elimination rates and volumes of distribution, and significant clearance by renal replacement
therapies [36–38].

Fourth, and perhaps most importantly, AKI often results in fluid overload, and fluid
overload is a common accompaniment to several clinical situations (e.g. sepsis, hypotension,
cardiac surgery) that lead to AKI. Pediatric studies have pioneered the concept now well
established in all ages that fluid overload is an independent risk factor for mortality in AKI.
A recent analysis of 340 children used a tripartite classification for percent fluid overload at
initiation of renal replacement therapy [39]: < 10%, 10–20%, and ≥20% fluid overload.
Those with ≥20% fluid overload had a 66% mortality rate, whereas those with 10–20% fluid
overload displayed a lower mortality rate of 43%, and those with < 10% fluid overload had
the lowest mortality rate of 29%. The association between degree of fluid overload and
mortality remained after adjusting for intergroup differences and severity of illness [39].
Patients with ≥20% fluid overload had an 8.5-fold greater adjusted odds ratio of death than
those with <20% fluid overload. Preventing fluid overload and rapid correction of fluid
overload with early initiation of renal replacement therapy may represent “low-hanging”
fruits in pediatric AKI therapeutics that deserve investigation.
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Can pediatric AKI risk be predicted using clinical measures?
AKI lacks physical symptoms and signs in the early stages when interventions are likely to
be most effective. Investigators have recently sought to integrate contextual risk factors with
evidence of renal injury to stratify AKI risk [40, 41]. Termed “renal angina”, a three-tiered
schema empirically places children into moderate (any ICU admission plus doubling of
serum creatinine or fluid overload >15%), high (heart failure or stem cell transplant plus
serum creatinine increase ≥0.3 mg/dl or fluid overload >10%), and very high risk for AKI
(mechanical ventilation and vasoactive medication plus any increase in serum creatinine or
fluid overload >5%). Thus, as the AKI risk increases (e.g. mechanical ventilation), less
evidence of AKI is needed (e.g. small changes in serum creatinine) to meet the threshold for
renal angina. In analogy with cardiac angina, the major goal of renal angina determination is
to identify children who will maximally benefit from biomarker measurement for prediction
and early treatment of AKI. Studies to validate the utility of renal angina are currently in
progress.

Can pediatric AKI and its outcomes be predicted using biomarkers?
The genomic and proteomic tools of modern science have identified novel markers for the
early stress response of the kidney to AKI, which are induced in the kidney tubules during
the early damage phase, and serendipitously appear in the urine or plasma well before a
change in serum creatinine is detected [2, 5]. Many are being developed and validated as
early non-invasive biomarkers for the prediction of AKI and its clinical outcomes in
humans. This is a rapidly evolving field, and the current status of the most promising
examples is shown in Table 2.

The most widely studied and validated early biomarker of AKI in children is neutrophil
gelatinaseassociated lipocalin (NGAL). In prospective studies of children undergoing
cardiopulmonary bypass, levels of NGAL in the urine and plasma were significantly
elevated within 2–6 hours of bypass in those who subsequently developed AKI [42–47].
Strong associations between early NGAL measurements and hard clinical outcomes,
including length of hospital stay and the duration and severity of pediatric AKI, have now
been documented [43–47]. Furthermore, the additional of NGAL significantly improves the
risk prediction for AKI after cardiac surgery over clinical models alone [47]. Studies in the
more heterogeneous pediatric intensive care [48, 49] and pediatric emergency department
settings [50] also demonstrated that NGAL predicted AKI about 1–2 days prior to the rise in
serum creatinine, with high sensitivity. Two large multicenter pooled analyses of existing
NGAL studies in children and adults have recently been published, confirming the utility of
this marker for the early diagnosis of AKI and its clinical outcomes [51, 52].

A recent study examined a combination of biomarkers in 220 children undergoing cardiac
surgery [46]. Urinary NGAL was increased in AKI patients within 2 hours of bypass
initiation, urine IL-18 and L-FABP were increased within 6 hours, and urine KIM-1
increased at the 12 hour time point. All markers correlated with AKI severity and clinical
outcomes, and improved the risk prediction for AKI over clinical models. Thus, they
represent temporally sequential markers, and a panel of such biomarkers may therefore help
establish the timing of injury and plan appropriate therapies [46]. Standardized clinical
laboratory platforms for the measurement of urine [44] and plasma [43] NGAL are now
available in most countries.

It is anticipated that biomarkers of early structural AKI such as NGAL will provide critical
diagnostic and prognostic stratification, independent of functional markers such as serum
creatinine. While biomarker combinations may be necessary to provide the best information
in a context-specific manner, the technical and financial challenges of developing biomarker
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panels are substantial. It is therefore vital that large enough future studies demonstrate (a)
the association between early structural biomarkers and hard outcomes such as dialysis,
cardiovascular events, and death, both with and independent of functional markers, and (b)
that randomization to a treatment for AKI based on high structural biomarker levels results
in an improvement in kidney function and amelioration of adverse clinical outcomes.

Conclusion
The Kidney Disease: Improving Global Outcomes (KDIGO) group has provided a
consensus definition and classification for pediatric AKI, the uniform adoption of which will
improve our understanding of pediatric AKI epidemiology and raise awareness of this
increasingly common condition. Pediatric AKI leads to CKD and ESRD, but we need to
identify clinical risk factors and novel biomarkers that predict these outcomes. A concerted
effort is needed to strengthen the emerging recommendation that children with AKI require
long-term evaluation for CKD. Preventing fluid overload and rapid correction of fluid
overload with early initiation of renal replacement therapy represent pediatric AKI
therapeutics that deserves urgent investigation. Excellent point-of-care early biomarkers of
AKI have now become available. Biomarker-guided therapies, based on “renal angina”
scoring, should be the next major challenge to overcome, in order to dramatically improve
the outcome of pediatric AKI.
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Table 1

KDIGO Staging of AKI

Stage Serum Creatinine Urine Output

1 1.5–1.9 times baseline, OR
≥0.3 mg/dl (≥26.5 mol/l) increase

<0.5 ml/kg/h for 6–12 hours

2 1.0–2.9 times baseline <0.5 ml/kg/h for ≥12 hours

3 3.0 times baseline, OR
SCr ≥4.0 mg/dl (≥353.6 µmol/l), OR
Initiation of renal replacement therapy, OR
eGFR <35 ml/min per 1.73 m2 (< 18 years)

<0.3 ml/kg/h for ≥24 hours, OR
Anuria for ≥12 hours

Adapted from Reference 1.
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