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Abstract
Background—African catarrhine primates differ in bacterial disease susceptibility.

Methods—Human, chimpanzee, and baboon blood was stimulated with TLR-detected bacterial
agonists and cytokine/chemokine induction assessed by real-time pcr.

Results—Humans and chimpanzees shared similar cytokine/chemokine responses, while baboon
cytokine/chemokine induction differed. Generally, responses were agonist-independent.

Conclusions—These primates tend to generate species rather than agonist–specific responses to
bacterial agonists.
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As African catarrhines, the common chimpanzee (Pan troglodytes) and baboon (Papio sp.)
share 98.6% and 94% of their genomes, respectively, with humans and are considered
important models of human infectious disease [4, 6, 20]. However, these species exhibit
very different susceptibility to infectious bacterial pathogens that are associated, in humans,
with marked dysregulation of early inflammatory responses [5, 7, 10, 12, 25]. For example,
humans and chimpanzees require only small doses (i.e. 2-5 ng/kg) of Gram-negative
bacteria or cell wall component lipopolysaccharide (LPS) to initiate severe bacterial sepsis,
while baboons and other old world monkey species require much higher doses (0.1 mg/kg)
[7, 18, 22, 24]. Similarly, humans and chimpanzees are very susceptible to Neisseria
gonorrhea infections, while baboons and most other mammals are resistant [12]. Though
less well understood, mycobacterial infections have been noted to rapidly progress in
baboons and other old world monkeys [9, 16, 26]. The host factors responsible for disparate
bacterial infection susceptibility in catarrhine primates [humans, apes, and old world
monkeys (i.e. baboons, macaques)] are not well understood, though blood leukocyte
reactivity to immune stimuli during early infection appears to differ between such species
[2, 19, 24]. One possible explanation for disparate bacterial infection susceptibility between
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human, chimpanzees and baboons is inter-species differences in the initiation of the early
innate immune responses.

The first two hours of infection in mammalian hosts is marked by an immediate induction of
a core set of innate immune genes (i.e. cytokines and chemokines) that appear to exert
control over the initial infection course and may affect disease susceptibility [8, 15]. Toll-
like receptors (TLRs) are innate immune system receptors that assist in initiating this highly
organized early innate immune response by recognizing pathogen-associated molecular
patterns (PAMPs) and triggering immune gene induction. TLR2 recognizes lipoproteins and
lipopeptides from Gram-positive bacteria, mycobacteria, fungi and parasites while TLR4
interacts with lipopolysaccharide LPS from Gram-negative bacteria [3, 13, 21]. Given the
importance of chimpanzee and baboon models in understanding human disease course,
comparative data on early TLR-mediated responses to bacterial PAMPs may contribute to a
better understanding of the host factors responsible for inter-species differences in bacterial
disease susceptibility. This study compares and contrasts the induction profile of
chemokines and cytokines associated with the early innate immune response in humans,
chimpanzees and baboons after stimulation with TLR2 and 4-detected PAMPs.

To investigate catarrhine early innate immune responses to TLR-detected bacterial PAMPs
fresh blood from unrelated, healthy, adult humans (City College of New York IRB #
09-0073C), chimpanzees (Yerkes National Primate Research Center, Atlanta, Georgia) and
baboons (Texas Biomedical Research Institute, San Antonio, Texas) was stimulated at 37°C
for 90 minutes with ten fold serial dilutions of 10 ug/ml – 0.01 ug/ml of TLR2 and TLR4-
detected PAMPs [Pam3CSK4, lipomannan from Mycobacterium smegmatis (LMMS),
Ultrapure lipopolysaccharide from Escherichia coli 0111:B4 (LPS), Invivogen, San Diego,
CA]. Chimpanzee and baboon blood samples were humanely collected in accordance with
individual institutional IACUC requirements. After 90 minutes, red blood cells were lysed
by hypotonic shock and total blood leukocyte total RNA isolated to synthesize cDNA
(Qiagen RNEasy mini-kit, Quantitect Reverse Transcriptase kit, Qiagen San Diego, CA).
Real-time pcr was performed using 0.1 uM of primers corresponding to conserved regions
of cytokine/chemokine genes of all three species (Table 1). Reaction specificity was
confirmed by DNA sequencing of the amplicons. Relative gene induction was calculated
using the Pfaffl equation corrected for primer efficiency, and three reference genes
(GAPDH, ACTB, B2M) [17] [23].

Of 14 genes tested by this method eight showed at least two-fold induction and notable
differences between species, even though there were no obvious differences in the
proportions of neutrophils, lymphocytes, monocytes and basophils/eosinophils between the
species (Wright-Giemsa method, data not shown). The most striking differences were
among the three chemokines CXCL2, IL-8/CXCL8 and CCL3. Whereas baboons expressed
high levels of CXCL2 and low levels of IL-8/CXCL8 and CCL3, this pattern was reversed
for humans and chimpanzees where most humans and all chimpanzees expressed
significantly higher levels of IL-8/CXCL8 and CCL3 than CXCL2 (A panels). This pattern
of chemokine induction was observed for all three PAMPs and was seen even at low doses
of PAMP (0.01 ug/ml, data not shown). Though a subset of chemokines, species-specific
induction of these cellular chemoattractants suggests that baboon and hominoid cellular
responses to bacterial infection may differ, as CXCL2 and IL-8 attract mainly neutrophils
and CCL3 is a chemoattractant for a broader range of cell subtypes.

A comparison of the pro-inflammatory cytokine responses, IL-1β, TNFα and IL-6, revealed
that humans expressed appreciably lower levels of IL-1β and TNFα than did chimpanzees
and baboons with the exception of the TNFα response to LPS which was similar for all
three species (B panels). The IL-6 response, which was strikingly high for all three species,
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tended to be lower for baboons than for humans and chimpanzees, especially in response to
LPS. These relationships were observed even at low doses of PAMPs (0.01 ug/ml, data not
shown).

An analysis of the anti-inflammatory cytokine responses, IL-10 and IL-1RN, also revealed
striking differences between the three species. Baboons expressed very liitle IL-1RN
compared to humans and chimpanzees, irrespective of the PAMPs employed (C panels). In
contrast, the IL-10 response was similar for all three species with the baboon response being
somewhat greater than the responses of humans and chimpanzees. Again, these relationships
were conserved even at low doses of PAMPs (data not shown).

In summary, this study suggests that the early innate immune responses of humans,
chimpanzees, and baboons to TLR2 and TLR4-detected PAMPs differ, with the patterns, in
general, being species-specific rather than agonist-specific. These species differences in
cytokine/chemokine induction may affect immune cell activation and trafficking.
Interestingly, the disparate baboon and hominoid cytokine/chemokine responses noted here
agree with observations that cercopithecoid (old world monkey) and hominoid diverge in
susceptibility to bacterial infections. It is interesting, for example, that baboon IL-8/CXCL8
and IL-6 induction tends to be minimal, as high levels of these proteins during early severe
sepsis have been correlated with negative clinical outcomes [11, 14].

These studies are an early step in improving our understanding of African catarrhine innate
immune responses to bacteria. As these non-human primates are important biomedical
models for human medicine, it is very important to highlight inter-species differences in
early innate immune function. The results of this study may help to explain inter-species
differences in susceptibility to major human bacterial-mediated diseases.
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FIGURE 1.
African catarrrhine early cytokine and chemokine responses to stimulation with TLR2 and
TLR4 PAMPs. Human (orange squares), chimpanzee (blue circles) and baboon (black
diamonds) blood was stimulated with LPS from E. coli 0111:B4, LMMS and Pam3CSK4
for 90 minutes and chemokine/cytokine induction was quantified by real-time PCR. 10 ug
dose shown as Log base 2 here. Colored bars represent standard error of the mean (SEM),
while black bars represent the mean. Dots in the scatter represent different individuals.
Pairwise comparisons of significant different in gene induction were completed by unpaired
t-tests [<0.05, unless otherwise noted. P value pairwise by PAMP was non significant for
CXCL2 – LPS: H-B, LMMS: H-C, Pam3CSK4: H-C; for IL-8/CXCL8 - Pam3CSK4: H-B;
for CCL3 – LPS: H-C, LMMS: H-C, H-B, Pam3CSK4: H-C, C-B, H-B; for IL-1β - LPS: H-
B, Pam3CSK4: C-B; for IL-6 – LPS: H-C, LMMS: H-C, Pam3CSK4: H-C, C-B, H-B;
TNFα -LPS: H-B, LMMS: H-C, C-B, Pam3CSK4: C-B; for IL-1RN – LPS: H-C,
Pam3CSK4: H-C; for IL-10 – LPS: C-B, LMMS: H-C, Pam3CSK4: H-C; where human (H),
chimpanzee (C ) and baboon (B)]
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